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(1) Numerical Simulation of Nonlinear Hyperbolic PDE Systems

Example application: gas dynamics

• supersonic
flow of air
over sphere
(M=1.53)

• bow shock

• (An album of
fluid motion,
Van Dyke)
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Nonlinear Hyperbolic Conservation Laws

• Euler equations of gas dynamics

∂

∂t









ρ

ρ~v

ρ e









+ ∇ ·









ρ~v

ρ~v ~v + p ~I

( ρ e + p(ρ, e) ) ~v









= 0

• nonlinear hyperbolic PDE system

∂U

∂t
+ ∇ · ~F (U) = 0

• conservation law

∂

∂t

(
∫

Ω

U dV

)

+

∮

∂Ω

~n · ~F (U) dA = 0
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Model Problem: Scalar Inviscid Burgers Equation

• scalar conservation law in 1D

∂u

∂t
+

∂f(u)

∂x
= 0

• model problem: inviscid Burgers equation

∂u

∂t
+

∂u2/2

∂x
= 0
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Burgers Equation: Model Flow

∂u

∂t
+

∂u2/2

∂x
= 0

• hyperbolic PDE: information
propagates along charac-
teristic curves

• u is constant on characteristic

• u is slope of characteristic

• where characteristics cross:

shock formation (weak solu-
tion)

u=0

u=1

u=1

u=0

x

t
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Space-Time Formulation

∂u

∂t
+

∂f(u)

∂x
= 0

• define ∇x,t = (∂x, ∂t)

• define ~fx,t(u) = (f(u), u)�

�

�

�
∇x,t · ~fx,t(u) = 0 Ω ⊂ R

2

u = g ΓI

• conservation in space-time
∮

Γ

~nx,t · ~fx,t(u) dl = 0
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Some Notation

• L2 scalar product

〈f, g〉0,Ω =

∫

Ω

f g dxdt

• L2 norm

‖f‖0,Ω =

√

∫

Ω

f2 dxdt

• space H(div, Ω)

{ (u, v) ∈ L2 × L2 | ‖∇ · (u, v)‖2
0,Ω < ∞ }

remark: (u, v) can be discontinuous,
with normal component continuous:

~n · ((u, v)2 − (u, v)1) = 0

(u,v)

(u,v)

1

2

n
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Weak Solutions: Discontinuities

�

�

�

�
∇x,t · ~fx,t(u) = 0 Ω

u = g ΓI

u=0

u=1

u=1

u=0

x

t

(1) Rankine-Hugoniot relations: ~nx,t · (~fx,t(u2) − ~fx,t(u1)) = 0

(2) equivalent: ~fx,t(u) ∈ H(div, Ω) (solution regularity)

Burgers model flow: ~fx,t(u) ∈ H(div, Ω) ⇐⇒ shock speed s =
1

2
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Numerical Approximation: Finite Differences

• derivatives ⇒ use truncated Taylor series expansion

⇒ ∂u

∂x

∣

∣

∣

∣

i

=
ui − ui−1

∆x
+ O(∆x)

• Burgers:
∂u

∂t
+ u

∂u

∂x
= 0 ⇒

uh
i,n+1 − uh

i,n

∆t
+ uh

i,n

uh
i,n − uh

i−1,n

∆x
= 0

⇒ convergence to wrong solu-
tion!

• reason: Taylor expansion not
valid at shock!
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Conservative Finite Difference Schemes

THEOREM. Lax-Wendroff (1960).

