Numerical Conservation Properties of Least-Squares Finite Element Methods for Scalar Hyperbolic Conservation Laws

29 August 2003

Hans De Sterck

Luke Olson, Tom Manteuffel, Steve McCormick

Department of Applied Mathematics University of Colorado at Boulder

Nonlinear hyperbolic conservation law

$$\left(\begin{array}{ccc}
\nabla \cdot \vec{f}(u) = 0 & \Omega \\
u = g & \Gamma_I
\end{array}\right)$$

• *u* scalar

- $\Omega \subset \mathbb{R}^2$ Γ_I inflow boundary
- space-time domains: $\nabla = (\partial_x, \partial_t)$
- example: inviscid Burgers equation:

$$\frac{\partial u^2/2}{\partial x} + \frac{\partial u}{\partial t} = 0$$
 or $\vec{f}(u) = (u^2/2, u)$

• hyperbolic systems: shallow water, Euler, MHD, ...

3D MHD bow shock flows

- PhD thesis research (1999)
- 3D Finite Volume code
- MPI, F90 (64 procs)
- 'shock-capturing'

- explicit time marching towards steady state
- problems:
 - (1) small timesteps, many iterations (many 100,000s): need implicit solvers
 - (2) algorithm not scalable
 - (3) low order of discretization accuracy (2nd order)
 - (4) robustness

This talk: explore alternative approaches

- find approximate solution by minimizing error in a continuous norm
 - finite difference finite volume:
 - based on Taylor expansion but: not valid for discontinuous solution
 - needs artificial diffusion and nonlinear limiters to make it work anyway (with limitations)
 - instead: choose norm minimization that is valid for discontinuous solutions – no need for artificial diffusion or limiters
- multi-level linear and nonlinear solvers for scalability

Some notation

• L_2 scalar product

$$\langle f,g\rangle_{0,\Omega} = \int_{\Omega} fg \, dxdt$$

•
$$L_2$$
 norm

$$||f||_{0,\Omega} = \sqrt{\int_{\Omega} f^2 \, dx dt}$$

• space $H(div, \Omega)$

$$\{ (u,v) \in L_2 \times L_2 \mid \|\nabla \cdot (u,v)\|_{0,\Omega}^2 < \infty \}$$

remark: (u, v) can be discontinuous, with normal component continuous

$$\vec{n} \cdot ((u, v)_2 - (u, v)_1) = 0$$

Weak solutions: discontinuities

 $\nabla \cdot \vec{f}(u) = 0 \quad \Omega$ $u = g \quad \Gamma_I$

• (1) Rankine-Hugoniot relations: $\vec{n} \cdot (\vec{f}(u_2) - \vec{f}(u_1)) = 0$

- (2) equivalent: $\vec{f}(u) \in H(div, \Omega)$
- (3) alternative: $\left\langle \nabla \cdot \vec{f}(u), \phi \right\rangle_{0,\Omega} = 0 \quad \forall \phi \in C^1_{\Gamma_O}(\overline{\Omega})$

or
$$-\left\langle \vec{f}(u), \nabla \phi \right\rangle_{0,\Omega} + \left\langle \vec{n} \cdot \vec{f}(g), \phi \right\rangle_{0,\Gamma_I} = 0$$

⇒ restrict *u* to piecewise C^1 functions with jump discontinuities ⇒ *THEOREM*: $\vec{f}(u) \in H(div, \Omega)$

Outline

- (1) Least-Squares Finite Element Methods
- (2) Standard LSFEM for the Burgers equation
- (3) H(div)-conforming LSFEM
- (4) Potential H(div)-conforming LSFEM
- (5) Scalable linear solver AMG
- (6) Scalable nonlinear solver FMG-Newton
- (7) Numerical conservation Weak conservation proofs
- Conclusions

(1) Least-Squares Finite Element Method

- solve Lu = 0
- define the functional $\mathcal{F}(u) = \|Lu\|_{0,\Omega}^2 = \langle Lu, Lu \rangle_{0,\Omega}$

 $\Rightarrow \text{ minimization: } u^h_* = \underset{u^h \in \mathcal{U}^h}{arg \min} \|Lu^h\|^2_{0,\Omega} = arg \min \mathcal{F}(u^h)$

• condition for stationary point:

$$\frac{\partial \mathcal{F}(u^h + \alpha v^h)}{\partial \alpha} \mid_{\alpha = 0} = 0 \quad \forall \ v^h \in \mathcal{U}^h$$

f *L* is linear:
$$\mathcal{F}(u^h + \alpha v^h) = \langle Lu^h, Lu^h \rangle_{0,\Omega} + 2 \alpha \langle Lu^h, Lv^h \rangle_{0,\Omega} + \alpha^2 \langle v^h, v^h \rangle_{0,\Omega}$$

