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Outline

• Complementary Slackness

• “Crash Course” in Computational Complexity

• Review of Geometry & Linear Algebra

• Ellipsoids



Duality: Geometric View
• We can “generate” a new constraint aligned with c by 

taking a conic combination (non-negative linear combination)

of constraints tight at x.

• What if we use constraints not tight at x?
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Duality: Geometric View
• What if we use constraints not tight at x?
• This linear combination is a feasible dual solution,

but not an optimal dual solution
• Complementary Slackness: To get an optimal dual 

solution, must only use constraints tight at x.
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Weak DualityPrimal LP Dual LP

Theorem: “Weak Duality Theorem”
If x feasible for Primal and y feasible for Dual then cTx· bTy.

Proof: cT x  =  (AT y)T x  =  yT A x  · yT b.  ¥
Since y¸0 and Ax·b



Weak DualityPrimal LP Dual LP

Corollary:
If x and y both feasible and cTx=bTy then x and y are both optimal.

Theorem: “Weak Duality Theorem”
If x feasible for Primal and y feasible for Dual then cTx·bTy.

Proof:

When does equality hold here?
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Weak DualityPrimal LP Dual LP

Theorem: “Weak Duality Theorem”
If x feasible for Primal and y feasible for Dual then cTx·bTy.

Proof:

Theorem: “Complementary Slackness”
Suppose x feasible for Primal, y feasible for dual, and

for every i, either yi=0 or                               .
Then x and y are both optimal.

Proof: Equality holds here.  ¥



General Complementary
Slackness Conditions

Primal Dual

Objective max cTx min bTy

Variables x1, …, xn y1,…, ym

Constraint matrix A AT

Right-hand vector b c

Constraints
versus
Variables

ith constraint:  ·
ith constraint:  ¸
ith constraint:  =

xj¸ 0
xj· 0
xj unrestricted

yi¸ 0
yi· 0
yi unrestricted

jth constraint: ¸
jth constraint: ·
jth constraint: =

for all i,
equality holds either

for primal or dual 

for all j,
equality holds either

for primal or dual

Let x be feasible for primal and y be feasible for dual.

and

,

x and y are
both optimal



Example
• Primal LP

• Challenge: What is the dual?

• What are CS conditions?

• Claim: Optimal primal solution is (3,0,5/3).
Can you prove it?



Example

• CS conditions:
– Either x1+2x2+3x3=8 or y2=0
– Either 4x2+5x3=2 or y3=0
– Either y1+2y+2+4y3=6 or x2=0
– Either 3y2+5y3=-1 or x3=0

• x=(3,0,5/3) ) y must satisfy:

• y1+y2=5 y3=0 y2+5y3=-1

) y = (16/3, -1/3, 0)

Primal LP Dual LP



Complementary Slackness Summary

• Gives “optimality conditions” that must be 
satisfied by optimal primal and dual solutions

• (Sometimes) gives useful way to compute 
optimum dual from optimum primal
– More about this in Assignment 3

• Extremely useful in “primal-dual algorithms”.
Much more of this in
– C&O 351: Network Flows

– C&O 450/650: Combinatorial Optimization

– C&O 754: Approximation Algorithms



We’ve now finished C&O 350!

• Actually, they will cover 2 topics that we won’t

– Revised Simplex Method: A faster implementation 
of the algorithm we described

– Sensitivity Analysis: If we change c or b, how does 
optimum solution change?



Computational Complexity

• Field that seeks to understand how efficiently
computational problems can be solved

– See CS 360, 365, 466, 764…

• What does “efficiently” mean?

– If problem input has size n, how much time to 
compute solution? (as a function of n)

– Problem can be solved “efficiently” if it can be 
solved in time ·nc, for some constant c.

– P = class of problems that can be solved efficiently.



Computational Complexity
• P = class of problems that can be solved efficiently

i.e., solved in time ·nc, for some constant c, where n=input size.

• Related topic: certificates

• Instead of studying efficiency, study how easily can 
you certify the answer?

• NP = class of problems for which you can efficiently 
certify that “answer is yes”

• coNP = class of problems for which you can efficiently 
certify that “answer is no”

– Linear Programs
• Can certify that optimal value is large

• Can certify that optimal value is small

(by giving primal solution x)

(by giving dual solution y)



Computational Complexity

• Open Problem: Is P=NP?

• Probably not

• One of the 7 most important problems in mathematics

• You win $1,000,000 if you solve it.

NP coNP
Can graph be colored

with ¸ k colors? NPÅcoNP
Does every coloring

of graph use · k colors?

P
Sorting, string matching, 
breadth-first search, …

Is LP value ¸ k?
Is m a prime number?

Many
interesting
problems

Many
interesting
problems

http://www.claymath.org/millennium/


Computational Complexity

• Open Problem: Is P=NPÅcoNP?

• Maybe… for most problems in NPÅcoNP, they are also in P.

• “Is m a prime number?”. Proven in P in 2002. “Primes in P”

• “Is LP value ¸ k?”. Proven in P in 1979. “Ellipsoid method”

P

NP coNP

Sorting, string matching, 
breadth-first search, …

Can graph be colored

with ¸ k colors? NPÅcoNP
Is LP value ¸ k?

Is m a prime number?
Many

interesting
problems

Many
interesting
problems

Leonid Khachiyan

Does every coloring

of graph use · k colors?

http://www.siam.org/news/news.php?id=197
http://www.siam.org/news/news.php?id=197
http://www.siam.org/news/news.php?id=197


Review

• Basics of Euclidean geometry

– Euclidean norm, unit ball, affine maps, volume

• Positive Semi-Definite Matrices

– Square roots

• Ellipsoids

• Rank-1 Updates

• Covering Hemispheres by Ellipsoids



2D Example

Unit ball B

Ellipsoid T(B)

De¯ne T (x) = Ax+ b where A =

µ
3 2

0 1

¶
and b =

µ
1

1

¶
.


