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ON DETERMINANTS, MATCHINGS, AND RANDOM ALGORITHMS

by L. LovAgz*

1. JIntroduction

In the attempts to classify problems according to their algorithmic complexity,
probably most attention has been given to those problems on the borderline of "poly-
nomial' and "exponential"” complexity. These are the problems in the class NP, and
can be described as follows: given an input X, we are looking for another structure

Y which "fits" X; the fact that ¥ "fits" X can be checked in no wmore time than
cons const
| e nst

(this in particular contains that Y is not larger than |X| ). There is a
trivialvexponential time algorithm to solve such problems (looklng at all possible
Y's). In some cases, highly non-trivial algorithms are available which solve the
problem in polynomial time; the class of problems in NP.solvable in polynomial time
1s demnoted by P.

The conjeéture that P # NP is one of the most outstanding open problems of
contemﬁorary mathematics. )

If we have a prbblem in NP, about which we 'suspect that it might be in P, it
may be véry difficult to find an algorithm right away. Therefore it is of great
importance to find classes of préblems which are between P and NP; then to-show
that a given problem is in such a class is a realistic first step toward the complete

solution.

One rather well-known relaxation of P is the class of well-characterized problems.

If a problem is in NP then there does not seem to be any reason for its negétion
also being in NP (of course, negative results like this cannot be.proved at the
present stage of our knowledge). If the negation of the problem in NP can also be
formulated as a problem in NP then we say that the problem is well-characterized.
We denote the class of. these problems by A. So PgA¢NP. The .second inclusion is
quite certainly strict. There is not’ any well-founded conjecture about the first,
since problems which are shown to be in A (theorems of this kind are often among
the most beautiful and deep results in combinatorics do tend to eventually find
their "complete solution (i.e., a polynomial-bounded algorithm). Another relaxation
of a polynomial-bounded algoritnm is an algorithm which includes random steps and
may make errois, but with small probability only.The main purpose of this paper is
to call attention to the class of problems solvable in this sense, We shall denote

this class by RP; exact definition will be given later. It will turn out that even

* Bolyai Institute, Jozsef Atrtila University, H-6720 Szeged, Hungary; this paper was
written wiiile the aathor was visiting the University of Waterloo and the Massachusetts

Institute of Technology.
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if a problem is in P, algorithms involving random steps may solve it much faster than
deterministic algorithms; ‘

In chapter 1, we discuss the matching problem, and a recent generalization called
the matroid matching problem, from the pbint of view of their belonging to A , RP and
P. We hope this will also illuminate the notion of these classes. In Chapter 2,
we state a further generalization of these problems, define RP precisely, and point
out its relationship with the so-called "probabillistic method". I am indebted to

Jack Edmonds and Gary Miller for stimulating discussions on these problems.

2. Matching and Matroild Matching

Given a graph G, a set of edges of G is called a matching if no two of them have
a vertex in common. A maﬁching is perfect 1f it covers all the vertices.

The matching problem, in its simplest version, calls for the decision whether or
not a given graph G has a perfect matching. Tutte [14] gave a necessary and sufficient
condition for the existance of a perfect matching. Edmonds [3] found a polynomial-
bounded algorithm.to solve the matching problem.

.Tutte's original proof usgd methods of linear algebra, which has since then been
simplified so that now several purely combinatorical proofs of this fundamental
theorem are avaiiable. However, his approach contains an idea which will be important
for the purposes of this paper. This can be formulated as a necessary and sufficient

condition.

THEOREM 1. Let G be a simple graph. Orient 1ts edges arbitrarily. For each

edge etE(G), let e be an indeterminate. Form the matrix B = (Bij) where

x, if e = (i, )
ij -x, if e = (i, 1)

0 otherwise

Then G has a perfect matching iff det B is not identically O in the variables X,

For sake of comparison, let us quote Tutte's main theorem:

THEOREM 2. A graph G has a perfect matching iff for every set Xﬁy(a)} the graph
G-X has at most |X| odd -connected components.