 \Rightarrow weak form:

find $u^h \in \mathcal{U}^h$, s.t. $\langle Lu^h, Lv^h \rangle_{0,\Omega} = 0 \quad \forall v^h \in \mathcal{U}^h$

 btw: LSFEM = FOSLS (First-Order Systems Least-Squares)

Finite Element Discretization

• approximate $u \in \mathcal{U}$ by $u^h \in \mathcal{U}^h$

$$u^{h}(t,x) = \sum_{i=1}^{n} u_{i} \phi_{i}(t,x)$$

• algebraic system from weak form:

$$\left\langle Lu^h, L\phi_j \right\rangle_{0,\Omega} = 0 \qquad \forall \phi_j$$

equation *j*: $\sum_{i=1}^{n} u_i \langle L\phi_i, L\phi_j \rangle_{0,\Omega} = 0$ (n equations in n unknowns)

Error Estimator and Adaptive Refinement

$$\mathcal{F}(u^h) = \|Lu^h\|_{0,\Omega}^2$$
$$= \|Lu^h - Lu_{exact}\|_{0,\Omega}^2$$
$$= \|L(u^h - u_{exact})\|_{0,\Omega}^2$$
$$= \|Le^h\|_{0,\Omega}^2$$

- functional value gives sharp local a posteriori error estimator
- use error estimator for adaptive refinement in space-time
- error estimator is significant advantage of LSFEM

(2) LSFEM for the Burgers equation

$$\nabla \cdot \vec{f}(u) = 0 \quad \Omega$$
$$u = g \quad \Gamma_I$$

• LS functional

$$\mathcal{H}(u;g) := \|\nabla \cdot \vec{f}(u)\|_{0,\Omega}^2 + \|u - g\|_{0,\Gamma_I}^2$$

• LSFEM

$$u_*^h = \underset{u^h \in \mathcal{U}^h}{\operatorname{arg\,min}} \, \mathcal{H}(u^h; g)$$

Linear advection – higher order schemes

LSFEM for the Burgers equation

$$H(u) := \nabla \cdot \vec{f}(u) = 0 \quad \Omega$$
$$u = g \quad \Gamma_I$$

- Gauss-Newton minimization of LS functional:
 - first: Newton linearization of H(u) = 0

$$H(u_i) + H'|_{u_i}(u_{i+1} - u_i) = 0$$

with Fréchet derivative

$$H'|_{u_i}(v) = \lim_{\varepsilon \to 0} \frac{H(u_i + \varepsilon v) - H(u_i)}{\varepsilon}$$
$$= \nabla \cdot (\vec{f'}|_{u_i} v)$$

• then: LS minimization of linearized H(u)continuous bilinear finite elements on quads for $u^h_{\text{CASC-D},U}$

Numerical Results

shock flow: $u_{left} = 1$, $u_{right} = 0$, shock speed s = 1/2

- correct shock speed, no oscillations
- on each grid, Newton process converges
- BUT: for $h \rightarrow 0$, nonlinear functional does not go to zero
- this means: for h → 0, convergence to an incorrect solution!!! (L*L has a spurious stationary point)
- why does LSFEM produce wrong solution??

Divergence of Newton's method

• reason: Fréchet derivative operator is unbounded

Burgers: $H'|_{u_0}(v) = \nabla \cdot ((u_0, 1) v)$

operator $H'|_{u_0}$:

$$\Rightarrow \parallel H'|_{u_0} \parallel_{0,\Omega} = \infty$$

because for most v

 $((\mathbf{u_0}, 1) v) \notin H(div, \Omega)$

example: $h(x) = \mp |x|^{1/3}$ $\Rightarrow x_1 = -2x_0$ Newton with $h'(x_*) = \infty$ may have empty basin of attraction

(3) H(div)-conforming LSFEM

• reformulate conservation law in terms of flux vector \vec{w} :

$$\nabla \cdot \vec{f}(u) = 0 \quad \Omega$$

$$u = g \quad \Gamma_I$$

$$\Rightarrow$$

$$\left(\begin{array}{ccc} \nabla \cdot \vec{w} = 0 & \Omega \\ \vec{w} = \vec{f}(u) & \Omega \\ \vec{n} \cdot \vec{w} = \vec{n} \cdot \vec{f}(g) & \Gamma_I \\ u = g & \Gamma_I \end{array} \right)$$

