
CO 351 Network Flows (Winter 2010)
Assignment 2

Due: Thursday February 4th, in class.

Policy. All questions are worth 20 marks. For any question, if you simply write “I don’t know” you will
receive 20% of the marks for that question.

Question 1:

This exercise is based on formulating the following problem as a problem on dipaths. In the change
making problem we are given a number k of coin denominations a1, a2, . . . , ak. The general problem is
to determine whether or not a given nonnegative integer p can be “changed” into a collection of coins
of the given denominations. In other words, do there exist nonnegative integers x1, x2, . . . , xk such that
p = a1x1 + a2x2 + · · ·+ akxk. For example, we may have k = 3 and a1 = 5, a2 = 10, a3 = 25; then p = 45
can be changed, but p = 17 cannot be changed.

(1) Describe a method for determining all the numbers in a given range [0, 1, 2, . . . , u] that can be changed
(u is a given positive integer).
Hint: One way is to construct a digraph with nodes labeled 0, 1, 2, . . . , u.

(2) Suppose that we can change a number p in the above range. Describe a method for finding a changing
scheme that uses the minimum number of coins.

Question 2:

Let D = (N,A) be a digraph with arc values c ∈ ℜA
+ which we call capacities. Let Q = v1v2...vk−1vk be

an st-diwalk (v1 = s, vk = t). We define the capacity c(Q) of Q to be the minimum over all arcs uv of
Q of cuv, i.e. c(Q) = min{cuv : uv ∈ Q}. Think of the arcs as pipes where the amount of liquid that
can traverse the pipe is its capacity. The capacity of a sequence of pipes is the capacity of the smallest
pipe (the bottleneck). Given an st-diwalk Q of maximum capacity, we would like to give a proof that it is
indeed of maximum capacity. Call values y ∈ ℜN feasible potentials if

min{yu, cuv} ≤ yv for all uv ∈ A.

(1) Let y be feasible potentials and Q be an st-diwalk. Show that min{ys, c(Q)} ≤ yt.

(2) In this digraph, find a dipath from node 1 to node 5 of maximum capacity. Prove using (1) that it is
indeed of maximum capacity.

3

4

3

14

1
23

3

521

1

(3) Consider now an arbitrary digraph. Prove that for every st-diwalk Q there is an st-dipath P of
capacity c(P) ≥ c(Q).

(4) Can you always find feasible potentials (using the definition above)? Justify your answer.

1

Question 3:

Let D = (N,A) be a digraph, with distinct nodes s, t1, t2 and w ∈ ℜA. Throughout this exercise P1 denotes
an st1-dipath, and P2 denotes an st2-dipaths. Consider the following linear program,

min
∑
uv∈A

wuvxuv

fx(u) =

+1 u = t1 or u = t2
−2 u = s
0 otherwise

u ∈ N (P)

xuv ≥ 0 uv ∈ A

(1) Show that xP1 + xP2 is a feasible solution for (P).

(2) Find the linear programming dual (D) of (P).

(3) Suppose we have a feasible solution y of (D) where ys = 0. Using weak duality show that if w(P1) +
w(P2) = yt1 + yt2 then P1 is a shortest st1-dipath and P2 is a shortest st2-dipath.

(4) State the complementary slackness conditions for (P) and (D). Using the complementary slackness
theorem, show that if y are feasible potentials and all arcs of P1 and P2 are equality arcs then P1 is
a shortest st1-dipath and P2 is a shortest st2-dipath.

Question 4:

Let D = (N,A) be a directed graph. Let w ∈ RA be a vector of arc weights, with wa ≥ 0 for every arc
a ∈ A. Let s ∈ N be a node that can reach every other node.

Consider running Dijkstra’s algorithm (as described in Section 2.3 of the Course Notes) on this digraph,
with s as the starting node. Let Si denote the set of nodes reachable from s in D′ during the ith iteration
of Step 1. (The algorithm in the Course Notes simply calls this set S.) The proof of correctness (in Section
2.3.1) argues that

S1 (S2 (S3 (· · · ⊆ N,

so the algorithm must terminate since eventually we’ll have Sj = N . (The notation A (B means that A
is a subset of B and |A| < |B|.)

Let A′
i be the set of equality arcs during the ith iteration of Step 1. Is it also true that

A′
1 (A′

2 (A′
3 (· · ·?

If so, give a proof. If not, give a counterexample.

2

Question 5:

(1) Find a topological ordering of the nodes of the digraph below, using the algorithm described in class
(Section 2.4.1 of the Course Notes). Indicate all steps.

(2) Using the algorithm for shortest dipaths in acyclic digraphs (Section 2.4.2 of the Course Notes), find
for every node u the length of the longest su-dipath. Indicate all steps.

s

t

1EA 4 G
2

F
1

C
3

D
2

0

B
2

32

41

5

3

