Least-Squares Finite Element Methods for Nonlinear Hyperbolic Conservation Laws

16 June 2003

Hans De Sterck

Luke Olson, Tom Manteuffel, Steve McCormick

Department of Applied Mathematics
University of Colorado at Boulder
Nonlinear hyperbolic conservation law

\[\nabla \cdot \vec{f}(u) = 0 \quad \Omega \]
\[u = g \quad \Gamma_I \]

- \(\Omega \subset \mathbb{R}^2 \) \(\Gamma_I \) inflow boundary
- space-time domains: \(\nabla = (\partial_x, \partial_t) \)
- \(\vec{f}(u) \) Lipschitz continuous:
 \[\exists K \text{ s.t. } |f_i(u_1) - f_i(u_2)| \leq K |u_1 - u_2| \]
 \[\forall u_1, u_2, \quad i = 1, 2 \]
- inviscid Burgers equation: \(\vec{f}(u) = (u^2/2, u) \)
Nonlinear hyperbolic conservation law

\[\nabla \cdot \vec{f}(u) = 0 \quad \Omega \]
\[u = g \quad \Gamma_I \]

- weak solutions:
 \[-\langle \vec{f}(u), \nabla \phi \rangle_{0,\Omega} + \langle \vec{n} \cdot \vec{f}(g), \phi \rangle_{0,\Gamma_I} = 0 \quad \forall \phi \in C^1_{\Gamma_o}(\Omega) \]

- restrict to piecewise \(C^1 \) functions with jump discontinuities
 \[\Rightarrow \quad u \in H^{1/2-\epsilon}(\Omega) \quad \forall \epsilon > 0 \]
 \[\Rightarrow \quad \text{THEOREM:} \quad \vec{f}(u) \in H(div, \Omega) \]
Outline

• (1) Standard LSFEM for the Burgers equation

• (2) $H(\text{div})$-conforming LSFEM

• (3) Potential $H(\text{div})$-conforming LSFEM

• Numerical results – convergence study

• Numerical conservation – Weak conservation proofs

• Conclusions
(1) LSFEM for the Burgers equation

\[\nabla \cdot \vec{f}(u) = 0 \quad \Omega \]

\[u = g \quad \Gamma_I \]

- LS functional
 \[\mathcal{H}(u; g) := \| \nabla \cdot \vec{f}(u) \|_{0,\Omega}^2 + \| u - g \|_{0,\Gamma_I}^2 \]

- LSFEM
 \[u^*_h = \arg \min_{u^h \in \mathcal{U}^h} \mathcal{H}(u^h; g) \]

\[\mathcal{U}^h: \text{continuous bilinear finite elements on quadrilaterals} \]

- Gauss-Newton minimization of LS functional
LSFEM for the Burgers equation

\[H(u) := \nabla \cdot \vec{f}(u) = 0 \quad \Omega \]
\[u = g \quad \Gamma_I \]

- Gauss-Newton minimization of LS functional:
 - first: Newton linearization of \(H(u) = 0 \)
 \[H(u_i) + H'_i(u_i)(u_{i+1} - u_i) = 0 \]
 with Fréchet derivative
 \[H'_i(u_i)(v) = \nabla \cdot (\vec{f}'_{u_i} v) \]
 - then: LS minimization of linearized \(H(u) \)
Numerical Results

shock flow: \(u_{left} = 1 \), \(u_{right} = 0 \), shock speed \(s = 1/2 \)

- correct shock speed, no oscillations
- on each grid, Newton process converges
- BUT: for \(h \to 0 \), nonlinear functional does not go to zero
- this means: for \(h \to 0 \), convergence to an incorrect solution!!!(\(L^*L\) has a spurious stationary point)
- why does LSFEM produce wrong solution??
Divergence of Newton’s method

- reason: Fréchet derivative operator is unbounded

Burgers: \[H'_{|u_0}(v) = \nabla \cdot ((u_0, 1) \cdot v) \]

operator \(H'_{|u_0} : v \in H^{1/2-\epsilon}(\Omega) \rightarrow L^2(\Omega) \)

\[\Rightarrow \| H'_{|u_0} \|_{0, \Omega} = \infty \]

because \(\forall u_0 \in H^{1/2-\epsilon}(\Omega), \exists v \in H^{1/2-\epsilon}(\Omega) : ((u_0, 1) \cdot v) \notin H(div, \Omega) \)

example: \(h(x) = \mp |x|^{1/3} \)

\[\Rightarrow x_1 = -2x_0 \]

