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Sparse matrix solvers

• solve A x = b

• A ∈ Rn × n, b ∈ Rn, x ∈ Rn

• A large: n = millions, billions, ...

• A sparse: PDE discretization on a grid

• we want efficient, accurate and robust solvers
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example 1: space weather prediction

• solar wind plasma (ionized gas) flows from sun to earth

• simulation goal: predict when solar eruptions reach earth (∼ 4 days)
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example 1: space weather prediction

• discretize Magnetohydro-
dynamics (MHD) equations

• implicit time discretization

• A x = b
• 8 million unknowns
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example 1: space weather prediction

• problem with existing methods: scalability
 3D simulation
 suppose: increase resolution by 2
 n ⇒ 8 n
 if the methods scale well, texec ⇒ 8 texec

(linear or O(n) scaling)
 existing methods often scale as O(n2) or worse:

 texec ⇒ 64 texec

 high problem resolutions quickly get out of reach
• need scalable methods!
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example 2: biomedical flows

• blood flow in compliant vessels

• incompressible Navier-Stokes +
elasticity equations

• 3D: large systems, need scalable
solvers on parallel computers

(simulation results courtesy Jeff Heys)
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Overview of presentation

(A) introduction - scalable solvers for PDEs

(B) multigrid iterative solvers

(C) scalable parallel algebraic multigrid solvers

(D) future work
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(A) introduction - scalable solvers for PDEs

two types of scalability
(1) algorithmic scalability

 on a single processor, using serial algorithm

 optimal algorithmic scalability:

• number of operations opn = O(n)
• execution time texec = O(n)

(both increase linearly with n)
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(1) algorithmic scalability
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two types of scalability

(2) parallel scalability

 on a parallel computer, using parallelized algorithm

 communication overhead, may not scale well

 parallelization often attempts to minimize communication
 parallelized algorithm may be less scalable than serial

algorithm (even with zero communication cost)
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(2) parallel scalability

• consider constant problem size nproc per processor

• p processors
• total problem size n = p nproc

• double problem size, 2 n = 2 p nproc

• double number of processors, 2 p

• optimal scalability:
texec = constant as n increases

p procs
texec = t0

2 p procs
texec = t0



SONAD, Waterloo, 29 April 2005
hdesterck@uwaterloo.ca

(B) multigrid iterative solvers

• solve A x = b
• goal: O(n) complexity

• 1D model problem:

• discretization:
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1D model problem

• A x = b

• first idea: use an iterative method (exploiting sparsity)
• for example: Gauss method (relaxation)
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Gauss relaxation method:
n=3

n=33n=31

n=7
• need more iterations as

n increases:
not scalable

• but: for large n, high
frequency errors
disappear fast!

• note: low frequency for
large n (fine grid), is
high frequency for small
n (coarse grid)

• second idea: use
hierarchy of grid levels
 correct high-

frequency errors
on fine grid

 correct low-
frequency errors
on coarse grid

it=20

it=1
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multigrid hierarchy: V-cycle

• multigrid V-cycle:
 relax (=smooth) on various grids
 transfer error using restriction (PT) and interpolation (P)
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2D model problem:

• high-frequency error is removed by relaxation
• low-frequency-error needs to be removed by coarse-grid correction
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multigrid hierarchy: V-cycle

• in every V-cycle, error is reduced by convergence factor ρ
• repeat m V-cycles, error is reduced by ρm

• for large classes of elliptic PDEs, ρ is bounded away from 1
uniformly in n

• ‘deeper’ cycles have same ρ as ‘shallower’ cycles
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amount of work per V-cycle

• work for 1 relaxation on fine grid is called a Work Unit (WU)
• 1 relaxation (or WU) is O(n) ! (number of rows in Ah)
• number of WUs in V-cycle:

 2 . ( 1 + (1/2)2 + (1/2)4 + (1/2)8 + ... + (1/2)2m)    WUs
• geometric series: ∑i=0

m (1/4)i < 1 / (1-(1/4)) = 4/3
• total work per V-cycle < 8/3 WUs : O(n) !
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scalable solver: O(n)

