Optimal Order Parallel Algebraic Multigrid Preconditioners

Hans De Sterck
Department of Applied Mathematics
University of Waterloo
Ulrike Meier Yang
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
Outline

- introduction: AMG
- complexity growth when using classical coarsenings
- Parallel Modified Independent Set (PMIS) coarsening
- scaling results
- improving interpolation
- conclusions and future work
Introduction

- solve \(Au = f \)
- \(A \) from 3D PDE – sparse!
- large problems (\(10^9\) dof) - parallel
- unstructured grid problems
Algebraic Multigrid (AMG)

- multi-level
- iterative
- algebraic: suitable for unstructured!
AMG building blocks

Setup Phase:

- Select coarse “grids”
- Define interpolation, \(P^{(m)}, \ m = 1, 2, \ldots \)
- Define restriction and coarse-grid operators

\[
R^{(m)} = P^{(m)T} \quad A^{(m+1)} = P^{(m)T} A^{(m)} P^{(m)}
\]

Solve Phase

Relax \(A^{(m)} u^m = f^m \)

Compute \(r^m = f^m - A^{(m)} u^m \)

Restrict \(r^{m+1} = R^{(m)} r^m \)

Solve \(A^{(m+1)} e^{m+1} = r^{m+1} \)

Correct \(u^m \leftarrow u^m + e^m \)

Interpolate \(e^m = P^{(m)} e^{m+1} \)
AMG complexity - scalability

- **Operator complexity** $C_{op} = \frac{\sum_i \text{nonzeros}(A_i)}{\text{nonzeros}(A_0)}$

 e.g., 3D, ideally: $C_{op} = 1 + 1/8 + 1/64 + \ldots < 8/7$

 measure of memory use, and work in solve phase

- scalable algorithm:
 \[O(n) \text{ operations per V-cycle (} C_{op} \text{ bounded) AND} \]

 number of V-cycles independent of n

 (ρ_{AMG} independent of n)
AMG coarsening and interpolation

- large a_{ij}, ‘strong connections’ are important
- define strength matrix S:

$$A = \begin{bmatrix} x & x & x \\
 x & x & x \\
\end{bmatrix} \quad S = \begin{bmatrix} 1 & 1 & 0 \\
 1 & 0 & 1 \\
 0 & 0 & 1 \\
 1 & 0 & 1 \\
 1 & 1 & 0 \end{bmatrix}$$

- consider the undirected graph of S
- apply parallel maximal independent set algorithm to $\text{graph}(S)$ [Luby, 1986]
classical AMG coarsening (CLJP)

- (C1) Maximal Independent Set:
 Independent: no two C-points are connected
 Maximal: if one more C-point is added, the independence is lost

- (C2) All F-F connections require connections to a common C-point (for good interpolation)
 F-points have to be changed into C-points, to ensure (C2); (C1) is violated
 more C-points, higher complexity
Classical coarsening: scalability results

- **example**: finite difference Laplacian, parallel CLJP coarsening algorithm

- **2D (5-point)**: near-optimal scalability \((250^2 \text{ dof/proc})\)

<table>
<thead>
<tr>
<th>Procs</th>
<th>(C_{op})</th>
<th>(t_{tot})</th>
<th>Iter</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>4.48</td>
<td>2.89</td>
<td>9</td>
</tr>
<tr>
<td>64</td>
<td>4.50</td>
<td>3.85</td>
<td>9</td>
</tr>
<tr>
<td>256</td>
<td>4.50</td>
<td>5.01</td>
<td>9</td>
</tr>
</tbody>
</table>
Classical coarsening: complexity growth in some cases

- 3D (7-point): complexity growth

<table>
<thead>
<tr>
<th>dof</th>
<th>C_{op}</th>
</tr>
</thead>
<tbody>
<tr>
<td>32^3</td>
<td>16.17</td>
</tr>
<tr>
<td>64^3</td>
<td>22.51</td>
</tr>
</tbody>
</table>
Classical coarsening: complexity growth in some cases

- 4D (9-point), 5D (11-point): complexity growth!!