• Gauss-Newton applied to

$$\begin{aligned} \mathcal{F}(\vec{w}^h, u^h; g) = & \|\nabla \cdot \vec{w}^h\|_{0,\Omega}^2 + \|\vec{w}^h - \vec{f}(u^h)\|_{0,\Omega}^2 \\ & + \|\vec{n} \cdot (\vec{w}^h - \vec{f}(g))\|_{0,\Gamma_I}^2 + \|u^h - g\|_{0,\Gamma_I}^2 \end{aligned}$$

H(div)-conforming LSFEM

• nonlinear operator

$$F(\vec{w}, u) := \begin{bmatrix} \nabla \cdot \vec{w} \\ \vec{w} - \vec{f}(u) \end{bmatrix} = 0$$

• Fréchet derivative:

$$F'|_{(\vec{w}_0,u_0)}(\vec{w}_1 - \vec{w}_0, u_1 - u_0) = \begin{bmatrix} \nabla \cdot & 0 \\ I & -\vec{f'}|_{u_0} \end{bmatrix} \cdot \begin{bmatrix} \vec{w}_1 - \vec{w}_0 \\ u_1 - u_0 \end{bmatrix}$$

LEMMA. Fréchet derivative operator $F'|_{(\vec{w_0},u_0)} : H(div,\Omega) \times L^2(\Omega) \to L^2(\Omega)$ is bounded:

$$\|F'\|_{(\vec{w}_0,u_0)}\|_{0,\Omega} \le \sqrt{1+K^2}$$

Finite Element Discretization

• discretize \vec{w} with face elements on quads (Raviart-Thomas in 2D): $\vec{w}^h = (w_t^h, w_x^h) \in (V_t^h, V_x^h)$

face elements: normal vector components are degrees of freedom

normal components of \vec{w}^h are continuous $\Rightarrow \vec{w}^h \in RT_0 \subset H(div, \Omega)$

• continuous bilinear finite elements on quads for u^h

Numerical results

- shock flow: $u_{left} = 1.0$, $u_{right} = 0.5$, shock speed s = 0.75
- H(div)-conforming LSFEM:

Numerical results – convergence study

N	$ u^h - u _{0,\Omega}^2$	lpha	$\mathcal{F}(\vec{w}^h, u^h)$	lpha
16	5.96e-3		1.89e-2	
		0.58		1.03
32	3.81e-3	0.60	9.25e-3	1 0 2
64	2.36e-3	0.09	4.56e-3	1.02
		0.77		1.01
128	1.38e-3		2.26e-3	
		0.85		1.01
256	7.66e-4		1.12e-3	

(4) Potential H(div)-conforming LSFEM

- define $\nabla^{\perp} = (-\partial_t, \partial_x)$
- $\nabla \cdot \vec{f}(u) = 0$ implies $\vec{f}(u) = \nabla^{\perp} \psi$ for some $\psi \in H^1(\Omega)$
- \Rightarrow reformulate conservation law in terms of flux potential ψ :

$$\nabla \cdot \vec{f}(u) = 0 \quad \Omega$$

$$u = g \quad \Gamma_I$$

$$\Rightarrow$$

$$\nabla^{\perp} \psi - \vec{f}(u) = 0 \qquad \Omega$$

$$\vec{n} \cdot \nabla^{\perp} \psi = \vec{n} \cdot \vec{f}(g) \quad \Gamma_I$$

$$u = g \qquad \Gamma_I$$

• Gauss-Newton applied to

$$\begin{split} \mathcal{G}(\psi^h, u^h; g) &:= \\ \|\nabla^{\perp} \psi^h - \vec{f}(u^h)\|_{0,\Omega}^2 + \|\vec{n} \cdot (\nabla^{\perp} \psi^h - \vec{f}(g))\|_{0,\Gamma_I}^2 + \|u^h - g\|_{0,\Gamma_I}^2 \end{split}$$

• ψ^h and u^h continuous bilinear finite elements

Potential H(div)-conforming LSFEM

• nonlinear operator

$$G(\psi, u) := \nabla^{\perp} \psi - \vec{f}(u) = 0$$

• Fréchet derivative:

$$G'|_{(\psi_0,u_0)}(\psi_1 - \psi_0, u_1 - u_0) = \begin{bmatrix} \nabla^{\perp} & -\vec{f'}|_{u_0} \end{bmatrix} \cdot \begin{bmatrix} \psi_1 - \psi_0 \\ u_1 - u_0 \end{bmatrix}$$