• scalable method: O(n)

 work per V-cycle is O(n)

 number of V-cycles required is independent of n
• because ρ independent of n
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(C) scalable parallel algebraic multigrid solvers

• algebraic multigrid:
 unstructured grid problems
 matrix problems without grid

automatically determine, only from
information in matrix:

 coarse ‘grids’
 coarse grid operators Ah

 interpolation operators Ph

[Brandt, McCormick, Ruge, Stueben]
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AMG coarse and fine grids

 select C-pts

 others points are
F-pts

 F-pts interpolate
from C-pts
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AMG coarsening and interpolation

• only large aij, ‘strong connections’ are important
• define strength matrix S:

• consider the undirected graph of S
• apply parallel maximal independent set algorithms to

graph(S) [Luby, 1986]
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classical AMG coarsening and interpolation
 (C1) Maximal Independent Set:
Independent: no two C-points are

connected
Maximal: if one more C-point is

added, the independence is lost

 (C2) All F-F connections require
connections to a common C-point
(for good interpolation)

 F-points have to be changed into
C-points, to ensure (C2); (C1) is
violated

more C-points, higher complexity
(Ruge, Stueben, Cleary)
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 Select coarse “grids”
 Define interpolation,
 Define restriction and coarse-grid operators

AMG building blocks
Setup Phase:

Solve Phase
mm(m)
fuA =Relax 

mm(m)
fuA =Relax 

! 

Interpolate P(m)

1m1m1)(m
reA

+++
=

Solve        

! 

Restrict P
(m)T

1,2,...m   ,P
(m)
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(m)(m)(m)T 1)(m(m)T(m)
PAPA          PR ==
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AMG complexity - scalability

• Operator complexity Cop=

 e.g., 3D, ideally:   Cop = 1 + 1/8 + 1/64 + …  <   8 / 7

 measure of memory use, and  work in solve phase

• scalable algorithm:
O(n) operations per V-cycle (Cop bounded)

and
number of V-cycles independent of n

(ρ independent of n)
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Classical coarsening: scalability results

9

9

9

Iter

256

64

16

Procs ttotCop

5.014.50

3.854.50

2.894.48

 example: finite difference Laplacian, parallel CLJP coarsening
algorithm

 2D (5-point): near-optimal scalability (2502 dof/proc)
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Classical coarsening: complexity growth in
some cases

11

8

Iter

643

323

dof Cop

22.51

16.17

 3D (7-point): complexity growth

 increased memory use, long solution times, long setup times, loss
of scalability
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Classical coarsening: complexity growth in
some cases

5D

4D

5

8

Iter

95

204

dof Cop

256.9

127.5

 4D (9-point), 5D (11-point): complexity growth!!

 excessive memory use

(results by Jeff Butler)
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our approach to reduce complexity: PMIS coarsening
(De Sterck, Yang, SIAM J. Matrix Analysis, 2004, submitted)

• Parallel Modified Independent Set (PMIS)

• do not enforce condition (C2)

• convergence acceleration using GMRES

• weighted independent set algorithm: points i that influence many
equations (λi large), are good candidates for C-points

• add random number between 0 and 1 to λi to break ties

• parallel algorithm!
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PMIS select 1

 select C-pts with
maximal
measure locally

 make neighbor
F-pts

 remove
neighbor edges

3.7 5.3 5.0 5.9 5.4 5.3 3.4

5.2 8.0 8.5 8.2 8.6 8.9 5.1

5.9 8.1 8.8 8.9 8.4 8.2 5.9

5.7 8.6 8.3 8.8 8.3 8.1 5.0

5.3 8.7 8.3 8.4 8.3 8.8 5.9

5.0 8.8 8.5 8.6 8.7 8.9 5.3

3.2 5.6 5.8 5.6 5.9 5.9 3.0
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PMIS:
 remove and update 1