Let us compare the logical structure of the two conditions. To illuminate the
ideas involved, suppose you are writing a book on graph theory and having introduced
the notion of a perfect matching you want tolput in two figures, illustrating graphs
with and without perfect matchings. In the figure depicting a graph with a perfect
matching, you could draw heavy lines for the edges of a perfect matching and so the
reader will be immediately convinced that this graph has a perfect matching. You

would like to give a one-lipne reasoning showing that the other example has no perfect

matching. The definition of a perfect matching does not suggest anything of this sort.

. However, 1if yc

condition and
odd components
In more usg
tion of graphs
matching, as w
Note that
since to prove
identically O,
to check if a
ials, 1is not
tially many te
but not if the
On the otk
Note that det
identically, t
measure 0. So
distribution,
probability 1
identically 0
probability th
In practic
tations with i
Ie ll,enn,.
situation. If
not identicall
ately large.
less than m/N.
So Theorew
exists which r
arbitrarily cl
really determi
Suppose no
that it is non
this question
In spite o
the probabilit
of view that a
[31). This a
others 1t prow

notably the we




~h faster than

ization called
to & , RP and
Chapter 2,

y, and point
ndebted to

ems .

of them have
S.
on whether or
y and sufficient

polynomial-

nce then been
damental
11 be important

and sufficiént

For each

iables x .
e
(a), the graph

uminate the

ng introduced
racing graphs
th a perfect

g and so the
hing. You

has no perfect

ng of this sort.

567

. However, if you apply Theorem 2 you can encircle the vertices of a set X ﬁiolating the

condition and just write that "the deletion of the 17 endircled points results in 19
odd components."

In more usual language, this says that Theorem 2 provides a good characteriza-
tion of graphs with a perfect matching, or that the property of having a perfect
matching, as well as 1ts negation are in NP.

Note that the condition in Theorem 1 does not yileld a good characterization,
since to prove that there is no perfect matching in the graph, i.e., that det B is
identically 0, we have to evaluate det B at infinitely many places. (The usual way
to check if a polynomial is identically 0, i.e., to expand it into a sum of mononom-
ials, is not promising here: the expansion of the determinant may lead to exponen-—
tially many terms. Determinants are easily evaluated if thelr entries are numbers,
but no& if they are functions).

On the other hand, the condition given by Theorem 1 does have some virtues.

Note that det B 1s a polynomial in the variables xe. Therefore if it does not vanish
identically, themn the set of m-tuples (xe) (m = ]E(G)])for which it vanishes is of
measure 0. So if we generate an m-tuple (xe) at random (say xé €{0,1] with uniform
distribution, independently of each other) and evaluate det B(..xe...), then with
probability 1 we get 0 only if det B is identically 0. More precisely, if det B is
identically O then, of course, we get 0. If det B is not identically O then the
probability that we get 0 is 0.

In practice, we cannot generate a random real number and we cannot perform compu-~
tations with infinite decimals. But we can pick a number N and choose integers
;é e{l,...,. W} at random. Then computing det B(xe) we are in the following
situation. If det B is identically 0, then of course our result is 0. If det B is
not identically 0, then the probdbllity of obtaining 0 is very small if N 1s moder-
ately large. In fact, results of Zippel [17] imply that the probability of error is
less than m/N,

So Theorem 1 provides an -algorithm to decide whether or not a perfect matching
exists which runs in polynomial time, and gives the right answer with probability
arbitrarily close to 1. For practical reasons, such an algorithm is as good as a
really deterministic one!

Suppose now that we have selected random integers X computed det B and found
that it is non-zero. How can we actually find a perfect matching? We can answer
this question after the proof of Theorem 3.

