C\&O 355 Lecture 9

N. Harvey

http://www.math.uwaterloo.ca/~harvey/

Outline

- Complementary Slackness
- "Crash Course" in Computational Complexity
- Review of Geometry \& Linear Algebra
- Ellipsoids

Duality: Geometric View

- We can "generate" a new constraint aligned with c by taking a conic combination (non-negative linear combination) of constraints tight at \mathbf{x}.
- What if we use constraints not tight at x ?

Duality: Geometric View

- We can "geherate" a new constraint aligned with c by taking a cor ic combination (non-negative linear combination) of constraints tight at x.
- What if we use constraints not tight at x ?

Duality: Geometric View

- What if we use constraints not tight at x?
- This linear combination is a feasible dual solution, but not an optimal dual solution
- Complementary Slackness: To get an optimal dual solution, must only use constraints tight at x .

Primalıp Weak Duality
Dual LP

$$
\begin{array}{llll}
\max & c^{\top} x & \min & b^{\top} y \\
\text { s.t. } & A x \leq b & \text { s.t. } & A^{\top} y=c \\
& & & y \geq 0
\end{array}
$$

Theorem: "Weak Duality Theorem"
If x feasible for Primal and y feasible for Dual then $c^{\top} x \leq b^{\top} y$.
Proof: $c^{\top} x=\left(A^{\top} y\right)^{\top} x=y^{\top} A x \leq y^{\top} b$. \square
Since $\mathrm{y} \geq 0$ and $\mathrm{A} x \leq b$

Primal LP
$\max \sum_{j=1}^{n} c_{j} x_{j}$
s.t. $\quad \sum_{j=1}^{n} A_{i, j} x_{j} \quad \leq b_{i} \forall i=1, \ldots, m$

Weak Duality
Dual LP

$$
\begin{array}{ll}
\min & \sum_{i=1}^{m} b_{i} y_{i} \\
\text { s.t. } & \sum_{i=1}^{m} A_{i, j} y_{i}=c_{j} \forall j=1, \ldots, n \\
& y \geq 0
\end{array}
$$

Theorem: "Weak Duality Theorem"
If x feasible for Primal and y feasible for Dual then $c^{\top} x \leq b^{\top} y$.
Proof:
$\sum_{j=1}^{n} c_{j} x_{j}=\sum_{j=1}^{n}\left(\sum_{i=1}^{m} A_{i, j} y_{i}\right) x_{j}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} A_{i, j} x_{j}\right) y_{i} \leq \sum_{i=1}^{m} b_{i} y_{i}$
When does equality hold here?
When does equality hold here?
Corollary:
If x and y both feasible and $c^{\top} x=b^{\top} y$ then x and y are both optimal.

Primal LP
Weak Duality
$\max \sum_{j=1}^{n} c_{j} x_{j}$
s.t. $\quad \sum_{j=1}^{n} A_{i, j} x_{j} \quad \leq b_{i} \forall i=1, \ldots, m$
$\begin{array}{ll}\min & \sum_{i=1}^{m} b_{i} y_{i} \\ \text { s.t. } & \sum_{i=1}^{m} A_{i, j} y_{i}=c_{j} \forall j=1, \ldots, n \\ & y \geq 0\end{array}$
Theorem: "Weak Duality Theorem"
If x feasible for Primal and y feasible for Dual then $c^{\top} x \leq b^{\top} y$.
Proof:

$$
\begin{gathered}
\sum_{j=1}^{n} c_{j} x_{j}=\sum_{j=1}^{n}\left(\sum_{i=1}^{m} A_{i, j} y_{i}\right) x_{j}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} A_{i, j} x_{j}\right) y_{i} \leq \sum_{i=1}^{m} b_{i} y_{i} \\
\text { When does equality hold here? }
\end{gathered}
$$

Equality holds for $\mathrm{i}^{\text {th }}$ term if either $\mathrm{y}_{\mathrm{i}}=0$ or $\sum_{j=1}^{n} A_{i, j} x_{j}=b_{i}$

Primal LP
Weak Duality
$\max \sum_{j=1}^{n} c_{j} x_{j}$
s.t. $\quad \sum_{j=1}^{n} A_{i, j} x_{j} \quad \leq b_{i} \forall i=1, \ldots, m$

$$
\begin{array}{ll}
\min & \sum_{i=1}^{m} b_{i} y_{i} \\
\text { s.t. } & \sum_{i=1}^{m} A_{i, j} y_{i}=c_{j} \forall j=1, \ldots, n \\
& y \geq 0
\end{array}
$$

Theorem: "Weak Duality Theorem"

If x feasible for Primal and y feasible for Dual then $c^{\top} x \leq b^{\top} y$.
Proof:
$\sum_{j=1}^{n} c_{j} x_{j}=\sum_{j=1}^{n}\left(\sum_{i=1}^{m} A_{i, j} y_{i}\right) x_{j}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} A_{i, j} x_{j}\right) y_{i} \underset{\uparrow}{i=1} \sum_{i}^{m} b_{i} y_{i}$
Theorem: "Complementary Slackness"
Suppose x feasible for Primal, y feasible for dual, and for every i , either $\mathrm{y}_{\mathrm{i}}=0$ or $\sum_{j=1}^{n} A_{i, j} x_{j}=b_{i}$.
Then x and y are both optimal.
Proof: Equality holds here.

