Least-Squares Finite Element Methods for Nonlinear Hyperbolic PDEs

Hans De Sterck

Department of Applied Mathematics
University of Colorado at Boulder
(desterck@colorado.edu)

CPA, K.U. Leuven Tuesday, 15 June 2004

Outline

(1) Hyperbolic Conservation Laws: Introduction

(2) Least-Squares Finite Element Methods

(3) Fluid Dynamics Applications

(1) Numerical Simulation of Nonlinear Hyperbolic PDE Systems

Example application: gas dynamics

- supersonic flow of air over sphere (M=1.53)
- bow shock
- (An album of fluid motion, Van Dyke)

Nonlinear Hyperbolic Conservation Laws

Euler equations of gas dynamics

$$\left| \begin{array}{c} \frac{\partial}{\partial t} \left[\begin{array}{c} \rho \\ \rho \, \vec{v} \\ \rho \, e \end{array} \right] + \nabla \cdot \left[\begin{array}{c} \rho \, \vec{v} \\ \rho \, \vec{v} \, \vec{v} + p \, \vec{I} \\ \left(\, \rho \, e + p(\rho, e) \, \right) \, \vec{v} \end{array} \right] = 0 \right|$$

nonlinear hyperbolic PDE system

$$\frac{\partial U}{\partial t} + \nabla \cdot \vec{F}(U) = 0$$

conservation law

$$\frac{\partial}{\partial t} \left(\int_{\Omega} U \ dV \right) + \oint_{\partial \Omega} \vec{n} \cdot \vec{F}(U) \ dA = 0$$

Model Problem: Scalar Inviscid Burgers Equation

scalar conservation law in 1D

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0$$

model problem: inviscid Burgers equation

$$\frac{\partial u}{\partial t} + \frac{\partial u^2/2}{\partial x} = 0$$

Burgers Equation: Model Flow

$$\frac{\partial u}{\partial t} + \frac{\partial u^2/2}{\partial x} = 0$$

- hyperbolic PDE: information propagates along characteristic curves
- *u* is constant on characteristic
- *u* is slope of characteristic
- where characteristics cross: shock formation (weak solution)

Space-Time Formulation

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0$$

- define $\nabla_{x,t} = (\partial_x, \partial_t)$
- define $\vec{f}_{x,t}(u) = (f(u), u)$

$$\nabla_{x,t} \cdot \vec{f}_{x,t}(u) = 0 \quad \Omega \subset \mathbb{R}^2$$

$$u = g \quad \Gamma_I$$

conservation in space-time

$$\oint_{\Gamma} \vec{n}_{x,t} \cdot \vec{f}_{x,t}(u) \ dl = 0$$

Some Notation

• L_2 scalar product

$$\langle f, g \rangle_{0,\Omega} = \int_{\Omega} f g \, dx dt$$

• L_2 norm

$$||f||_{0,\Omega} = \sqrt{\int_{\Omega} f^2 \, dx dt}$$

• space $H(div, \Omega)$

$$\{ (u, v) \in L_2 \times L_2 \mid \|\nabla \cdot (u, v)\|_{0,\Omega}^2 < \infty \}$$

remark: (u,v) can be discontinuous, with normal component continuous:

$$\vec{n} \cdot ((u, v)_2 - (u, v)_1) = 0$$

Weak Solutions: Discontinuities

$$\nabla_{x,t} \cdot \vec{f}_{x,t}(u) = 0 \quad \Omega$$

$$u = g \quad \Gamma_I$$

- (1) Rankine-Hugoniot relations: $\vec{n}_{x,t} \cdot (\vec{f}_{x,t}(u_2) \vec{f}_{x,t}(u_1)) = 0$
- (2) equivalent: $\vec{f}_{x,t}(u) \in H(div,\Omega)$ (solution regularity)

Burgers model flow: $\vec{f}_{x,t}(u) \in H(div,\Omega) \iff \text{shock speed } s = \frac{1}{2}$

Numerical Approximation: Finite Differences

derivatives ⇒ use truncated Taylor series expansion

$$\Rightarrow \left. \frac{\partial u}{\partial x} \right|_{i} = \frac{u_{i} - u_{i-1}}{\Delta x} + O(\Delta x)$$

• Burgers:
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0 \implies \frac{u_{i,n+1}^h - u_{i,n}^h}{\Delta t} + u_{i,n}^h \frac{u_{i,n}^h - u_{i-1,n}^h}{\Delta x} = 0$$

- ⇒ convergence to wrong solution!
- reason: Taylor expansion not valid at shock!

