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Outline

(1) Hyperbolic Conservation Laws: Introduction

(2) Least-Squares Finite Element Methods

(3) Fluid Dynamics Applications
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(1) Numerical Simulation of Nonlinear Hyperbolic PDE Systems

Example application: gas dynamics

• supersonic
flow of air
over sphere
(M=1.53)

• bow shock

• (An album of
fluid motion,
Van Dyke)
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Nonlinear Hyperbolic Conservation Laws

• Euler equations of gas dynamics

∂

∂t









ρ

ρ~v

ρ e









+ ∇ ·
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





ρ~v

ρ~v ~v + p ~I

( ρ e + p(ρ, e) ) ~v









= 0

• nonlinear hyperbolic PDE system

∂U

∂t
+ ∇ · ~F (U) = 0

• conservation law

∂

∂t

(
∫

Ω

U dV

)

+

∮

∂Ω

~n · ~F (U) dA = 0
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Model Problem: Scalar Inviscid Burgers Equation

• scalar conservation law in 1D

∂u

∂t
+

∂f(u)

∂x
= 0

• model problem: inviscid Burgers equation

∂u

∂t
+

∂u2/2

∂x
= 0
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Burgers Equation: Model Flow

∂u

∂t
+

∂u2/2

∂x
= 0

• hyperbolic PDE: information
propagates along charac-
teristic curves

• u is constant on characteristic

• u is slope of characteristic

• where characteristics cross:

shock formation (weak solu-
tion)

u=0

u=1

u=1

u=0
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t

APPM 16 April 2004 – p.6



< > - +
University of Colorado at Boulder

Space-Time Formulation

∂u

∂t
+

∂f(u)

∂x
= 0

• define ∇x,t = (∂x, ∂t)

• define ~fx,t(u) = (f(u), u)�

�

�

�
∇x,t · ~fx,t(u) = 0 Ω ⊂ R

2

u = g ΓI

• conservation in space-time
∮

Γ

~nx,t · ~fx,t(u) dl = 0
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Some Notation

• L2 scalar product

〈f, g〉
0,Ω =

∫

Ω

f g dxdt

• L2 norm

‖f‖0,Ω =

√

∫

Ω

f2 dxdt

• space H(div, Ω)

{ (u, v) ∈ L2 × L2 | ‖∇ · (u, v)‖2
0,Ω < ∞ }

remark: (u, v) can be discontinuous,
with normal component continuous:

~n · ((u, v)2 − (u, v)1) = 0

(u,v)

(u,v)

1

2

n
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Weak Solutions: Discontinuities

�

�

�

�
∇x,t · ~fx,t(u) = 0 Ω

u = g ΓI

u=0

u=1

u=1

u=0

x

t

(1) Rankine-Hugoniot relations: ~nx,t · (~fx,t(u2) − ~fx,t(u1)) = 0

(2) equivalent: ~fx,t(u) ∈ H(div, Ω) (solution regularity)

Burgers model flow: ~fx,t(u) ∈ H(div, Ω) ⇐⇒ shock speed s =
1

2
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Numerical Approximation: Finite Differences

• derivatives ⇒ use truncated Taylor series expansion

⇒
∂u

∂x

∣

∣

∣

∣

i

=
ui − ui−1

∆x
+ O(∆x)

• Burgers:
∂u

∂t
+ u

∂u

∂x
= 0 ⇒

uh
i,n+1 − uh

i,n

∆t
+ uh

i,n

uh
i,n − uh

i−1,n

∆x
= 0

⇒ convergence to wrong solu-
tion!

• reason: Taylor expansion not
valid at shock!
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Conservative Finite Difference Schemes

THEOREM. Lax-Wendroff (1960).

∂u

∂t
+

∂f(u)

∂x
= 0 →

uh
i,n+1 − uh

i,n

∆t
+

f̄i+1/2,n(uh) − f̄i−1/2,n(uh)

∆x
= 0

theorem: conservative finite difference scheme guarantees convergence

to a correct weak solution (assuming convergence of uh to some û)

i

f fi−1/2 i+1/2

i−1 i+1
x

⇒ ‘conservative’ form is a sufficient condition for convergence to a
weak solution (but it may not be necessary! . . . )
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Why the Name ‘Conservative Scheme’?

uh
i,n+1 − uh

i,n

∆t
+

f̄i+1/2,n(uh) − f̄i−1/2,n(uh)

