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(1) Numerical Simulation of Nonlinear Hyperbolic PDE Systems

Example application: gas dynamics

e supersonic
flow of air
over sphere
(M=1.53)

e bow shock

e (An album of
fluid motion,
Van Dyke)
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Nonlinear Hyperbolic Conservation Laws

e Euler equations of gas dynamics

p pu
8 . o —
5 | PP + V. pUU+pl =0
| re | (pe+plpe)) 0 |

e nonlinear hyperbolic PDE system

8 —
—L+V-FU —

e conservation law

é(/Udv)+]§ i F(U)dA =0
ot \Ja o0
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Model Problem: Scalar Inviscid Burgers Equation

e Scalar conservation law in 1D

ou  Of(u)

8t+ ox =0

e model problem: inviscid Burgers equation

ou  Ou?/2

8t+ ox ¥
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Burgers Equation: Model Flow

ou  Ou?/2
u  Ow/2_,
ot ox

e hyperbolic PDE: information

propagates along charac- t

teristic curves u=1
e 1 IS constant on characteristic
e u IS slope of characteristic u=1 u=0

e Where characteristics cross:

shock formation (weak solu-
tion)
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Space-Time Formulation

=0

ot ox

ou N of(u)

o define V., = (0,,0;)
o define  fo.(u) = (f(u),u)

-

Vit for(u) =0 QcCR2

u=4gd F[

\ /

e conservation in space-time

% ﬁ:c,t . ﬁ,t(u) dl =0
r
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Some Notation

e [, scalar product

(f,9)0.0 :/Q f g dxdt

e space H(div, )
{ (u,v) € Ly X Lo

e [ NOrm

If]

0.0 = /f%mﬁ
Q

IV - (u,0)g0 < oo}

remark: (u,v) can be discontinuous, (UV),
with normal component continuous:

7 ((u,v)2 = (u,v)1) =0

(uv),
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Weak Solutions: Discontinuities

4 )

Vit for(u) =0 Q
u=g Iy

- /

—

(1) Rankine-Hugoniot relations: 77, ; - (fu.:(u2) — ﬁ,t(ul)) =0

(2) equivalent: f,.(u) € H(div,Q) (solution regularity)

= 1
Burgers model flow: f, ;(u) € H(div,)) <= shock speed s = >
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Numerical Approximation: Finite Differences

e derivatives = use truncated Taylor series expansion

ou U; — Us—1
— —| = O(A
Ox |, Ax +0(Az)
9, 9, u?n _u?n u?n_u’?— n
e Burgers: a—?+ua—u:0 = ,HAt : —I—u?n : A L —
X ’ X

= convergence to wrong solu-

tion!
e reason: Taylor expansion not
valid at shock!
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Conservative Finite Difference Schemes

THEOREM. Lax-Wendroff (1960).

ou N of(u) 0 U?,nﬂ - U?n n fivr/2m (W) = fis12,n(u")

ot ' ox At Az =0

theorem: conservative finite difference scheme guarantees convergence
to a correct weak solution (assuming convergence of v/ to some )

=- ‘conservative’ form is a sufficient condition for convergence to a
weak solution (but it may not be necessary! ...)
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Why the Name ‘Conservative Scheme’?

u?,n%—l o u’?,n + fi—f—l/2,n(uh) — fi—l/Q,n(uh)

At Ax =0

$o, ot - (f(uh),uh) dl=0 ¥ Q

e recall conservation in space-time 7{ Mgt - for(u) dl =0
a0

— exact discrete conservation in A
every discrete cell €,

to a solution with wrong shock speed cannot happen

X

e exact discrete conservation constrains the solution, s.t. convergence
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Lax-Wendroff Scheme

o= (524 (3)" - 55 (2472) (=)

e conservative

o O(Az?) (Taylor)

e correct shock speed

e ...oOscillations!
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Possible Remedy: Numerical Diffusion

e add numerical diffusion

ou  Of(u) %u
ot x| ™ gaz
® Nhum = O(Az?), e.0.
e problem: need nonlinear limiters

e problem: higher-order difficult

e this ‘stabilization by numerical diffusion’ approach is employed in
- upwind schemes
- finite volume schemes