LEMMA. Fréchet derivative operator
$$G'|_{(\psi_0,u_0)}: H^1(\Omega) \times L^2(\Omega) \to L^2(\Omega)$$
 is bounded:

 $|| G'|_{(\psi_0, u_0)} ||_{0,\Omega} \le \sqrt{1 + K^2}$

Numerical results

• potential H(div)-conforming LSFEM:

with adaptive refinement in space-time

(5) Scalable linear solver – AMG

- LSFEM \Rightarrow SPD matrices
- linear hyperbolic PDE
- advection direction $\vec{b} = (\cos \theta, \sin \theta)$

formulation (B)

$$\nabla \cdot \vec{b} \ u = 0 \qquad \Omega$$

$$u = g \qquad \Gamma_I$$

$$\nabla^{\perp} \psi = \vec{b} \ u \qquad \Omega$$

$$\nabla^{\perp} \psi = \vec{b} \ g \qquad \Gamma_I$$

Scalable linear solver – boundary conditions

• formulation (A), functional:

$$\|\nabla \cdot \vec{b} u^h\|_{0,\Omega}^2 + \|u^h - g\|_{0,\Gamma_I}^2$$

matrix equation: $(A_{int} + A_{bndry}) \cdot \vec{x} = \vec{b}$ scale mismatch: $A_{int} = O(1)$, but $A_{bndry} = O(h)$!

• formulation (B), functional:

 $\|\nabla \cdot \vec{b} \, u^h\|_{0,\Omega}^2 + \|u^h - g\|_{0,\Gamma_I}^2 + \|\nabla^{\perp}\psi^h - \vec{b} \, u^h\|_{0,\Omega}^2 + \|\nabla^{\perp}\psi^h - \vec{b} \, g\|_{0,\Gamma_I}^2$ right scales: $A_{int} = O(1)$, and also $A_{bndry} = O(1)$!

 \Rightarrow differential boundary condition gives right scale

AMG interpolation – non-M-matrix

• stencil for A_{int} (formulation (A), $\theta = \pi/4$)

$$\begin{bmatrix} \frac{1}{12} & -\frac{1}{6} & -\frac{5}{12} \\ -\frac{1}{6} & \frac{4}{3} & -\frac{1}{6} \\ -\frac{5}{12} & -\frac{1}{6} & \frac{1}{12} \end{bmatrix}$$

• need special AMG interpolation

AMG interpolation – non-M-matrix

- interpolate F-point *i* from surrounding C-points
- guideline

$$-a_{ii} e_i = \sum_{j \in C^s} a_{ij} e_j + \sum_{j \in C^w} a_{ij} e_j + \sum_{j \in F^s} a_{ij} e_j + \sum_{j \in F^w} a_{ij} e_j$$

 $A \cdot \vec{e} \approx 0$

	regular	special
C^s	keep e _j	keep e _j
C^w	to diagonal e_i	to diagonal e_i
F^s	to all strong C	to right-sign strong C
F^w	to diagonal e_i	to right-sign strong C

Scalable linear solver – AMG

- augment equations (formulation (B))
- adjust interpolation, regular V-cycle
- \Rightarrow scalable linear solver

work units (fine-grid relaxation sweeps) per digit of accuracy

$$W_d = \frac{W_c}{-\log \rho_c}$$

W_d	128^2	256^{2}	512^{2}
formulation (A)	38	54	79
formulation (B)	23	31	31

(6) Scalable nonlinear solver – Newton FMG

(7) Numerical Conservation

nonconservative finite difference schemes can converge to wrong solution!

THEOREM. Lax-Wendroff (1960). 'conservative' fi nite difference formula:

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0 \quad \rightarrow \quad \frac{u_i^{h,n+1} - u_i^{h,n}}{\Delta t} + \frac{\bar{f}_{i+1/2}^{h,n} - \bar{f}_{i-1/2}^{h,n}}{\Delta x} = 0,$$

exact discrete conservation guarantees convergence to a correct weak solution (assuming convergence of u^h to \hat{u} boundedly a.e.)