In spite of the fact that the condition in Theorem 1 yields an algorithm where
the probability of error is negligible, it is important frow the theoretical point
of view that an efficient algorithm always solving this problém does exist. (Edmonds
[31). This algorithm gives more insight into the’ structure of the problem, among
others it provides a proof of Theorem 2, and also applied to various extentions, most

notably the weighted case.
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Also, there is a slight inaccuracy in the interpretation of our probabilistic
consideration. Let us assume that the input data, i.e., the graphs G have some
distribution; let p be the probability of the event A that G has a perfect watching.
In general, it is very difficult to know anything about p, or even to make reasonable
assﬁmptions.

We can design now an algorithm (with random steps) which answers '"no" if G has
no perfect matching, answers yes or no if it has but the probability that it answers
no even though the n paits of vectorsbdo exist 1s q. Let E denote the event that

our algorithm concludes "yes". Then P(A) = p, P (E|A) = q, EcA. Hence, by simple

computation

PAIE) = P9 .
e L-p+opq
So if we have generated a random xl,...,xm, computed det B and found that it is O,

the probability of det B being not identically O is not q but pq/(l-p + pq). Since
we do not know p, we do not know how small q has to be to make this probability small,
A generalization of the matching problem, called the matchoid problem (Edmonds,
Jenkyns [6]) and the matroid parity problem (Lawler [9]), is the following. Let
(al, bl),..., (am, bm) be disjoint pairs of elements of a matroid. Are there n
pairs among them whose union is independent?
This problem is exponentially difficult for general matroids (Korte |7), Lovdsz
[11]) but is solvable polynomially if the matroid involved is representable over a

field (Lovdsz [11]). For the purposes of this paper, we assume that a

l,...,am, bl,
.,bm are real vectors. We also make the less restrictive assumption that aseend
2n ’
bl”"’bm e R,
. T
First we formulate a condition analogous to Theorem 1. Let a = (dl""’dn) and

b= (Bl,...,Bn)T be two real vectors. We define their wedge product afb as the skew

symmetric n x n matrix

THEOREM 3. Let a_, b, er? (1 <@ 2 m). Then there exist n pairs (a;, b,) whose

union is a basils iff

det (x(a; A bl) ot (e A b)) (1.

is not identically O in the variables ESRRRE "

For sake of comparison, let us quote the necessary and sufficient condition given
in [10]:
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2™

THEOREM 4. Let a;, b, (1 < i < m). Then there exist n pairs (ai’bi)
AHEOREA & i =z i=

2 2
whose union 1s a bastis iff for every linear mapping A: R TR n and every parti-

tion {1, ..., nl = Il ULy Ik’ the following is satisfied:

o~ R

1
= : . - >
L} dim <§ai, Abi. i Ij) r(A).

[
U
=

It is clear that Theorems 3 and 4 have the same logical structure as
Theorems 1 and 2. Again, the problem arises that supposing we have found integers
xl,...,xm such that (1) is not 0, can we construct n pairs (ai,bi) whose unilon is
linearly independent? This question will be answered in the affirmative after the
proof of Theorem 3.

There is a "proper’ polynomial-bounded algorithm to solve this problem [11].
This algorithm is, however, very complicated and certainly not suitable for practical

use in its present form.

Proof of Theorem 3.

I. Suppose that e.g., the vectors al,..., an’ol’ ..,b_ are linearly inde-
pendent. Choose xy RECEREE S 1, xn+l = ., = X = 0. Then
m n
det ] x(a, Ab,) = det -} (a, Ab)) # 0,
. 13 i i
i=1 i=1

so (1) 1is not ‘identically O.

II. Suppose that (1) 1s not identically 0. Denote the matrix in(ai A bi) by
B = B(xl,...,xm). It is well known that

2
det g = (pf B
where pf B is the pfaffian of B.