- most existing finite element schemes
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Alternative: Solution Control through Functional Minimization

e minimize the error in a continuous norm

u, = arg man ||V:p,t 'ﬁ,t(uh) (2)79

uhe Uh

e goal:
- control oscillations
- control convergence to weak solution
- control numerical stability (no need for time step limitation)

- higher-order finite elements
= achieve through norm minimization

(remark: h = Ax)
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(2) Least-Squares Finite Element (LSFEM) Discretizations

with Luke Olson, Tom Manteuffel, Steve McCormick, Applied Math CU Boulder

e finite element method: approximate u € U by u" € U"

e abstract example: solve Lu = 0 (assume L linear PDE operator)

e define the functional F(u) = ||Lu

2
0,0
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Least-Squares Finite Element (LSFEM) Discretizations

= minimization;

u = arg min ||[Lu"||2 o = arg min F(u")
uhe Ur ’

e condition for " stationary point:

OF (ul + av™)

= l—o =0 Voeu”
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Least-Squares Finite Element Discretizations

e algebraic system of linear equations:

Z ui(Lgi, Loj)g o =0
=l

(n equations in n unknowns, Au = 0)

(actually, with boundary conditions, Au = f)

e Symmetric Positive Definite (SPD) matrices A
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H (div)-Conforming LSFEM for Hyperbolic Conservation Laws

e reformulate conservation law in terms of flux vector w:

V- ﬁct(u) =0 -

u=g Iy .
ﬁx,t W = ﬁx,t ) fx,t(g) FI

L'y

. Y,

2
0,Q2

e functional
F(@", ul; g) =Vt - 02 o + 0" — flu))

+ ||fias - (5" = flg))

|(2),1“I + |Ju” — 9||(2),PI

e Newton linearization: minimize functional with linearized equation
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Finite Element Spaces

e weak solution: f,, € H(div,Q)

= choose w" € H(div,Q)

e Raviart-Thomas elements: the normal components of w" are
continuous

= " € H(div, Q)

= H/(div)-conforming LSFEM
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Numerical Results

0.75

e shock flow: wc ¢+ = 1.0, upignt = 0.5, shock speed s = 0.75
e convergence to correct weak solution with optimal order

e no oscillations, correct shock speed, no CFL limit

0.75

- ~ 05 0.5}
.25t /- 0.25} 0.25}
0 % X : 0 : : : 0
0 025 05 075 1 025 05 075 1 _ 1
X X «
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Linear Advection — Higher-Order Elements

linear (k=1, h=1/24) quadratic (k=2, h=1/12)

0 0
0 2 4 6 8 1 0 2 4 6 8 1
cubic (k=3, 1/8) quartic (k=4, h=1/6)
1 1
8 .8

°© v » o
NN o

0
0 2 A4 .6 .8 1 0 2 4 .6 .8 1

e order k =1, 2, 3, 4: sharper shock for same dof
e remark: also discontinuous finite elements for «”

(SIAM J. Sci. Comput., accepted)
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Solution-Adaptive Refinement

e LS functional is sharp a posteriori error estimator:
hy __ h |2
F(u”) = [[Lu”[|g 0
h 2
= || Lu _LuexactHo,Q

— L(uh - uexact)”%,@

= || Le ||0’Q
0.7 f 555“
W“mm‘
Ole “snmﬁmn
04 P 12— ;%‘\““ |
03 NW .
- [
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Numerical Conservation

e We minimize

2

F(@",u" g) =lVae - 0" |5 o + 7" = f(u")]5 0

—

+ 1o - (@ = fo)lg.r, + " = glGr,

e our H(div)-conforming LSFEM does not satisfy the exact discrete
conservation property of Lax and Wendroff
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Numerical Conservation

2

F(@", u; g) =V - 0" 0,2

6,0 + ll@" = f(u")]

+ || - (B" — f(9))

6.0, + llu" = gll5.r,

e however, we can prove: (submitted to SIAM J. Sci. Comput.)