∂u

∂t
+

∂f(u)

∂x
= 0 →

uh
i,n+1 − uh

i,n

∆t
+

f̄i+1/2,n(uh) − f̄i−1/2,n(uh)

∆x
= 0

theorem: conservative finite difference scheme guarantees convergence

to a correct weak solution (assuming convergence of uh to some û)

i

f fi−1/2 i+1/2

i−1 i+1
x

⇒ ‘conservative’ form is a sufficient condition for convergence to a
weak solution (but it may not be necessary! . . . )
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Why the Name ‘Conservative Scheme’?

uh
i,n+1 − uh

i,n

∆t
+

f̄i+1/2,n(uh) − f̄i−1/2,n(uh)

∆x
= 0

∮

∂Ωi

~nx,t · (f̄(uh), uh) dl = 0 ∀ Ωi

• recall conservation in space-time
∮

∂Ω

~nx,t · ~fx,t(u) dl = 0

⇒ exact discrete conservation in
every discrete cell Ωi Ω i

x

t

• exact discrete conservation constrains the solution, s.t. convergence
to a solution with wrong shock speed cannot happen
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Lax-Wendroff Scheme

f̄i+1/2 =
1

2

(

(ui+1

2

)2

+
(ui

2

)2

− ∆t

∆x

(

ui + ui+1

2

)2

(ui+1 − ui)

)

−1 
−0.5 

0
0.5

1  
0 

1

0

0.5

1

1.5

t

x

u

• conservative

• O(∆x2) (Taylor)

• correct shock speed

• . . . oscillations!
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Possible Remedy: Numerical Diffusion

• add numerical diffusion

∂u

∂t
+

∂f(u)

∂x
= ηnum

∂2u

∂x2

• ηnum = O(∆x2), e.g.

• problem: need nonlinear limiters

• problem: higher-order difficult

• this ‘stabilization by numerical diffusion’ approach is employed in

- upwind schemes

- finite volume schemes

- most existing finite element schemes
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Alternative: Solution Control through Functional Minimization

• minimize the error in a continuous norm

uh
∗ = arg min

uh∈ Uh

‖∇x,t · ~fx,t(u
h)‖2

0,Ω

• goal:

- control oscillations

- control convergence to weak solution

- control numerical stability (no need for time step limitation)

- higher-order finite elements

⇒ achieve through norm minimization

(remark: h = ∆x)
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(2) Least-Squares Finite Element (LSFEM) Discretizations

with Luke Olson, Tom Manteuffel, Steve McCormick, Applied Math CU Boulder

• finite element method: approximate u ∈ U by uh ∈ Uh

uh(x, t) =
n
∑

i=1

ui φi(x, t)

i

• abstract example: solve Lu = 0 (assume L linear PDE operator)

• define the functional F(u) = ‖Lu‖2
0,Ω

Waterloo, 20 January 2004 – p.16
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Least-Squares Finite Element (LSFEM) Discretizations

⇒ minimization:

uh
∗ = arg min

uh∈ Uh

‖Luh‖2
0,Ω = arg min F(uh)

• condition for uh stationary point:

∂F(uh + αvh)

∂α
|α=0 = 0 ∀ vh ∈ Uh

Waterloo, 20 January 2004 – p.17



< > - +
University of Colorado at Boulder

Least-Squares Finite Element Discretizations

• algebraic system of linear equations:
n
∑

i=1

ui〈Lφi, Lφj〉0,Ω = 0

(n equations in n unknowns, A u = 0)

(actually, with boundary conditions, A u = f )

• Symmetric Positive Definite (SPD) matrices A

Waterloo, 20 January 2004 – p.18



< > - +
University of Colorado at Boulder

H(div)-Conforming LSFEM for Hyperbolic Conservation Laws

• reformulate conservation law in terms of flux vector ~w:

∇x,t · ~fx,t(u) = 0 Ω

u = g ΓI

⇒

'

&

$

%

∇x,t · ~w = 0 Ω

~w = ~fx,t(u) Ω

~nx,t · ~w = ~nx,t · ~fx,t(g) ΓI

u = g ΓI

• functional

F(~wh, uh; g) =‖∇x,t · ~wh‖2
0,Ω + ‖~wh − ~f(uh)‖2

0,Ω

+ ‖~nx,t · (~wh − ~f(g))‖2
0,ΓI

+ ‖uh − g‖2
0,ΓI

• Newton linearization: minimize functional with linearized equation

Waterloo, 20 January 2004 – p.19
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Finite Element Spaces