Conservative Finite Difference Schemes

THEOREM. Lax-Wendroff (1960).

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0 \quad \to \quad \frac{u_{i,n+1}^h - u_{i,n}^h}{\Delta t} + \frac{\overline{f}_{i+1/2,n}(u^h) - \overline{f}_{i-1/2,n}(u^h)}{\Delta x} = 0$$

theorem: conservative fi nite difference scheme guarantees convergence to a correct weak solution (assuming convergence of u^h to some \hat{u})

⇒ 'conservative' form is a sufficient condition for convergence to a weak solution (but it may not be necessary! ...)

Why the Name 'Conservative Scheme'?

$$\frac{u_{i,n+1}^h - u_{i,n}^h}{\Delta t} + \frac{\bar{f}_{i+1/2,n}(u^h) - \bar{f}_{i-1/2,n}(u^h)}{\Delta x} = 0$$

$$\oint_{\partial\Omega_i} \vec{n}_{x,t} \cdot (\bar{f}(u^h), u^h) \ dl = 0 \quad \forall \ \Omega_i$$

recall conservation in space-time

$$\oint_{\partial\Omega} \vec{n}_{x,t} \cdot \vec{f}_{x,t}(u) \ dl = 0$$

 \Rightarrow exact discrete conservation in every discrete cell Ω_i

 exact discrete conservation constrains the solution, s.t. convergence to a solution with wrong shock speed cannot happen

Lax-Wendroff Scheme

$$\bar{f}_{i+1/2} = \frac{1}{2} \left(\left(\frac{u_{i+1}}{2} \right)^2 + \left(\frac{u_i}{2} \right)^2 - \frac{\Delta t}{\Delta x} \left(\frac{u_i + u_{i+1}}{2} \right)^2 (u_{i+1} - u_i) \right)$$

- conservative
- $O(\Delta x^2)$ (Taylor)
- correct shock speed
- ...oscillations!

Possible Remedy: Numerical Diffusion

add numerical diffusion

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = \eta_{num} \frac{\partial^2 u}{\partial x^2}$$

- $\eta_{num} = O(\Delta x^2)$, e.g.
- problem: need nonlinear limiters
- problem: higher-order difficult
- this 'stabilization by numerical diffusion' approach is employed in
 - upwind schemes
 - finite volume schemes
 - most existing finite element schemes

Alternative: Solution Control through Functional Minimization

minimize the error in a continuous norm

$$u_*^h = \underset{u^h \in \mathcal{U}^h}{arg \, min} \ \|\nabla_{x,t} \cdot \vec{f}_{x,t}(u^h)\|_{0,\Omega}^2$$

- goal:
 - control oscillations
 - control convergence to weak solution
 - control numerical stability (no need for time step limitation)
 - higher-order finite elements
 - ⇒ achieve through norm minimization

(remark: $h = \Delta x$)

(2) Least-Squares Finite Element (LSFEM) Discretizations

with Luke Olson, Tom Manteuffel, Steve McCormick, Applied Math CU Boulder

• finite element method: approximate $u \in \mathcal{U}$ by $u^h \in \mathcal{U}^h$

$$u^h(x,t) = \sum_{i=1}^n u_i \,\phi_i(x,t)$$

- abstract example: solve Lu = 0 (assume L linear PDE operator)
- ullet define the functional $\mathcal{F}(u) = \|Lu\|_{0,\Omega}^2$