THEOREM. [Conservation for H (div)-conforming LSFEM]
If finite element approximation «/* converges in the L, sense to 4 as
h — 0, then u is a weak solution of the conservation law.

=- exact discrete conservation is not a necessary condition for
numerical conservation!

(can be replaced by minimization in a suitable continuous norm)
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Numerical conservation
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LSFEM for Nonlinear Hyperbolic PDEs: Status

e Burgers equation:
- nonlinear
- scalar

- 2D domains
e extensions, in progress:
- systems of equations

- higher-dimensional domains

e need efficient solvers for Au = f
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(3) Fluid Dynamics Applications

(A) Soil Sedimentation (Civil Engineering)

with Gert Bartholomeeusen, Mechanical Engineering, University of Oxford
t=0 t=a t=b

e settling column experiments: soil particles settle

e nonlinear waves, modeled by
ou N of(u)

ot ox =0
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Soil Sedimentation

e experimental determination of flux function f(u), nonconvex

ou  Of(u)
(9t+ Ox =0

0.05
0.04
0.03
0.02
0.01

0
0.84 088 092 09% 1

Porosity, [-]

Flux, [mm/min]

(kaolinite soil suspension)

<P+
% University of Colorado at Boulder

APPM 16 April 2004 — p.29



Soil Sedimentation

N
o
o

Heiaght, mm
o
o

[$)]
o

o

300 -

250 -

-

o

o
I

e simulation using flux function

Compsh2
I I
Strong li th icti
g lines are the predlc_ ions and 0
paler lines the corresponding -
measured porosities. Numbers
mark the elapsed time in minutes. (_28’_,
Structural porosityﬂé 177 3
Predicted porosity profile at 299 —
399 minutes. There is no AW 222 4
corresponding measurement T o/
: 399
<+—29
0.8 0.85 0.9 0.95 1
Porosity

e oObservation of compound shock waves = shock + sonic rarefaction
e new theory for transition between sedimentation and consolidation

(Proceedings of the 2002 Conference on Hyperbolic Systems)
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(B) Bow Shock Flows in Solar-Terrestrial Plasmas

e supersonic solar wind plasma induces quasi-steady bow shock in
front of earth’s magnetosphere

e plasma = gas + magnetic field B

e described by Magnetohydrodynamics (MHD), hyperbolic system

<P+
% University of Colorado at Boulder

APPM 16 April 2004 — p.31



Recall: Gas Dynamics Bow Shock
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MHD has mul-

tiple waves

reason

compound

also

In

ke
Imentation appli-

(I

shocks
sed

cation)
(Phys. Rev. Lett. 2000)

Ive result

predict

- not observed yet

In Severa

- confirmed

other MHD codes

- new spacecraft may al-

low observation
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Bow Shock Flows in Solar-Terrestrial Plasmas
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e Simu

for large upstream B

multiple shock fronts!
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(C) Supersonic Outflow from Exoplanet Atmospheres

with Feng Tian, Brian Toon, Alex Pavlov, PAOS, CU Boulder

B e e »
star
A
# 1 2 light curye
=k}
Z s /S
= 3
=
=<}
Time >

e extrasolar planets, as of 13 January 2004

- 104 planetary systems - gas giants (‘hot Jupiters’)

- 119 planets - very close to star (~ 0.05 AU)

- 13 multiple planet systems = supersonic hydrogen escape

(like the solar wind), Euler

APPM 16 April 2004 — p.34
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Supersonic Outflow from Exoplanet Atmospheres
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Supersonic Outflow from Exoplanet Atmospheres
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Supersonic Outflow from Exoplanet Atmospheres

e planet around HD209458
- 0.67 Jupiter masses, 0.05 AU
- hydrogen atmosphere and escape observed
(Vidal-Madjar, Nature March 2003)
e Feng’s simulations show:
- extent and temperature of Hydrogen atmosphere
consistent with observations
- atmosphere is stable (1% mass loss in 10 billion years)
e ‘Mercury-type’ planet with gas atmosphere would lose

10% of mass in 8.5 million years
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