General Complementary Slackness Conditions

Let x be feasible for primal and y be feasible for dual.

Example

- Primal LP min $5 x_{1}+6 x_{2}-x_{3}$

$$
\begin{array}{ll}
\text { s.t. } & =3 \\
x_{1}+x_{2} & \leq 8 \\
x_{1}+2 x_{2}+3 x_{3} & \leq 8 \\
4 x_{2}+5 x_{3} & \geq 2 \\
x_{2}, x_{3} & \geq 0
\end{array}
$$

- Challenge: What is the dual?
- What are CS conditions?

- Claim: Optimal primal solution is $(3,0,5 / 3)$. Can you prove it?

Primal LP
$\min 5 x_{1}+6 x_{2}-x_{3}$

$$
\begin{array}{ll}
\text { s.t. } & =3 \\
x_{1}+x_{2} & \leq 8 \\
x_{1}+2 x_{2}+3 x_{3} & \leq 2 \\
4 x_{2}+5 x_{3} & \geq 2 \\
x_{2}, x_{3} & \geq 0
\end{array}
$$

Example

Dual LP

$$
\begin{array}{lll}
\max & 3 y_{1}+8 y_{2}+2 y_{3} & \\
\text { s.t. } & y_{1}+y_{2} & =5 \\
& y_{1}+2 y_{2}+4 y_{3} & \leq 6 \\
& 3 y_{2}+5 y_{3} & \leq-1 \\
& y_{2} & \leq 0
\end{array}
$$

- CS conditions:
- Either $x_{1}+2 x_{2}+3 x_{3}=8 \quad$ or $y_{2}=0$
- Either $4 x_{2}+5 x_{3}=2$
- Either $y_{1}+2 y+2+4 y_{3}=6$
- Either $3 y_{2}+5 y_{3}=-1$
or $y_{3}=0$
or $x_{2}=0$
or $x_{3}=0$
- $x=(3,0,5 / 3) \Rightarrow y$ must satisfy:
- $y_{1}+y_{2}=5$
$y_{3}=0$
$y_{2}+5 y_{3}=-1$
$\Rightarrow y=(16 / 3,-1 / 3,0)$

Complementary Slackness Summary

- Gives "optimality conditions" that must be satisfied by optimal primal and dual solutions
- (Sometimes) gives useful way to compute optimum dual from optimum primal
- More about this in Assignment 3
- Extremely useful in "primal-dual algorithms". Much more of this in
- C\&O 351: Network Flows
- C\&O 450/650: Combinatorial Optimization
- C\&O 754: Approximation Algorithms

We've now finished C\&O 350!

- Actually, they will cover 2 topics that we won't
- Revised Simplex Method: A faster implementation of the algorithm we described
- Sensitivity Analysis: If we change c or b, how does optimum solution change?

Computational Complexity

- Field that seeks to understand how efficiently computational problems can be solved
- See CS 360, 365, 466, 764...
- What does "efficiently" mean?
- If problem input has size n, how much time to compute solution? (as a function of n)
- Problem can be solved "efficiently" if it can be solved in time $\leq \mathbf{n}^{\mathrm{c}}$, for some constant c .
$-\mathrm{P}=$ class of problems that can be solved efficiently.

Computational Complexity

- $P=$ class of problems that can be solved efficiently
i.e., solved in time $\leq n^{c}$, for some constant c, where $n=i n p u t ~ s i z e . ~$
- Related topic: certificates
- Instead of studying efficiency, study how easily can you certify the answer?
- NP = class of problems for which you can efficiently certify that "answer is yes"
- coNP = class of problems for which you can efficiently certify that "answer is no"

- Linear Programs

- Can certify that optimal value is large (by giving primal solution x)
- Can certify that optimal value is small (by giving dual solution y)

Computational Complexity

- Open Problem: Is P=NP?
- Probably not
- One of the 7 most important problems in mathematics
- You win $\$ 1,000,000$ if you solve it.

Computational Complexity

- Maybe... for most problems in NP $\cap c o N P$, they are also in P.
- "Is m a prime number?". Proven in P in 2002. "Primes in P"
- "Is LP value $\geq k$?". Proven in P in 1979. "Ellipsoid method"

Review

- Basics of Euclidean geometry
- Euclidean norm, unit ball, affine maps, volume
- Positive Semi-Definite Matrices
- Square roots
- Ellipsoids
- Rank-1 Updates
- Covering Hemispheres by Ellipsoids

2D Example

Define $T(x)=A x+b$ where $A=\left(\begin{array}{ll}3 & 2 \\ 0 & 1\end{array}\right)$ and $b=\binom{1}{1}$.
implicitplot $\left(\left[x^{\wedge} 2+y^{\wedge} 2=1,(x-1)^{\wedge} 2-4 *(x-1) *(y-1)+13 *\left(y^{-1}\right)^{\wedge} 2=9\right], x=-5 \ldots 5, y=-5 \ldots 5\right.$, numpoints $=10000$, color $=[$ red,blue $])$;

