Lecture 9: CS Example

Monday, October 12, 2009

min
$$5x_1 + 6x_2 - x_3$$

 $5x_1 + 4x_2 = 3$
 $x_1 + 2x_2 + 3x_3 \le 8$
 $4x_2 + 5x_3 \ge 2$
 $x_2 \times 3 \ge 0$

Claim:
$$(3,0,5/3)$$
 is optimal. Of val = $(5-5/3)$
How to prove it?

Dual
max
$$3y_1 + 8y_2 + 2 \times 3$$

s.t. $y_1 + y_2 + 4y_3 \le 6$
 $3y_2 + 5y_3 \le -1$
 $y_2 \le 0$, $y_3 \ge 0$

$$\textcircled{4}$$
 3rd dual tight or $x_3 = 2$

© 2nd primal tight or
$$y_2=0$$
 (Already satisfied)
© 3rd primal tight or $y_3=0$ => $y_3=0$
© 2nd dual tight or $x_2=0$ (Aready satisfied)
© 3nd dual tight or $x_3=0$ => $y_2+5y_3=-1$

So, constraints on dual are:

canstraints on dual are.

$$y_1 + y_2 = 5$$
 $3y_2 + 5y_3 = -1 \Rightarrow y_2 = -\frac{1}{3} \Rightarrow y_1 = 5\frac{1}{3}$
 $y_3 = 0$

17 1. 1.

(lain: $(5\frac{1}{3}, -\frac{1}{3}, 0)$ is an optimal dual solution. Proof: Feasible $\sqrt{}$ Obj value is $|6-8\%| = 15-\frac{5}{3}$