 select C-pts with
maximal measure
locally

 make neighbors
F-pts

 remove neighbor
edges

3.7 5.3 5.0 5.9

5.2 8.0

5.9 8.1

5.7 8.6 8.1 5.0

8.4

8.6

5.6
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PMIS:
 select 2

 select C-pts with
maximal measure
locally

 make neighbors
F-pts

 remove neighbor
edges

3.7 5.3 5.0 5.9

5.2 8.0

5.9 8.1

5.7 8.1 5.0

8.4

8.6

5.6

8.6
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PMIS:
 remove and update 2

 select C-pts with
maximal measure
locally

 make neighbors
F-pts

 remove neighbor
edges

3.7 5.3

5.2 8.0
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PMIS:
 final grid

 select C-pts with
maximal measure
locally

 make neighbor F-
pts

 remove neighbor
edges
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PMIS coarsening: reduce complexity

181.93124.02205

0.9183.1485

73.925256.9955D
4.31112.95204

88.398127.52044D
27.68202.361003

129.421225.9410033D
0.24241.901202

0.22

ttot

2D 12

Iter

1202

dof Cop

4.16

 finite difference Laplacian (CLJP - PMIS+GMRES)
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parallel scaling tests: MCR linux cluster

• study algorithmic and parallel scalability

• 2304 processors
(2.4-GHz  Xeon, 2 GB/proc)

• 11.2 TeraFlops
(11.2x1012 floating point operations per second)

• Quadrics fast interconnection network

• at Lawrence Livermore National Laboratory, California, USA
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PMIS results: 7-point finite difference Laplacian in 3D, 403

dof per proc

CLJP and PMIS-GMRES(10)

35.831013.5022.332217.02512

10
10
7

23

15

Level
s

17.99289.718.282.371331

46.251016.6829.5717.191331

3.3561.471.8814.391

25
13

Iter ttotaltsolvetsetupCopproc

12.777.735.042.37512
1.280.870.412.321
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(D) future work

• scalable multigrid solvers for PDEs of hyperbolic type
 O(n) scaling for hyperbolic PDE systems is difficult
 AMG is a challenge

• scalable solvers for nonlinear PDE systems: use nested iteration

• improve scalability for very large machines...
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Top 500 Supercomputer list (November 2004)
Rank Site Computer Country TeraFlops Processors

1 Lawrence Livermore National Laboratory IBM BlueGene/L US 135 65,536

2 NASA/Ames Research Center/NAS SGI Altix US 51 10,160

3 The Earth Simulator Center NEC Earth-Simulator Japan 35 5,120

4 Barcelona Supercomputer Center IBM eServer Spain 20 3,564

5 Lawrence Livermore National Laboratory Intel Itanium2 US 19 4,096

6 Los Alamos National Laboratory ASCI Q - HP AlphaServer US 13 8,192

7 Virginia Tech 1100 Dual 2.3 GHz Apple XServe US 12 2,200

8 IBM - Rochester IBM BlueGene/L US 11 8,192

9 Naval Oceanographic Office IBM eServer US 10 2,944

10 NCSA Dell P4 Xeon US 10 2,500

11 ECMWF IBM eServer UK 10 2,176

12 ECMWF IBM eServer UK 10 2,176

...

17 Shanghai Supercomputer Center Dawning 4000A, Opteron China 8 2,560

18 Los Alamos National Laboratory LNX Opteron US 8 2,816

19 Lawrence Livermore National Laboratory MCR Linux Cluster Xeon US 8 2,304

20 Lawrence Livermore National Laboratory ASCI White, IBM SP Power3 US 7 8,192

• scalable results were presented for MCR (#19), 2,000 procs
• next target: Blue Gene/L (#1), 65,000 procs
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LLNL Blue Gene/L

• dual-processor nodes optimized for data access
• each node: one processor for simulation, one for communication
• only 256MB ram per processor
• lightweight, single-process linux kernel
• Blue Gene/L will be fully operational in July 2005, with 130,000 procs
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LLNL Blue Gene/L

• our code currently runs on
LLNL Blue Gene/L

• one preliminary result, on
8,000 processors: PMIS
works, CLJP runs out of
memory...

• more tests to follow...
• scalability up to 130,000

processors?
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