CO 351 Network Flows (Winter 2010) Assignment 4

Due: Thursday, March 11th in class.
Policy. For any question, if you simply write "I don't know" you will receive 20% of the marks for that question.

Question 1: (15 points)
Let $D=(N, A)$ be a digraph, with distinct nodes $s, t \in N$. Recall that an st-cut is a set of the form $\delta(S)$, where $s \in S$ and $t \notin S$.
For any set $F \subseteq A$, let $D \backslash F$ denote the digraph $(N, A \backslash F)$ obtained by deleting the arcs in F. A set $F \subseteq A$ is called an st-disconnecting set if there is no st-dipath in $D \backslash F$.
Prove that the minimum cardinality of an st-cut equals the minimum cardinality of an st-disconnecting set.

Question 2: (30 points)
Let $D=(N, A)$ be a digraph. For simplicity, assume that for every pair of nodes $u, v \in N$, at most one of $u v$ or $v u$ is an arc. (Informally, D does not contain any parallel-but-oppositely-directed pairs of arcs.)
Recall that a set $X \subseteq N$ is called a closure if $\delta(X)=\emptyset$, i.e., there is no arc $u v$ with $u \in X$ and $v \in N \backslash X$. In class we discussed finding a closure which maximizes the weight of the nodes in X. In this problem, we want to find a closure that maximizes $|\delta(\bar{X})|$, i.e., the number of arcs $u v$ with $u \in N \backslash X$ and $v \in X$.
Construct a digraph $\hat{D}=(\hat{N}, \hat{A})$ with nodes $s, t \in \hat{N}$ and arc-lengths w_{a} for all $a \in \hat{A}$ such that a minimum st-cut in \hat{D} corresponds to a closure that maximizes $|\delta(\bar{X})|$.

Question 3: (15 points)
Prove that the Ford-Fulkerson algorithm will terminate with an optimal solution, regardless of which incrementing path is chosen, for digraphs whose arc capacities are positive rational numbers.

Hint: In class, we proved the same statement for digraphs whose arc capacities are positive integers.

Question 4: (Part (a): 4 points, Parts (b)-(i): 2 points each, Part (j): 20 points)
Consider the digraph $D=(N, A)$ given in the following figure. The arcs are labeled by their capacities.

The capacity of the $\operatorname{arc} c d$ is $r=\frac{\sqrt{5}-1}{2} \approx 0.618$. (This is the inverse of the "golden ratio".) Two properties
that this value r satisfies are

$$
\begin{align*}
& r^{n}=r^{n+1}+r^{n+2} \quad \forall n \in \mathbb{Z}, n \geq 0 \tag{1}\\
& 1+2 \sum_{i \geq 1} r^{i}<5 \tag{2}
\end{align*}
$$

(a): By inspection, find a maximum $s t$-flow and minimum st-cut in this digraph.

We will execute the Ford-Fulkerson algorithm on this digraph using very specific incrementing paths. Define:

$$
\begin{aligned}
P_{0} & =\text { sabet } \\
P_{1} & =\text { sbacdet } \\
P_{2} & =\text { sabdct } \\
P_{3} & =\text { sabedt }
\end{aligned}
$$

Note that P_{1}, P_{2}, P_{3} are not dipaths in D, but they will be incrementing paths in the residual digraphs that we consider below.

The initial flow has zero flow on each arc. We use the path P_{0} as the first incrementing path. It has $\gamma\left(P_{0}\right)=1$. (Recall that $\gamma\left(P_{0}\right)$ denotes the maximum amount of additional flow that we can push on the path P_{0}.) The resulting flow is:

(b): Now we use the incrementing path P_{1}. What is $\gamma\left(P_{1}\right)$, as a function of r ? For the resulting flow, give the flow on each arc, as a function of r.
(c): Now we use the incrementing path P_{2}. What is $\gamma\left(P_{2}\right)$, as a function of r ? For the resulting flow, give the flow on each arc, as a function of r.
(d): Now we use the incrementing path P_{1}. What is $\gamma\left(P_{1}\right)$, as a function of r ? For the resulting flow, give the flow on each arc, as a function of r. (You may be able to simplify using Eq. (1).)
(e): Now we use the incrementing path P_{3}. What is $\gamma\left(P_{3}\right)$, as a function of r ? For the resulting flow, give the flow on each arc, as a function of r. What is the objective value of the current flow (i.e., the total amount of flow pushed so far), as a function of r ?

Now let's consider a general situation where we start with a flow x such that, for some integer $n \geq 0$,

- the total flow value $f_{x}(t)$ is $1+2 \sum_{i=1}^{n} r^{i}$. (This is less than 5 , by Eq. (2).)
- $x_{a b}=1, x_{c d}=r-r^{n+1}$, and $x_{d e}=1-r^{n}$.

Note that the flow obtained above after using the first incrementing path P_{0} satisfies these conditions with $n=0$.
(f): Now we use the incrementing path P_{1}. What is $\gamma\left(P_{1}\right)$, as a function of r ? Give the new flow values on arcs $a b, c d$, and $d e$, as functions of r.
(g): Now we use the incrementing path P_{2}. What is $\gamma\left(P_{2}\right)$, as a function of r ? Give the new flow values on arcs $a b, c d$, and $d e$, as functions of r.
(h): Now we use the incrementing path P_{1}. What is $\gamma\left(P_{1}\right)$, as a function of r ? Give the new flow values on arcs $a b, c d$, and $d e$, as functions of r.
(i): Now we use the incrementing path P_{3}. What is $\gamma\left(P_{3}\right)$, as a function of r ? Give the new flow values on $\operatorname{arcs} a b, c d$, and $d e$, as functions of r.
(j): Prove that the Ford-Fulkerson algorithm does not terminate on digraph D if it chooses incrementing paths in the order

$$
P_{0}, \quad P_{1}, P_{2}, P_{1}, P_{3}, \quad P_{1}, P_{2}, P_{1}, P_{3}, \quad P_{1}, P_{2}, P_{1}, P_{3}, \ldots
$$