We claim first 'that pf B is ldnear in each of the variables x,.. Consider
e.g., 1 = 1. Without loss of generality we may assume that al = (1, 0,...,0)T and
bl = (O,l,O,...,O)r.; Then
0
B = s 0 +B'
0 0

where B' does not depend on X Hence the fact that pf B is linear in xy follows

by the definition of pfaffians.
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Consider a monomial term in the polynomial pf B with non-zero coefficient.
This is the product of distinct variables X Without loss of generality we may

assume that it is x%,...x . So 1if we substitute x, = ,.. =x =1, x = ,.. =X

1 n 1 n n+l m
= 0, the value of pf B will be non-zero. Hence det B # 0. We claim that this implies
that al,...,an,bl,...bn are linearly independent. Suppose not/ then they are all
contained in a (2n-l1)-dimensional subspace; without loss of generﬁlity we may assume
that their last coordinates are 0. But then the last row of B is 0, so det B = Q,
a contradiction.

Now we are also able to answer the question: supposing we have found

integers ;l""’;m such that det B<;l""’;ﬁ) %.g, hpw Eén we %ileCt n pairs_(aibi)
whose union is linearly independent? Let, say, xl,...,xp # 0, xp+1 = ... = x = 0.
By the argument in the previous proof it follows that we must have p > n and if p =
n then al,...,an, bl""’ bn are linearly independent. So suppose that p > n. We
show that we can replace one of ;i,...,;% by 0 and still have a non-zero determinant.
For set
a; = pE B ,eeax; g 0, §i+l,...§€p, 0, ..., 0)(L 21 <p).

Then, using the fact rhat each term in the polynomial expansion of

pf B(xl,...,xm) is the product of n distinct variables, we get

P
izl o, = (p—n) pf B(xl,...,xm) #0

and so at least one o, is non-zero. Since each ai is easily computable, we can
i

find this non-~zero ui by computing at most m determinants.

3. Determinants and Other Generalizations

Another version of the idea of Theorefs land 3.occur in the paper [4]
of Edmonds:

THEOREM 5.  Let G be a simple bipartite graph with bipartition V(G) =
= V= = .
UuW, U lupai,u by 0 fw,.eeow 5 and E(G) = te; em} Let x

.,xm be indeterminates and define

1

xy if (ui’ vj) = e
a,,
1]
0, if (u,, vj) tE(G),

and let A = A(y) = (aij). Then
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"max {r(A(x)): xeR") . (2)

is the maximum number of edges of a matching in G.

Again, we may note that the maximum in (2) is attained if the x; are alge-
braically independent transcendentals (although this is of little help from the
point of view of computation). .Theorem 5 can be applied in deriving Kénig's Theorem.

Edmonds proposed the following general problem. Let li (xl,...,xk)(lggép,

g

léjip) be linear forms with integral coefficients, and set

L =1L (xl,..., xk) = (lij(xl,...,xk)).

Define

T (L) = max {r(L(xl,...,x ): X, € Rt .

k
Problem: Compute rO(L).

Theoretically, we can determine this number by substitﬁting algebraically
independent transcendentals for Kyseeos¥pn
matrix. In practice, we may generate random numbers x

and compute the rank of the resulting
l,...,xk, substitute them for
xl,...,xk, and compute the rank of the resulting matrix; the probability of error
can be made arbitrarily small. However, no algorithm is known to efficiently
compute this maximum rank.

We note that the problem is equivalent to the special case in which we
only want to know if rO(L) = m, the number of columns. For suppose we can do this
efficiently. Let L be any matrix of linear forms. We select T, (L) columns of L

by the following procedure: Suppose rows w ...,wk have been selected. For eéﬁh

1’

of the other columms, apply the hypothesized algorithm to check if ro(wij,...,wk,w) =

k+ 1. If you'find an w for which this holds, we label it w If not, then

k =:rO(L). Next note that we can further reduce the problemkti the special case
when n = m. We may clearly assume that n > m since other trivially rO(L) # om,

Now append n-m new columns,whose entries are distinct new variables. It is clear
that the resulting matrix L' has ro(ﬁ) = n iff rO(L) = m. If L is a square matrix
then rO(L) = n is equivalent to saying that det L is not identically 0. Theorems

1, 3 and (after appropriate reductions) Theorem 5 represent matrices L for which the
questioﬁ if det L is ddentically 0 can be decided efficiently. Whether or not
such an algorithm exists for general L, remains open. We conclude with a further
exanple where a very important problem is reduced to finding rO(L) for an appropriate
matrix L of linear forms, and it is still not completely solved (Yemini and Cohen
|16]). For another connection between rigidity and matroid matching, see [12].