Newton with \(h'(x_\ast) = \infty \)

may have empty basin of attraction
(2) \(H(div) \)-conforming LSFEM

- reformulate conservation law in terms of flux vector \(\vec{w} \):

\[
\nabla \cdot \vec{f}(u) = 0 \quad \Omega \\
u = g \quad \Gamma_I
\]

\[
\Rightarrow
\begin{aligned}
\nabla \cdot \vec{w} &= 0 \quad \Omega \\
\vec{w} &= \vec{f}(u) \quad \Omega \\
\vec{n} \cdot \vec{w} &= \vec{n} \cdot \vec{f}(g) \quad \Gamma_I \\
u &= g \quad \Gamma_I
\end{aligned}
\]

- Gauss-Newton applied to

\[
\mathcal{F}(\vec{w}^h, u^h; g) = \| \nabla \cdot \vec{w}^h \|_{0,\Omega}^2 + \| \vec{w}^h - \vec{f}(u^h) \|_{0,\Omega}^2 + \| \vec{n} \cdot (\vec{w}^h - \vec{f}(g)) \|_{0,\Gamma_I}^2 + \| u^h - g \|_{0,\Gamma_I}^2
\]

- \(\vec{w}^h \in RT_0 \subset H(div, \Omega) \), and \(u^h \) continuous bilinear
\(H(\text{div}) \)-conforming LSFEM

- nonlinear operator

\[
F(\vec{w}, u) := \begin{bmatrix}
\nabla \cdot \vec{w} \\
\vec{w} - \vec{f}(u)
\end{bmatrix} = 0
\]

- Fréchet derivative:

\[
F'|_{(\vec{w}_0, u_0)}(\vec{w}_1 - \vec{w}_0, u_1 - u_0) = \begin{bmatrix}
\nabla \cdot \\
I
\end{bmatrix}
= \begin{bmatrix}
0 \\
-f'|_{u_0}
\end{bmatrix}
\cdot \begin{bmatrix}
\vec{w}_1 - \vec{w}_0 \\
u_1 - u_0
\end{bmatrix}
\]

LEMMA. Fréchet derivative operator

\[
F'|_{(\vec{w}_0, u_0)} : H(\text{div}, \Omega) \times L^2(\Omega) \rightarrow L^2(\Omega)
\]

is bounded:

\[
\| F'|_{(\vec{w}_0, u_0)} \|_{0, \Omega} \leq \sqrt{1 + K^2}
\]
(3) Potential $H(\text{div})$-conforming LSFEM

- $\nabla \cdot \vec{f}(u) = 0$ implies $\vec{f}(u) = \nabla^\perp \psi$ for some $\psi \in H^1(\Omega)$

\Rightarrow reformulate conservation law in terms of flux potential ψ:

$$
\begin{align*}
\nabla \cdot \vec{f}(u) &= 0 \quad \Omega \\
u &= g \quad \Gamma_I
\end{align*}
$$

\Rightarrow

$$
\begin{align*}
\nabla^\perp \psi - \vec{f}(u) &= 0 \quad \Omega \\
\vec{n} \cdot \nabla^\perp \psi &= \vec{n} \cdot \vec{f}(g) \quad \Gamma_I \\
u &= g \quad \Gamma_I
\end{align*}
$$

- Gauss-Newton applied to

$$
G(\psi^h, u^h; g) := \sum \left[\left\| \nabla^\perp \psi^h - \vec{f}(u^h) \right\|_{0, \Omega}^2 + \left\| \vec{n} \cdot (\nabla^\perp \psi^h - \vec{f}(g)) \right\|_{0, \Gamma_I}^2 + \left\| u^h - g \right\|_{0, \Gamma_I}^2 \right]
$$

- ψ^h and u^h continuous bilinear
Potential $H(\text{div})$-conforming LSFEM

- nonlinear operator
 \[G(\psi, u) := \nabla^\perp \psi - \vec{f}(u) = 0 \]

- Fréchet derivative:
 \[G''|_{(\psi_0,u_0)}(\psi_1 - \psi_0, u_1 - u_0) = \begin{bmatrix} \nabla^\perp & -\vec{f}'|_{u_0} \end{bmatrix} \cdot \begin{bmatrix} \psi_1 - \psi_0 \\ u_1 - u_0 \end{bmatrix} \]

LEMMA. Fréchet derivative operator
\[G''|_{(\psi_0,u_0)} : H^1(\Omega) \times L^2(\Omega) \to L^2(\Omega) \] is bounded:
\[\| G''|_{(\psi_0,u_0)} \|_{0,\Omega} \leq \sqrt{1 + K^2} \]
Numerical results

- shock flow: $u_{left} = 1.0$, $u_{right} = 0.5$, shock speed $s = 0.75$
- $H(div)$-conforming LSFEM:
Numerical results

- potential $H(\text{div})$-conforming LSFEM:
Numerical results – convergence study