- ⇒ exact discrete conservation is a sufficient condition for convergence to a weak solution
- ⇒ however, exact discrete conservation is often erroneously considered as a *necessary* condition

 popular FEM for hyperbolic conservation laws (e.g. Discontinuous Galerkin) are discretely conservative in the Lax-Wendroff sense

$$\nabla_{discrete} \cdot \vec{f}(u^h) := \oint_{\partial \Omega_i} \vec{n} \cdot \vec{f}(u^h) \, dl = 0 \quad \forall \ \Omega_i$$

- our H(div)-conforming LSFEM do not satisfy the exact discrete conservation property of Lax and Wendroff
- H(div)-conforming LSFEM:

- $\nabla \cdot \vec{w}^h$
- potential H(div)-conforming LSFEM:

$$\nabla^{\perp}\psi - \vec{f}(u) = 0 \qquad \qquad \nabla \cdot \vec{f}(u^h) \neq 0$$

(but $\nabla \cdot \nabla^{\perp}\psi^h \equiv 0$)

- however, we can prove:
 - THEOREM. [Conservation for H(div)-conforming LSFEM] If finite element approximation u^h converges in the L^2 sense to \hat{u} as $h \to 0$, then \hat{u} is a weak solution of the conservation law.
 - THEOREM. [Conservation for potential H(div)-conforming LSFEM] If finite element approximation d^h converges in the L^2 sense to \hat{u} as $h \to 0$, then \hat{u} is a weak solution of the conservation law.
- ⇒ exact discrete conservation is not a necessary condition for numerical conservation!

(can be re placed by minimization in a suitable continuous norm)

Conclusions

we have developed two classes of H(div)-conforming LSFEM for hyperbolic conservation laws

- disadvantages
 - extra variables are introduced (\vec{w} or ψ)
 - smearing of LSFEM at shocks, overshoot
- advantages of LSFEM
 - optimal solution within finite element space
 - SPD linear systems (iterative methods, AMG)
 - error estimator (efficient adaptive refinement)
 - non-conservative: convergence to weak solution

- no spurious oscillations at discontinuities (without need to add numerical diffusion)

- easy extension to *linear* higher order schemes

Conclusions

- advantages of flux vector/flux potential reformulations
 - bounded Fréchet derivative \Rightarrow Newton converges

- smoothness of the solution ($\vec{f}(u) \in H(div, \Omega)$) is made explicit, also at the discrete level using Raviart-Thomas elements ($\Rightarrow H(div)$ -conforming LSFEM)

- differential part of operator is linear
- optimal multigrid exists for H(div)
- FE convergence theory needs to be worked out further
- scalable AMG results obtained for the potential formulation, parallel scaling being tested (hypre-BoomerAMG)
- methods can be extended to multiple spatial dimensions (using de Rham diagram), and to systems of equations

Numerical results – convergence study

• estimate α in $||u^h - u||_{0,\Omega}^2 \approx \mathcal{O}(h^{\alpha})$

 $u \in H^{1/2-\epsilon}(\Omega)$ discontinuous \Rightarrow optimal $\alpha = 1.0$ *i.e.*, $\|u^h - u\|_{0,\Omega}^2 \approx \mathcal{O}(h)$, or $\|u^h - u\|_{0,\Omega} \approx \mathcal{O}(h^{1/2})$

- estimate α in $\mathcal{F}(\vec{w}^h, u^h; g) \approx \mathcal{O}(h^{\alpha})$
- estimate α in $\mathcal{G}(\psi^h, u^h; g) \approx \mathcal{O}(h^{\alpha})$

Numerical results – choice of spaces

 for u^h piecewise constant (discontinuous): oscillations!

- reason: the functionals are not uniformly coercive
- for right choices of FE spaces (*e.g.*, *u^h* continuous bilinear), numerical evidence suggests FE convergence
- we have some heuristic understanding of this, but rigorous proofs not yet obtained
- potential formulation is equivalent to H^{-1} minimization

Hyperbolic PDEs – Conservation Laws

$$\frac{\partial U}{\partial t} + \nabla \cdot \vec{F}(U) = 0$$

- e.g., compressible gases and plasmas
- example: ideal magnetohydrodynamics

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho \vec{v} \\ \rho e \\ \vec{B} \end{bmatrix} + \nabla \cdot \begin{bmatrix} \rho \vec{v} \\ \rho \vec{v} \vec{v} + \left(p + \frac{B^2}{2}\right) \vec{I} - \vec{B} \vec{B} \\ \left(\rho e + p + \frac{B^2}{2}\right) \vec{v} - (\vec{v} \cdot \vec{B}) \vec{B} \\ \vec{v} \vec{B} - \vec{B} \vec{v} \end{bmatrix} = 0$$

(fusion plasmas, space plasmas, ...)

Convergence to entropy solution

- transonic rarefaction
- many weak solutions
- one stable, entropy solution (rarefaction)
- LSFEM converges to entropy solution
- observed in numerical results, no theoretical proof yet