We will study Euclidean geometry in \mathbb{R} ?
The norm of a rector x is $\|x\|:=\sqrt{x^{\top} x}$
The unit ball is

$$
B:=\{x:\|x\| \leq 1\}=\left\{x: x^{\top} x \leq 1\right\}
$$

Well be interested in studying certain linear transformations of B

Recall a map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called a linear map (or affine map) if T is of the form

$$
T(x)=A x+b
$$

where A is an $n \times n$ matrix and $b \in \mathbb{R}^{n}$.

One can define the volume of a set $S \subseteq \mathbb{R}^{n}$ using vector calculus. Well just use your intuition. The important property for us is:

$$
\frac{\operatorname{vol}(T(S))}{\operatorname{vol}(S)}=|\operatorname{det} A|
$$

Example
Define $T(x)=A x+b$ where

$$
A=\left[\begin{array}{ll}
3 & 2 \\
0 & 1
\end{array}\right] \quad b=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

$$
A=\left[\begin{array}{ll}
3 & 2 \\
0 & 1
\end{array}\right] \quad b=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Given $y=T(x), \quad x$ is $A^{-1}(y-b)$
So

$$
\begin{aligned}
T(B) & =\{T(x): x \in B \\
& =\left\{T(x): x^{\top} x \leq 1\right\} \\
& =\left\{y:\left(A^{-1}(y-b)\right)^{\top}\left(A^{-1}(y-b)\right) \leq 1\right\} \\
& \left.=\varepsilon y:(y-b)^{-}\left(A^{-1}\right)^{\top} A^{-1}(y-b) \leq 1\right\}
\end{aligned}
$$

Note $A^{-1}=\frac{1}{3}\left[\begin{array}{cc}1 & -2 \\ 0 & 3\end{array}\right]$ and

$$
\left(A^{-1}\right)^{\top} \cdot A^{-1}=\frac{1}{9}\left[\begin{array}{cc}
1 & 0 \\
-2 & 3
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & -2 \\
0 & 3
\end{array}\right]=\frac{1}{9}\left[\begin{array}{cc}
1 & -2 \\
-2 & 13
\end{array}\right] .
$$

$$
\begin{aligned}
& T(B)=\left\{\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]:\left[y_{1}-1, y_{2}-1\right] \frac{1}{9}\left[\begin{array}{cc}
1 & -2 \\
-2 & 13
\end{array}\right]\left[\begin{array}{l}
y_{1}-1 \\
y_{2}-11
\end{array}\right] \leqslant 1\right\} \\
& =\left\{\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]:\left(y_{1}^{2}-2 y_{1}+1\right)-4\left(y_{1} y_{2}-y_{1}-y_{2}+1\right)+13\left(y_{2}^{2}-2 y_{2}+1\right) \leqslant 9\right\}
\end{aligned}
$$

implicitplot $\left(\left[x^{\wedge} 2+y^{\wedge} 2=1,(x-1)^{\wedge} 2-4 *(x-1) *(y-1)+13 *(y-1)^{\wedge} 2=9\right], x=-5 \ldots 5, y=-5 \ldots 5\right.$, numpoints $=10000$, color= [red,blue]);

Note: center of $T(B)$ is $b=(1,1)$
We have $\frac{\operatorname{vol} T(B)}{\text { vol } B}=|\operatorname{det} A|=3$