• weak solution: ~fx,t ∈ H(div, Ω)

⇒ choose ~wh ∈ H(div, Ω)

• Raviart-Thomas elements: the normal components of ~wh are
continuous

⇒ ~wh ∈ H(div, Ω)

⇒ H(div)-conforming LSFEM

Waterloo, 20 January 2004 – p.20
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Numerical Results

• shock flow: uleft = 1.0, uright = 0.5, shock speed s = 0.75

• convergence to correct weak solution with optimal order

• no oscillations, correct shock speed, no CFL limit
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Linear Advection – Higher-Order Elements
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• order k = 1, 2, 3, 4: sharper shock for same dof

• remark: also discontinuous finite elements for uh

(SIAM J. Sci. Comput., accepted)
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Solution-Adaptive Refinement

• LS functional is sharp a posteriori error estimator:

F(uh) = ‖Luh‖2
0,Ω

= ‖Luh − Luexact‖2
0,Ω

= ‖L(uh − uexact)‖2
0,Ω

= ‖Leh‖2
0,Ω
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Numerical Conservation
• we minimize

F(~wh, uh; g) =‖∇x,t · ~wh‖2
0,Ω + ‖~wh − ~f(uh)‖2

0,Ω

+ ‖~nx,t · (~wh − ~f(g))‖2
0,ΓI

+ ‖uh − g‖2
0,ΓI

• our H(div)-conforming LSFEM does not satisfy the exact discrete
conservation property of Lax and Wendroff
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Numerical Conservation

F(~wh, uh; g) =‖∇x,t · ~wh‖2
0,Ω + ‖~wh − ~f(uh)‖2

0,Ω

+ ‖~nx,t · (~wh − ~f(g))‖2
0,ΓI

+ ‖uh − g‖2
0,ΓI

• however, we can prove: (submitted to SIAM J. Sci. Comput.)

THEOREM. [Conservation for H(div)-conforming LSFEM]

If finite element approximation uh converges in the L2 sense to û as

h → 0, then û is a weak solution of the conservation law.

⇒ exact discrete conservation is not a necessary condition for
numerical conservation!

(can be replaced by minimization in a suitable continuous norm)
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LSFEM for Nonlinear Hyperbolic PDEs: Status

• Burgers equation:

- nonlinear

- scalar

- 2D domains

• extensions, in progress:

- systems of equations

- higher-dimensional domains

• need efficient solvers for A u = f

Waterloo, 20 January 2004 – p.26
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Scalable Linear Solvers

with Ulrike Yang, Center for Applied Scientific Computing, Lawrence Livermore National

Laboratory

A u = f (n dof)

• scalable, or O(n), solver:

⇒ for a twice larger problem, you only need twice the work

⇒ ‘optimal’ solvers for sparse matrix problems

(not easy: Gaussian elimination O(n3) . . . )

• parallel algebraic multigrid solvers

- scalability for very large problems (∼ 1000s of processors)

- scalability for hyperbolic PDEs

Waterloo, 20 January 2004 – p.27
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Scalable Linear Solvers

example: elliptic PDE problem in 3D
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O(n3   ): Gaussian elimination
O(n5/3): Jacobi iteration
O(n7/6): Preconditioned Conjugate Gradient
O(n    ): Multigrid
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(3) Fluid Dynamics Applications

(A) Soil Sedimentation (Civil Engineering)

with Gert Bartholomeeusen, Mechanical Engineering, University of Oxford
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� � �

t=0 t=a t=b

• settling column experiments: soil particles settle

• nonlinear waves, modeled by

∂u

∂t
+

∂f(u)

∂x
= 0
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Soil Sedimentation

• experimental determination of flux function f(u), nonconvex

∂u

∂t
+

∂f(u)

∂x
= 0

Fit
Csh4
Csh3
Csh2
Surf. M

I

Porosity, [-]

F
lu

x,
[m

m
/m

in
]