<table>
<thead>
<tr>
<th></th>
<th>dof</th>
<th>C_{op}</th>
</tr>
</thead>
<tbody>
<tr>
<td>4D</td>
<td>20^4</td>
<td>127.5</td>
</tr>
<tr>
<td>5D</td>
<td>9^5</td>
<td>256.9</td>
</tr>
</tbody>
</table>

- excessive memory use

(results obtained by Jeff Butler)
our approach to reduce complexity

- do not add C points for strong F-F connections that do not have a common C point

- less C points, reduced complexity, but worse convergence factors expected

- compensate by GMRES acceleration
PMIS: select 1

- select C-pts with maximal measure locally
- make neighbour F-pts
- remove neighbour edges
PMIS: remove and update 1

- select C-pts with maximal measure locally
- make neighbours F-pts
- remove neighbour edges
PMIS: select 2

- select C-pts with maximal measure locally
- make neighbours F-pts
- remove neighbour edges
PMIS: remove and update 2

- select C-pts with maximal measure locally
- make neighbours F-pts
- remove neighbour edges
PMIS: final grid

- select C-pts with maximal measure locally
- make neighbour F-pts
- remove neighbour edges
- parallel algorithm
PMIS coarsening: reduce complexity

- **finite difference Laplacian** *(CLJP-PMIS+GMRES)*

<table>
<thead>
<tr>
<th></th>
<th>dof</th>
<th>C_{op}</th>
<th>t_{tot}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>120^2</td>
<td>4.16</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>120^2</td>
<td>1.90</td>
<td>0.24</td>
</tr>
<tr>
<td>3D</td>
<td>100^3</td>
<td>25.94</td>
<td>129.42</td>
</tr>
<tr>
<td></td>
<td>100^3</td>
<td>2.36</td>
<td>27.68</td>
</tr>
<tr>
<td>4D</td>
<td>20^4</td>
<td>127.5</td>
<td>88.39</td>
</tr>
<tr>
<td></td>
<td>20^4</td>
<td>2.95</td>
<td>4.31</td>
</tr>
<tr>
<td>5D</td>
<td>9^5</td>
<td>256.9</td>
<td>73.92</td>
</tr>
<tr>
<td></td>
<td>8^5</td>
<td>3.14</td>
<td>0.91</td>
</tr>
</tbody>
</table>
Parallel PMIS results: 7-point finite difference Laplacian in 3D, 40^3 dof per proc

CLJP and PMIS-GMRES(10)

<table>
<thead>
<tr>
<th>proc</th>
<th>C_{op}</th>
<th>Iter</th>
<th>t_{total}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.39</td>
<td>6</td>
<td>3.35</td>
</tr>
<tr>
<td>512</td>
<td>17.02</td>
<td>10</td>
<td>35.83</td>
</tr>
<tr>
<td>1331</td>
<td>17.19</td>
<td>10</td>
<td>46.25</td>
</tr>
<tr>
<td>1</td>
<td>2.32</td>
<td>13</td>
<td>1.28</td>
</tr>
<tr>
<td>512</td>
<td>2.37</td>
<td>25</td>
<td>12.77</td>
</tr>
<tr>
<td>1331</td>
<td>2.37</td>
<td>28</td>
<td>17.99</td>
</tr>
</tbody>
</table>
Convergence problems on PMIS-coarsened grids

- PMIS coarsening works well for many problems
- for some problems, too many iterations are necessary because interpolation is not accurate enough ("not enough C-points")
- one solution: add C-points (CLJP…)
- other solution: use distance-two C-points for interpolation = long-range interpolation
 - F-F interpolation
Convergence problems

- 3D elliptic PDE with jumps in coefficient a

\[
(au_x)_x + (au_y)_y + (au_z)_z = 1
\]

- 1000 processors, 40^3 dof/proc

<table>
<thead>
<tr>
<th></th>
<th>t_{tot}</th>
<th>C_{op}</th>
<th>Iter</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLJP</td>
<td>52.48</td>
<td>17.00</td>
<td>17</td>
</tr>
<tr>
<td>PMIS</td>
<td>211.79</td>
<td>2.40</td>
<td>686</td>
</tr>
</tbody>
</table>

- remedy: improve interpolation used with PMIS
F-F interpolation

- when strong F-F connection without a common C-point is detected, do not add C-point, but extend interpolation stencil to distance-two C-points
- no C-points added, but larger interpolation stencils
results using long-range interpolation

- **3D elliptic PDE with jumps in coefficient a**

 \[(au_{x})_{x} + (au_{y})_{y} + (au_{z})_{z} = 1\]

- **1 processor, AMG+GMRES, 80^3 dof**

<table>
<thead>
<tr>
<th></th>
<th>t_{tot}</th>
<th>C_{op}</th>
<th>Iter</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLJP</td>
<td>48.0</td>
<td>21.54</td>
<td>7</td>
</tr>
<tr>
<td>PMIS</td>
<td>94.6</td>
<td>2.46</td>
<td>188</td>
</tr>
<tr>
<td>PMIS + F-F</td>
<td>21.4</td>
<td>4.90</td>
<td>9</td>
</tr>
</tbody>
</table>
Conclusions and future work