Least-Squares Finite Element (LSFEM) Discretizations

⇒ minimization:

$$u_*^h = \underset{u^h \in \mathcal{U}^h}{arg \, min} \, ||Lu^h||_{0,\Omega}^2 = arg \, min \, \mathcal{F}(u^h)$$

• condition for u^h stationary point:

$$\frac{\partial \mathcal{F}(u^h + \alpha v^h)}{\partial \alpha} \mid_{\alpha = 0} = 0 \quad \forall \ v^h \in \mathcal{U}^h$$

Least-Squares Finite Element Discretizations

algebraic system of linear equations:

$$\sum_{i=1}^{n} u_i \langle L\phi_i, L\phi_j \rangle_{0,\Omega} = 0$$

(n equations in n unknowns, Au = 0)
(actually, with boundary conditions, Au = f)

Symmetric Positive Definite (SPD) matrices A

H(div)-Conforming LSFEM for Hyperbolic Conservation Laws

• reformulate conservation law in terms of flux vector \vec{w} :

$$\nabla_{x,t} \cdot \vec{f}_{x,t}(u) = 0 \quad \Omega$$

$$u = g \quad \Gamma_I$$

ation law in terms of flux vector
$$\vec{w}$$
:
$$\nabla_{x,t} \cdot \vec{w} = 0 \qquad \Omega$$

$$\vec{w} = \vec{f}_{x,t}(u) \qquad \Omega$$

$$\vec{n}_{x,t} \cdot \vec{w} = \vec{n}_{x,t} \cdot \vec{f}_{x,t}(g) \quad \Gamma_{I}$$

$$u = g \qquad \Gamma_{I}$$

functional

$$\mathcal{F}(\vec{w}^h, u^h; g) = \|\nabla_{x,t} \cdot \vec{w}^h\|_{0,\Omega}^2 + \|\vec{w}^h - \vec{f}(u^h)\|_{0,\Omega}^2 + \|\vec{n}_{x,t} \cdot (\vec{w}^h - \vec{f}(g))\|_{0,\Gamma_I}^2 + \|u^h - g\|_{0,\Gamma_I}^2$$

Newton linearization: minimize functional with linearized equation

Finite Element Spaces

• weak solution: $\vec{f}_{x,t} \in H(div, \Omega)$

$$\Rightarrow$$
 choose $\vec{w}^h \in H(div, \Omega)$

• Raviart-Thomas elements: the normal components of \vec{w}^h are continuous

$$\Rightarrow \vec{w}^h \in H(div, \Omega)$$

 $\Rightarrow H(div)$ -conforming LSFEM

Numerical Results

- shock flow: $u_{left} = 1.0$, $u_{right} = 0.5$, shock speed s = 0.75
- convergence to correct weak solution with optimal order
- no oscillations, correct shock speed, no CFL limit

Linear Advection – Higher-Order Elements

- order k = 1, 2, 3, 4: sharper shock for same dof
- remark: also discontinuous finite elements for u^h (SIAM J. Sci. Comput., accepted)

Solution-Adaptive Refinement

LS functional is sharp a posteriori error estimator:

$$\mathcal{F}(u^h) = ||Lu^h||_{0,\Omega}^2$$

$$= ||Lu^h - Lu_{exact}||_{0,\Omega}^2$$

$$= ||L(u^h - u_{exact})||_{0,\Omega}^2$$

$$= ||Le^h||_{0,\Omega}^2$$

Numerical Conservation

we minimize

$$\mathcal{F}(\vec{w}^h, u^h; g) = \|\nabla_{x,t} \cdot \vec{w}^h\|_{0,\Omega}^2 + \|\vec{w}^h - \vec{f}(u^h)\|_{0,\Omega}^2 + \|\vec{n}_{x,t} \cdot (\vec{w}^h - \vec{f}(g))\|_{0,\Gamma_I}^2 + \|u^h - g\|_{0,\Gamma_I}^2$$