Let G be a graph on at least d + 1 points. Let us place the vertices of G
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depends on the combinatorial structure of G only.

If d = 1, the question 1is obvious: the structure 1s rigid iff G is comnected..

If d = 2, then one can desilgn an efficient algorithm to solve the pr@blem using a i_ : Ei;
theorem of Laman [8] and the matroid partitioning algorithm of Edmonds [2]. For t f'
d& > 3 the problem is unsettled. ‘
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to the following. Let, for each vertex vevV(a), x = (X, , «.., X be a d-tuple e .
& > (2) v 1n dv) i P 4 sequences’ by
of variables. Consider the set of equations

It is not know
Note tha
follows: Gene

(XU h XV)(U v 3 i' that v(X,Y) #

for every edge (u,v)eE(a) (u,v are considered to be points in Rd). Then the 1
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2 ' u . : : will be less
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Edmonds' problem is an important special case of a general class of problems &
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¢alled RP'(random polynomial). Let the input data be coded in form of a 0l-sequence X,
and let us have the rask to compute a property P(X) of X (i.e., P(X) = 1 if X has

this property and p(X) = O otherwise). We say that the problem is in RP if there
exists a polynomial f and a polynomial-bounded algorithm which computes for each
instance X of the problem and for each 0Ol-sequence Y of lengtﬁ £ (|X| ) a value
v(%,Y) €{ 0,1} such that

0, then v(X,Y) = 0 for every Y;
1, then v(X,Y) - 1 for at least half of all

(a) if P(X)
(b) if P(X)

sequences Y.

1

|

Note that the class NP could be defined by replacing "at least half of all
sequences" by "at least one sequence' in (f). Hence RPCNP. Obviously, P CRP.
I£ is not known‘whefher equality holds at either place, but probably mnot.

) Note that if we have a problem in RP we ¢an "solve it" polynomially as
follows: Generate a random Ol-sequence Y and compute v(X,Y). The probability

that "v(X,Y) # P(X) is at most 1/2. By repeating this k times the probability of
max {V(X,Yl),...,v(X,Yk)} £ P(X)

will be less than Z_k, so even for relatively small k the probability of an error
is negligible.

The study of problems in:RP has just begun (see [1, 13, 171), motivated mainly
by the problem of primality testing. Let.us conclude by pointing out a connection to
another very vivid area of combinatorical applications of probability theory.

Let A be a property of 0Ol-sequences which is in NP. Suppose, moreover, that

¢ {x: X =n, XeA } =o(2h

Construct, in polyﬁomial time, a Ol-sequence X of length n, not Iin A. By assumption
choosing an X at random is good with probability tending to 1. If XeA means that
the choice of variables Xi encoded by X is a root of (1) for some graph which has

a perfect matching, algorithmic production of an X not having property A(X) would
yield another polynomial-bounded algorithm for the mafching problem.

But this problem has another interesting special case. Let A be the property
of a graph A that it contains a clique or an independent set of more than %logZ'V(GM
vertices.

A graph not in A is an example showing that the well-known Ramsey Theorem is
sharp up to a constant factor., Clearly AENP and 1t is known that almost all-graphs

do not have property A. The construction of such a graph, however, has resisted
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attempts by many. There is, in fact, a variéety of combinatorial existence results
which have simple proofs by random choice but no comstructive proofs (see Erdos -

Spencer [5]).
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