- **PMIS leads to reduced, scalable complexities for large multi-D problems on parallel computers**
- for difficult problems, nearest-neighbour interpolation is not sufficient on PMIS grids
- long-range interpolation improves convergence
- **F-F interpolations was studied, need to reduce complexity further**
- scalability on very large machines
Top 500 Supercomputer list (November 2004)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Site</th>
<th>Computer</th>
<th>Country</th>
<th>TeraFlops</th>
<th>Processors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lawrence Livermore National Laboratory</td>
<td>IBM BlueGene/L</td>
<td>US</td>
<td>135</td>
<td>65,536</td>
</tr>
<tr>
<td>2</td>
<td>NASA/Ames Research Center/NAS</td>
<td>SGI Altix</td>
<td>US</td>
<td>51</td>
<td>10,160</td>
</tr>
<tr>
<td>3</td>
<td>The Earth Simulator Center</td>
<td>NEC Earth-Simulator</td>
<td>Japan</td>
<td>35</td>
<td>5,120</td>
</tr>
<tr>
<td>4</td>
<td>Barcelona Supercomputer Center</td>
<td>IBM eServer</td>
<td>Spain</td>
<td>20</td>
<td>3,564</td>
</tr>
<tr>
<td>5</td>
<td>Lawrence Livermore National Laboratory</td>
<td>Intel Itanium2</td>
<td>US</td>
<td>19</td>
<td>4,096</td>
</tr>
<tr>
<td>6</td>
<td>Los Alamos National Laboratory</td>
<td>ASCI Q - HP AlphaServer</td>
<td>US</td>
<td>13</td>
<td>8,192</td>
</tr>
<tr>
<td>7</td>
<td>Virginia Tech</td>
<td>1100 Dual 2.3 GHz Apple XServe</td>
<td>US</td>
<td>12</td>
<td>2,200</td>
</tr>
<tr>
<td>8</td>
<td>IBM - Rochester</td>
<td>IBM BlueGene/L</td>
<td>US</td>
<td>11</td>
<td>8,192</td>
</tr>
<tr>
<td>9</td>
<td>Naval Oceanographic Office</td>
<td>IBM eServer</td>
<td>US</td>
<td>10</td>
<td>2,944</td>
</tr>
<tr>
<td>10</td>
<td>NCSA</td>
<td>Dell P4 Xeon</td>
<td>US</td>
<td>10</td>
<td>2,500</td>
</tr>
<tr>
<td>11</td>
<td>ECMWF</td>
<td>IBM eServer</td>
<td>UK</td>
<td>10</td>
<td>2,176</td>
</tr>
<tr>
<td>12</td>
<td>ECMWF</td>
<td>IBM eServer</td>
<td>UK</td>
<td>10</td>
<td>2,176</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Shanghai Supercomputer Center</td>
<td>Dawning 4000A, Opteron</td>
<td>China</td>
<td>8</td>
<td>2,560</td>
</tr>
<tr>
<td>18</td>
<td>Los Alamos National Laboratory</td>
<td>LNX Opteron</td>
<td>US</td>
<td>8</td>
<td>2,816</td>
</tr>
<tr>
<td>19</td>
<td>Lawrence Livermore National Laboratory</td>
<td>MCR Linux Cluster Xeon</td>
<td>US</td>
<td>8</td>
<td>2,304</td>
</tr>
<tr>
<td>20</td>
<td>Lawrence Livermore National Laboratory</td>
<td>ASCI White, IBM SP Power3</td>
<td>US</td>
<td>7</td>
<td>8,192</td>
</tr>
</tbody>
</table>

- **scalable results were presented for MCR (#19), 2,000 procs**
- **next target: Blue Gene/L (#1), 65,000 procs (will be 130,000 soon)**
LLNL Blue Gene/L

- dual-processor nodes optimized for data access
- each node: one processor for simulation, one for communication; only 256MB ram per processor
- lightweight, single-process *linux* kernel
- *Blue Gene/L will be fully operational later in 2005, with 130,000 procs*
LLNL Blue Gene/L preliminary results

7-pt Laplacian, total execution time, AMG-CG

- FoCM 2005
LLNL Blue Gene/L preliminary results

7-pt Laplacian, total execution time, AMG-CG

FoCM 2005