∆x
= 0

∮

∂Ωi

~nx,t · (f̄(uh), uh) dl = 0 ∀ Ωi

• recall conservation in space-time
∮

∂Ω

~nx,t · ~fx,t(u) dl = 0

⇒ exact discrete conservation in
every discrete cell Ωi Ω i

x

t

• exact discrete conservation constrains the solution, s.t. convergence
to a solution with wrong shock speed cannot happen
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Lax-Wendroff Scheme

f̄i+1/2 =
1

2

(

(ui+1

2

)2

+
(ui

2

)2

−
∆t

∆x

(

ui + ui+1

2

)2

(ui+1 − ui)

)

−1 
−0.5 

0
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0 
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t
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u

• conservative

• O(∆x2) (Taylor)

• correct shock speed

• . . . oscillations!
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Possible Remedy: Numerical Diffusion

• add numerical diffusion

∂u

∂t
+

∂f(u)

∂x
= ηnum

∂2u

∂x2

• ηnum = O(∆x2), e.g.

• problem: need nonlinear limiters

• problem: higher-order difficult

• this ‘stabilization by numerical diffusion’ approach is employed in

- upwind schemes

- finite volume schemes

- most existing finite element schemes

APPM 16 April 2004 – p.14



< > - +
University of Colorado at Boulder

Alternative: Solution Control through Functional Minimization

• minimize the error in a continuous norm

uh
∗ = arg min

uh∈ Uh

‖∇x,t · ~fx,t(u
h)‖2

0,Ω

• goal:

- control oscillations

- control convergence to weak solution

- control numerical stability (no need for time step limitation)

- higher-order finite elements

⇒ achieve through norm minimization

(remark: h = ∆x)
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(2) Least-Squares Finite Element (LSFEM) Discretizations

with Luke Olson, Tom Manteuffel, Steve McCormick, Applied Math CU Boulder

• finite element method: approximate u ∈ U by uh ∈ Uh

uh(x, t) =
n
∑

i=1

ui φi(x, t)

i

• abstract example: solve Lu = 0 (assume L linear PDE operator)

• define the functional F(u) = ‖Lu‖2
0,Ω
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Least-Squares Finite Element (LSFEM) Discretizations

⇒ minimization:

uh
∗ = arg min

uh∈ Uh

‖Luh‖2
0,Ω = arg min F(uh)

• condition for uh stationary point:

∂F(uh + αvh)

∂α
|α=0

= 0 ∀ vh ∈ Uh
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Least-Squares Finite Element Discretizations

• algebraic system of linear equations:
n
∑

i=1

ui〈Lφi, Lφj〉0,Ω = 0

(n equations in n unknowns, A u = 0)

(actually, with boundary conditions, A u = f )

• Symmetric Positive Definite (SPD) matrices A
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H(div)-Conforming LSFEM for Hyperbolic Conservation Laws

• reformulate conservation law in terms of flux vector ~w:

∇x,t · ~fx,t(u) = 0 Ω

u = g ΓI

⇒

'

&

$

%

∇x,t · ~w = 0 Ω

~w = ~fx,t(u) Ω

~nx,t · ~w = ~nx,t · ~fx,t(g) ΓI

u = g ΓI

• functional

F(~wh, uh; g) =‖∇x,t · ~wh‖2
0,Ω + ‖~wh − ~f(uh)‖2

0,Ω

+ ‖~nx,t · (~wh − ~f(g))‖2
0,ΓI

+ ‖uh − g‖2
0,ΓI

• Newton linearization: minimize functional with linearized equation
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Finite Element Spaces

• weak solution: ~fx,t ∈ H(div, Ω)

⇒ choose ~wh ∈ H(div, Ω)

• Raviart-Thomas elements: the normal components of ~wh are
continuous

⇒ ~wh ∈ H(div, Ω)

⇒ H(div)-conforming LSFEM
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Numerical Results

• shock flow: uleft = 1.0, uright = 0.5, shock speed s = 0.75

• convergence to correct weak solution with optimal order

• no oscillations, correct shock speed, no CFL limit
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Linear Advection – Higher-Order Elements
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• order k = 1, 2, 3, 4: sharper shock for same dof

• remark: also discontinuous finite elements for uh

(SIAM J. Sci. Comput., accepted)
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Solution-Adaptive Refinement

• LS functional is sharp a posteriori error estimator:

F(uh) = ‖Luh‖2
0,Ω

= ‖Luh − Luexact‖
2
0,Ω

= ‖L(uh − uexact)‖
2
0,Ω

= ‖Leh‖2
0,Ω

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

0.4

0.6

0.8

1

1.2

1.4

t

u

x

 u

APPM 16 April 2004 – p.23



< > - +
University of Colorado at Boulder

Numerical Conservation
• we minimize

F(~wh, uh; g) =‖∇x,t · ~wh‖2
0,Ω + ‖~wh − ~f(uh)‖2

0,Ω

+ ‖~nx,t · (~wh − ~f(g))‖2
0,ΓI

+ ‖uh − g‖2
0,ΓI

• our H(div)-conforming LSFEM does not satisfy the exact discrete
conservation property of Lax and Wendroff
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Numerical Conservation

F(~wh, uh; g) =‖∇x,t · ~wh‖2
0,Ω + ‖~wh − ~f(uh)‖2

0,Ω

+ ‖~nx,t · (~wh − ~f(g))‖2
0,ΓI

+ ‖uh − g‖2
0,ΓI

• however, we can prove: (submitted to SIAM J. Sci. Comput.)

THEOREM. [Conservation for H(div)-conforming LSFEM]

If finite element approximation uh converges in the L2 sense to û as

h → 0, then û is a weak solution of the conservation law.

⇒ exact discrete conservation is not a necessary condition for
numerical conservation!

(can be replaced by minimization in a suitable continuous norm)
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Numerical conservation
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LSFEM for Nonlinear Hyperbolic PDEs: Status

• Burgers equation:

- nonlinear

- scalar

- 2D domains

• extensions, in progress:

- systems of equations

- higher-dimensional domains

• need efficient solvers for A u = f
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(3) Fluid Dynamics Applications

(A) Soil Sedimentation (Civil Engineering)

with Gert Bartholomeeusen, Mechanical Engineering, University of Oxford
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� � �
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• settling column experiments: soil particles settle

• nonlinear waves, modeled by

∂u

∂t
+

∂f(u)

∂x
= 0
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Soil Sedimentation

• experimental determination of flux function f(u), nonconvex

∂u

∂t
+

∂f(u)

∂x
= 0

Fit
Csh4
Csh3
Csh2
Surf. M

I

Porosity, [-]

F
lu

x,
[m

m
/m

in
]

10.960.920.880.84

0.05

0.04

0.03

0.02

0.01

0

(kaolinite soil suspension)
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Soil Sedimentation

• simulation using flux function

• observation of compound shock waves = shock + sonic rarefaction

• new theory for transition between sedimentation and consolidation

(Proceedings of the 2002 Conference on Hyperbolic Systems)
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(B) Bow Shock Flows in Solar-Terrestrial Plasmas

• supersonic solar wind plasma induces quasi-steady bow shock in
front of earth’s magnetosphere

• plasma = gas + magnetic field B

• described by Magnetohydrodynamics (MHD), hyperbolic system
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Recall: Gas Dynamics Bow Shock
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Bow Shock Flows in Solar-Terrestrial Plasmas

• simulation:

for large upstream B:

multiple shock fronts!

X

Y

Z
"rho"

2.63673
2.43265
2.22857
2.02449
1.82041
1.61633
1.41224
1.20816
1.00408
0.8

X

Y

Z

X

Y

Z

X

Y

Z

• reason: MHD has mul-
tiple waves

• also: compound
shocks (like in
sedimentation appli-
cation)

(Phys. Rev. Lett. 2000)

• predictive result:

- not observed yet

- confirmed in several
other MHD codes

- new spacecraft may al-
low observation
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(C) Supersonic Outflow from Exoplanet Atmospheres

with Feng Tian, Brian Toon, Alex Pavlov, PAOS, CU Boulder

• extrasolar planets, as of 13 January 2004

- 104 planetary systems

- 119 planets

- 13 multiple planet systems

- gas giants (‘hot Jupiters’)

- very close to star (∼ 0.05 AU)

⇒ supersonic hydrogen escape

(like the solar wind), Euler
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Supersonic Outflow from Exoplanet Atmospheres
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Supersonic Outflow from Exoplanet Atmospheres
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Supersonic Outflow from Exoplanet Atmospheres

• planet around HD209458

- 0.67 Jupiter masses, 0.05 AU

- hydrogen atmosphere and escape observed

(Vidal-Madjar, Nature March 2003)

• Feng’s simulations show:

- extent and temperature of Hydrogen atmosphere

consistent with observations

- atmosphere is stable (1% mass loss in 10 billion years)

• ‘Mercury-type’ planet with gas atmosphere would lose

10% of mass in 8.5 million years
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• LSFEM for Hyperbolic PDEs

Luke Olson, Tom Manteuffel, Steve McCormick

Applied Math, CU Boulder

• Fluid Dynamics Applications

Gert Bartholomeeusen
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