• our H(div)-conforming LSFEM does not satisfy the exact discrete conservation property of Lax and Wendroff

$$\nabla \cdot \vec{w}^h$$

Numerical Conservation

$$\mathcal{F}(\vec{w}^h, u^h; g) = \|\nabla_{x,t} \cdot \vec{w}^h\|_{0,\Omega}^2 + \|\vec{w}^h - \vec{f}(u^h)\|_{0,\Omega}^2 + \|\vec{n}_{x,t} \cdot (\vec{w}^h - \vec{f}(g))\|_{0,\Gamma_I}^2 + \|u^h - g\|_{0,\Gamma_I}^2$$

however, we can prove: (submitted to SIAM J. Sci. Comput.)

THEOREM. [Conservation for H(div)-conforming LSFEM]

If fi nite element approximation u^h converges in the L_2 sense to \hat{u} as $h \to 0$, then \hat{u} is a weak solution of the conservation law.

⇒ exact discrete conservation is not a necessary condition for numerical conservation!

(can be replaced by minimization in a suitable continuous norm)

Numerical conservation

LSFEM for Nonlinear Hyperbolic PDEs: Status

- Burgers equation:
 - nonlinear
 - scalar
 - 2D domains
- extensions, in progress:
 - systems of equations
 - higher-dimensional domains
- need efficient solvers for A u = f

(3) Fluid Dynamics Applications

(A) Soil Sedimentation (Civil Engineering)

with Gert Bartholomeeusen, Mechanical Engineering, University of Oxford

- settling column experiments: soil particles settle
- nonlinear waves, modeled by

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0$$

Soil Sedimentation

• experimental determination of flux function f(u), nonconvex

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0$$

Soil Sedimentation

- simulation using flux function
- observation of compound shock waves = shock + sonic rarefaction
- new theory for transition between sedimentation and consolidation (Proceedings of the 2002 Conference on Hyperbolic Systems)

(B) Bow Shock Flows in Solar-Terrestrial Plasmas

- supersonic solar wind plasma induces quasi-steady bow shock in front of earth's magnetosphere
- plasma = gas + magnetic field B
- described by Magnetohydrodynamics (MHD), hyperbolic system

Recall: Gas Dynamics Bow Shock

Bow Shock Flows in Solar-Terrestrial Plasmas

simulation:
 for large upstream B:
 multiple shock fronts!

- reason: MHD has multiple waves
- also: compound shocks (like in sedimentation application)

(Phys. Rev. Lett. 2000)

- predictive result:
- not observed yet
- confirmed in several other MHD codes
- new spacecraft may allow observation

(C) Supersonic Outflow from Exoplanet Atmospheres

with Feng Tian, Brian Toon, Alex Pavlov, PAOS, CU Boulder

- extrasolar planets, as of 13 January 2004
- 104 planetary systems
- 119 planets
- 13 multiple planet systems

- gas giants ('hot Jupiters')
- very close to star ($\sim 0.05~\text{AU}$)
- ⇒ supersonic hydrogen escape (like the solar wind), Euler

Supersonic Outflow from Exoplanet Atmospheres

Supersonic Outflow from Exoplanet Atmospheres

Supersonic Outflow from Exoplanet Atmospheres

- planet around HD209458
 - 0.67 Jupiter masses, 0.05 AU
 - hydrogen atmosphere and escape observed
 (Vidal-Madjar, Nature March 2003)
- Feng's simulations show:
 - extent and temperature of Hydrogen atmosphere consistent with observations
 - atmosphere is stable (1% mass loss in 10 billion years)
- 'Mercury-type' planet with gas atmosphere would lose
 10% of mass in 8.5 million years

Collaborators

LSFEM for Hyperbolic PDEs
 Luke Olson, Tom Manteuffel, Steve McCormick
 Applied Math, CU Boulder

Fluid Dynamics Applications

Gert Bartholomeeusen

Oxford

Feng Tian, Brian Toon, Alex Pavlov

PAOS, CU Boulder