10.960.920.880.84

0.05

0.04

0.03

0.02

0.01

0

(kaolinite soil suspension)
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Soil Sedimentation

• simulation using flux function

• observation of compound shock waves = shock + sonic rarefaction

• new theory for transition between sedimentation and consolidation

(Proceedings of the 2002 Conference on Hyperbolic Systems)
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(B) Driven Cavity Navier-Stokes Flow on Computational Grids
with Thomas Pohl, Computer Science, University of Erlangen

with Rob Markel, Scientific Computing Division, NCAR

Waterloo, 20 January 2004 – p.32
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Computational Grids for Scientific Computing

• use several parallel comput-
ers at the same time (∼
power grid)

• developed Java-based grid
computing framework

• applications:

- fluid dynamics: driven cavity problem

- iterative solver: scalable on grid

- parallel bioinformatics problem (RNA folding)

Waterloo, 20 January 2004 – p.33
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(C) Bow Shock Flows in Solar-Terrestrial Plasmas

• supersonic solar wind plasma induces quasi-steady bow shock in
front of earth’s magnetosphere

• plasma = gas + magnetic field B

• described by Magnetohydrodynamics (MHD), hyperbolic system

Waterloo, 20 January 2004 – p.34
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Recall: Gas Dynamics Bow Shock
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Bow Shock Flows in Solar-Terrestrial Plasmas

• simulation:

for large upstream B:

multiple shock fronts!

X

Y

Z
"rho"

2.63673
2.43265
2.22857
2.02449
1.82041
1.61633
1.41224
1.20816
1.00408
0.8

X

Y

Z

X

Y

Z

X

Y

Z

• reason: MHD has mul-
tiple waves

• also: compound
shocks (like in
sedimentation appli-
cation)

(Phys. Rev. Lett. 2000)

• predictive result:

- not observed yet

- confirmed in several
other MHD codes

- new spacecraft may al-
low observation
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< > - +
University of Colorado at Boulder

Collaborators

• LSFEM for Hyperbolic PDEs

Luke Olson

Tom Manteuffel

Steve McCormick

Applied Math, CU Boulder

• Scalable Solvers

Ulrike Yang

CASC, LLNL

John Ruge

Applied Math, CU Boulder

• Fluid Dynamics Applications

Gert Bartholomeeusen, Thomas Pohl, Rob Markel

Oxford, Erlangen, NCAR
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Hyperbolic PDE Systems

∂U

∂t
+ ∇ · ~F (U) = 0

• PDE of hyperbolic type: consider 1D

∂U

∂t
+

∂Fx(U)

∂x
= 0 or

∂U

∂t
+

∂Fx(U)

∂U
· ∂U

∂x
= 0

• define Flux Jacobian matrix G(U)

G(U) =
∂Fx(U)

∂U

• PDE is hyperbolic ⇐⇒ G(U) has real eigenvalues and a complete
set of eigenvectors

• the eigenvalues λi of G(U) are wave speeds of the system, and
define characteristic directions

• nonlinear waves can steepen into discontinuities: shock waves

Waterloo, 20 January 2004 – p.38
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Burgers Equation: Characteristic Curves

∂u

∂t
+ u

∂u

∂x
= 0

• define curve x(t) in xt-plane
with slope u:�



�
	x(t) :

dx(t)

dt
= u

u=0

u=1

u=1

u=0

x

t

⇒ ∂u(x(t), t)

∂t
+

dx(t)

dt

∂u(x(t), t)

∂x
= 0 or

du(x(t), t)

dt
= 0

• characteristic curve x(t)

u is constant on x(t) hyperbolic PDE reduces to ODE along x(t)

u is the slope of x(t) u is also called the wave speed

• characteristics cross ⇒ shock formation (weak solution)
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Numerical Results – Convergence Study