- estimate α in $\|u^h - u\|_{0,\Omega}^2 \approx \mathcal{O}(h^\alpha)$

 $u \in H^{1/2-\varepsilon}(\Omega)$ discontinuous \Rightarrow optimal $\alpha = 1.0$

 i.e., $\|u^h - u\|_{0,\Omega}^2 \approx \mathcal{O}(h)$, or $\|u^h - u\|_{0,\Omega} \approx \mathcal{O}(h^{1/2})$

- estimate α in $\mathcal{F}(\tilde{w}^h, u^h; g) \approx \mathcal{O}(h^\alpha)$

- estimate α in $\mathcal{G}(\psi^h, u^h; g) \approx \mathcal{O}(h^\alpha)$
Numerical results – convergence study

<table>
<thead>
<tr>
<th>N</th>
<th>$|u^h - u|_{0,\Omega}^2$</th>
<th>α</th>
<th>$\mathcal{F}(\bar{w}^h, u^h)$</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>5.96e-3</td>
<td>0.58</td>
<td>1.89e-2</td>
<td>1.03</td>
</tr>
<tr>
<td>32</td>
<td>3.81e-3</td>
<td>0.69</td>
<td>9.25e-3</td>
<td>1.02</td>
</tr>
<tr>
<td>64</td>
<td>2.36e-3</td>
<td>0.77</td>
<td>4.56e-3</td>
<td>1.01</td>
</tr>
<tr>
<td>128</td>
<td>1.38e-3</td>
<td>0.85</td>
<td>2.26e-3</td>
<td>1.01</td>
</tr>
<tr>
<td>256</td>
<td>7.66e-4</td>
<td></td>
<td>1.12e-3</td>
<td></td>
</tr>
</tbody>
</table>
FMG Newton $\|u^h - u\|_{0,\Omega}$ convergence
Numerical results – choice of spaces

- for u^h piecewise constant (discontinuous): oscillations!

- reason: the functionals are not uniformly coercive

- for right choices of FE spaces (e.g., u^h continuous bilinear), numerical evidence suggests FE convergence

- we have some heuristic understanding of this, but rigorous proofs not yet obtained

- potential formulation is equivalent to H^{-1} minimization
Numerical conservation

- Lax-Wendroff theorem: exact discrete conservation

\[\nabla_{\text{discrete}} \cdot \vec{f}(u^h) := \oint_{\partial \Omega_i} \vec{n} \cdot \vec{f}(u^h) \, dl = 0 \quad \forall \Omega_i \]

guarantees convergence to a weak solution

(assuming convergence of \(u^h \) to \(\hat{u} \) boundedly a.e.)
Numerical conservation

- our $H(div)$-conforming LSFEM do not satisfy the exact discrete conservation property of Lax and Wendroff

- $H(div)$-conforming LSFEM:
 \[\nabla \cdot \vec{f}(u^h) \neq 0, \text{ and also } \nabla \cdot \vec{w}^h \neq 0 \]

- potential $H(div)$-conforming LSFEM:
 \[\nabla \cdot \vec{f}(u^h) \neq 0, \text{ but } \nabla \cdot \nabla^\perp \psi^h \equiv 0 \]
Numerical conservation

- however, we can prove:

THEOREM. [Conservation for $H(\text{div})$-conforming LSFEM]

If finite element approximation u_h converges in the L^2 sense to \hat{u} as $h \to 0$, then \hat{u} is a weak solution of the conservation law.

THEOREM. [Conservation for potential $H(\text{div})$-conforming LSFEM]

If finite element approximation u_h converges in the L^2 sense to \hat{u} as $h \to 0$, then \hat{u} is a weak solution of the conservation law.

\Rightarrow exact discrete conservation is not a necessary condition for numerical conservation!

(can be replaced by minimization in a suitable continuous norm)
Numerical conservation
Conclusions

we have developed two classes of $H(div)$-conforming LSFEM for hyperbolic conservation laws

- disadvantages
 - extra variables are introduced (\bar{w} or ψ)
 - smearing of LSFEM at shocks

- advantages of LSFEM
 - optimal solution within finite element space
 - SPD linear systems (iterative methods, AMG)
 - error estimator (efficient adaptive refinement)
 - convergence to weak solution
 - no spurious oscillations at discontinuities (without need to add numerical diffusion)
 - extension to linear higher order schemes
Conclusions

- advantages of flux vector/flux potential reformulations
 - bounded Fréchet derivative \Rightarrow Newton converges
 - smoothness of the solution ($\vec{f}(u) \in H(div)$) is made explicit, also at the discrete level using Raviart-Thomas elements ($\Rightarrow H(div)$-conforming LSFEM)
 - differential part of operator is linear
 - optimal multigrid exists for $H(div)$

- FE convergence theory needs to be worked out further
- promising initial AMG results, to be developed further
- methods can be extended to multiple spatial dimensions (using de Rham diagram), and to systems of equations