• solution regularity: u ∈ H1/2−ε ∀ ε > 0

⇒ ‖u − uh‖0,Ω ≤ c h1/2−ε ‖u‖1/2−ε,Ω ∀ε, optimally

• ‖uh − u‖2
0,Ω = O(hα) and F(~wh, uh) = O(hα), measure α

N ‖uh − u‖2
0,Ω α F(~wh, uh) α

16 5.96e-3 1.89e-2

32 3.81e-3
0.58

9.25e-3
1.03

64 2.36e-3
0.69

4.56e-3
1.02

128 1.38e-3
0.77

2.26e-3
1.01

256 7.66e-4
0.85

1.12e-3
1.01
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Optimal O(n) Solver: Multigrid Iterative Method

• multigrid V-cycle:

4h

2h

h A

A

smooth

smooth smooth

smooth
h

2h

PT P

solve

• residual reduction per cycle: convergence factor ρ =
‖A ui+1 − f‖
‖A ui − f‖

• work per cycle W1 cycle = O(n)

Waterloo, 20 January 2004 – p.41
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Optimal O(n) Solver: Multigrid Method

• m multigrid V-cycles:

smoothAh

A2h smooth

PPT

smooth

smooth

solve

4h

2h

h

• residual reduction per cycle: convergence factor ρ =
‖A ui+1 − f‖
‖A ui − f‖

• work per cycle W1 cycle

• scalable method if W1 cycle = O(n) and ρ is independent of n

Waterloo, 20 January 2004 – p.42
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Algebraic Multigrid Work in Progress

with Ulrike Yang, Center for Applied Scientific Computing, Lawrence Livermore National

Laboratory

problem: hyperbolic PDEs: growth of convergence factor ρ as a
function of n (not scalable)

processors n (dof) ρAMG

1 131,072 0.83

4 524,288 0.87

16 2,097,152 0.88

64 8,388,608 0.92

256 33,554,432 0.96

1,024 134,217,728 0.98

(256
2 nodes per processor)

our approach: reformulate equations (SPD matrices), and more
robust ways to choose coarse grids, interpolation matrix,
relaxation

Waterloo, 20 January 2004 – p.43
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Scalable Nonlinear Solver – Newton Nested Iteration

• for many methods, number of Newton steps required grows with n

• use nested iteration:

P

solve (using linearization
  and AMG V cycles)

solve (using linearization
  and AMG V cycles)

solve (using linearization
  and AMG V cycles)

4h

2h

h

Burgers: nested iteration with only one Newton step per level required!
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(6) Scalable nonlinear solver – Newton FMG

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

N

||e
||

1 newton step
2 newton steps
3 newton steps
30 newton steps

‖uh − u‖0,Ω convergence: grid continuation (FMG) with only one
Newton step per level required!
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3D MHD bow shock flows

• PhD thesis research (1999)

• 3D Finite Volume code

• MPI, F90 (64 procs)

• ‘shock-capturing’

X

Y

Z
"rho"

2.63673
2.43265
2.22857
2.02449
1.82041
1.61633
1.41224
1.20816
1.00408
0.8

X

Y

Z

X

Y

Z

X

Y

Z

• explicit time marching towards
steady state

• problems:

(1) small timesteps, many it-
erations (many 100,000s):
need implicit solvers

(2) algorithm not scalable

(3) low order of discretization
accuracy (2nd order)

(4) robustness
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(D) Supersonic Outflow from Exoplanet Atmospheres

with Feng Tian, PhD student, Astrophysics, CU Boulder

• extrasolar planets, as of 13 January 2004

- 104 planetary systems

- 119 planets

- 13 multiple planet systems

- gas giants (‘hot Jupiters’)

- very close to star (∼ 0.05 AU)

⇒ supersonic hydrogen escape

(like the solar wind), Euler
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Supersonic Outflow from Exoplanet Atmospheres
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Supersonic Outflow from Exoplanet Atmospheres
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Supersonic Outflow from Exoplanet Atmospheres

• planet around HD209458

- 0.67 Jupiter masses, 0.05 AU

- hydrogen atmosphere and escape observed

(Vidal-Madjar, Nature March 2003)

• Feng’s simulations show:

- extent and temperature of Hydrogen atmosphere

consistent with observations

- atmosphere is stable (1% mass loss in 12 billion years)

• ‘Mercury-type’ planet with gas atmosphere would lose

10% of mass in 8.5 million years
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(2) LSFEM for the Burgers equation

∇ · ~f(u) = 0 Ω

u = g ΓI

• LS functional

H(u; g) := ‖∇ · ~f(u)‖2
0,Ω + ‖u − g‖2

0,ΓI

• LSFEM

uh
∗ = arg min

uh∈Uh

H(uh; g)
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LSFEM for the Burgers equation

H(u) := ∇ · ~f(u) = 0 Ω

u = g ΓI

• Gauss-Newton minimization of LS functional:

• first: Newton linearization of H(u) = 0

H(ui) + H ′|ui
(ui+1 − ui) = 0

with Fréchet derivative

H ′|ui
(v) = lim

ε→0

H(ui + εv) − H(ui)

ε

= ∇ · (~f ′|ui
v)

• then: LS minimization of linearized H(u)

continuous bilinear finite elements on quads for uh
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Numerical Results

shock flow: uleft = 1, uright = 0, shock speed s = 1/2
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• correct shock speed, no oscillations

• on each grid, Newton process converges

• BUT: for h → 0, nonlinear functional does not go to zero

• this means: for h → 0, convergence to an incorrect solution!!! (L∗L

has a spurious stationary point)

• why does LSFEM produce wrong solution??
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Divergence of Newton’s method

• reason: Fréchet derivative operator is unbounded

Burgers: H ′|u0
(v) = ∇ · ((u0, 1) v)

operator H ′|u0
:

⇒ ‖ H ′|u0
‖0,Ω = ∞

because for most v

((u0, 1) v) /∈ H(div, Ω)

example: h(x) = ∓|x|1/3

⇒ x1 = −2x0

Newton with h′(x∗) = ∞ may
have empty basin of attraction

x
0
 x

1
 x

2
 x 

f(x) 
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H(div)-conforming LSFEM

• nonlinear operator

F (~w, u) :=





∇ · ~w

~w − ~f(u)



 = 0

• Fréchet derivative:

F ′|(~w0,u0)(~w1 − ~w0, u1 − u0) =





∇· 0

I −~f ′|u0



 ·





~w1 − ~w0

u1 − u0





LEMMA. Fréchet derivative operator

F ′|(~w0,u0) : H(div, Ω) × L2(Ω) → L2(Ω) is bounded:

‖ F ′|(~w0,u0) ‖0,Ω ≤
√

1 + K2

Waterloo, 20 January 2004 – p.55



< > - +
University of Colorado at Boulder

Finite Element Discretization

• discretize ~w with face elements on quads (Raviart-Thomas in 2D):
~wh = (wh

t , wh
x) ∈ (V h

t , V h
x )

face elements: normal vector components are degrees of freedom

wt
j

1

0
0

x

t

edge j
x
iw

0

0

x

t

edge i

1

normal components of ~wh are continuous ⇒ ~wh ∈ RT0 ⊂ H(div, Ω)

• continuous bilinear finite elements on quads for uh
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Numerical conservation
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Hyperbolic PDEs – Conservation Laws

∂U

∂t
+ ∇ · ~F (U) = 0

• e.g., compressible gases and plasmas

• example: ideal magnetohydrodynamics

∂

∂t















ρ

ρ~v

ρe

~B















+ ∇ ·



















ρ~v

ρ~v~v +

(

p + B2

2

)

~I − ~B~B
(

ρe + p +
B2

2

)

~v − (~v · ~B)~B

~v~B − ~B~v



















= 0

(fusion plasmas, space plasmas, . . . )
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Convergence to entropy solution
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1

x

t

 u

• transonic rarefaction

• many weak solutions

• one stable, entropy solution
(rarefaction)

• LSFEM converges to entropy
solution

• observed in numerical results,
no theoretical proof yet
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