C&O 355 Lecture 9

N. Harvey http://www.math.uwaterloo.ca/~harvey/

Outline

- Complementary Slackness
- "Crash Course" in Computational Complexity
- Review of Geometry & Linear Algebra
- Ellipsoids

Duality: Geometric View

- We can "generate" a new constraint aligned with c by taking a conic combination (non-negative linear combination) of constraints tight at **x**.
- What if we use constraints **pot tight** at **x**?

Duality: Geometric View

- We can "generate" a new constraint aligned with c by taking a cor ic combination (non-negative linear combination) of constraints tight at **x**.
- What if we use constraints **not tight** at **x**?

Duality: Geometric View

- What if we use constraints **not tight** at **x**?
- This linear combination is a feasible dual solution, but not an optimal dual solution
- **Complementary Slackness:** To get an **optimal** dual solution, must only use constraints tight at **x**.

Theorem: "Weak Duality Theorem" If x feasible for Primal and y feasible for Dual then $c^Tx \le b^Ty$. **Proof:** $c^T x = (A^T y)^T x = y^T A x \le y^T b$. Since $y \ge 0$ and $Ax \le b^Ty$.

Theorem: "Weak Duality Theorem"

If x feasible for Primal and y feasible for Dual then $c^Tx \le b^Ty$.

Proof:

$$\sum_{j=1}^{n} c_j x_j = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} A_{i,j} y_i \right) x_j = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{i,j} x_j \right) y_i \le \sum_{i=1}^{m} b_i y_i$$

When does equality hold here? '

Corollary:

If x and y both feasible and $c^{T}x=b^{T}y$ then x and y are both optimal.

Theorem: "Weak Duality Theorem"

If x feasible for Primal and y feasible for Dual then $c^Tx \le b^Ty$.

Proof:

$$\sum_{j=1}^{n} c_j x_j = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} A_{i,j} y_i \right) x_j = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{i,j} x_j \right) y_i \le \sum_{i=1}^{m} b_i y_i$$

When does equality hold here? /

Equality holds for ith term if either $y_i=0$ or $\sum_{j=1}^n A_{i,j}x_j = b_i$

Theorem: "Weak Duality Theorem"

If x feasible for Primal and y feasible for Dual then $c^Tx \le b^Ty$.

Proof:

$$\sum_{j=1}^{n} c_j x_j = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} A_{i,j} y_i \right) x_j = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{i,j} x_j \right) y_i \le \sum_{i=1}^{m} b_i y_i$$

Theorem: "Complementary Slackness" Suppose x feasible for Primal, y feasible for dual, and for every i, either $y_i=0$ or $\sum_{j=1}^n A_{i,j}x_j = b_i$. Then x and y are both optimal.

Proof: Equality holds here.

General Complementary Slackness Conditions

Let x be feasible for primal and y be feasible for dual.

	Primal	Dual	for all i,
Objective	max c ^T x	min b ^T y	 equality holds either for primal or dual
Variables	x ₁ ,, x _n	y ₁ ,, y _m	for primar or duar
Constraint matrix	А	AT	and
Right-hand vector	b	e l	for all j,
Constraints versus	i^{th} constraint: $\leq i^{th}$ constraint: \geq	$y_i \ge 0$ $y_i \le 0$	<pre>7 equality holds either for primal or dual</pre>
Variables	i th constraint: =	y _i unrestricted	\Leftrightarrow
	$\begin{array}{l} x_{j} \geq 0 \\ x_{j} \leq 0 \\ x_{j} \text{ unrestricted} \end{array}$	j^{th} constraint: \geq j^{th} constraint: \leq j^{th} constraint: =	x and y are both optimal

Example

• Primal LP min $5x_1 + 6x_2 - x_3$ s.t. $x_1 + x_2 = 3$

$$x_1 + 2x_2 + 3x_3 \leq 8$$

$$4x_2 + 5x_3 \ge 2$$

 $x_2, x_3 \ge 0$

- Challenge: What is the dual?
- What are CS conditions?

Claim: Optimal primal solution is (3,0,5/3).
 Can you prove it?

Primal LP		Example
\min	$5x_1 + 6x_2 - x_3$	n
s.t.	$x_1 + x_2$	= 3 s
	$x_1 + 2x_2 + 3x_3$	≤ 8
	$4x_2 + 5x_3$	≥ 2
	x_2, x_3	≥ 0

- CS conditions:
 - Either $x_1 + 2x_2 + 3x_3 = 8$ or $y_2=0$ - Either $4x_2 + 5x_3 = 2$ or $y_3 = 0$ - Either $y_1 + 2y + 2 + 4y_3 = 6$ or $x_2=0$ - Either $3y_2 + 5y_3 = -1$ or $x_3 = 0$
- $x=(3,0,5/3) \Rightarrow y$ must satisfy:
 - $y_1 + y_2 = 5$ $y_3 = 0$ $y_{2}+5y_{3}=-1$ \Rightarrow y = (16/3, -1/3, 0)

2	Dual LP	
max	$3y_1 + 8y_2 + 2y_3$	
s.t.	$y_1 + y_2$	= 5
	$y_1 + 2y_2 + 4y_3$	≤ 6
	$3y_2 + 5y_3$	≤ -1
	y_2	≤ 0
	y_3	≥ 0

Complementary Slackness Summary

- Gives "optimality conditions" that must be satisfied by optimal primal and dual solutions
- (Sometimes) gives useful way to compute optimum dual from optimum primal

– More about this in Assignment 3

- Extremely useful in "primal-dual algorithms". Much more of this in
 - C&O 351: Network Flows
 - C&O 450/650: Combinatorial Optimization
 - C&O 754: Approximation Algorithms

We've now finished C&O 350!

- Actually, they will cover 2 topics that we won't
 - Revised Simplex Method: A faster implementation of the algorithm we described
 - Sensitivity Analysis: If we change c or b, how does optimum solution change?

- Field that seeks to understand how efficiently computational problems can be solved
 - See CS 360, 365, 466, 764...
- What does "efficiently" mean?
 - If problem input has size n, how much time to compute solution? (as a function of n)
 - Problem can be solved "efficiently" if it can be solved in time $\leq n^{c}$, for some constant c.
 - -P = class of problems that can be solved efficiently.

- P = class of problems that can be solved efficiently i.e., solved in time ≤n^c, for some constant c, where n=input size.
- Related topic: certificates
 - Instead of studying efficiency, study how easily can you certify the answer?
 - NP = class of problems for which you can efficiently certify that "answer is yes"
 - coNP = class of problems for which you can efficiently certify that "answer is no"
- Linear Programs
 - Can certify that optimal value is large (by giving primal solution x)
 - Can certify that optimal value is small (by giving dual solution y)

- **Open Problem:** Is P=NP?
 - Probably not
 - One of the <u>7 most important problems in mathematics</u>
 - You win \$1,000,000 if you solve it.

• **Open Problem:** Is P=NP∩coNP?

Leonid Khachiyan

- Maybe... for most problems in NP∩coNP, they are also in P.
- "Is m a prime number?". Proven in P in 2002. "Primes in P"
- "Is LP value \geq k?". Proven in P in 1979. "Ellipsoid method"

Review

- Basics of Euclidean geometry
 - Euclidean norm, unit ball, affine maps, volume
- Positive Semi-Definite Matrices
 - Square roots
- Ellipsoids
- Rank-1 Updates
- Covering Hemispheres by Ellipsoids

2D Example

Define
$$T(x) = Ax + b$$
 where $A = \begin{pmatrix} 3 & 2 \\ 0 & 1 \end{pmatrix}$ and $b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

implicit plot([$x^2+y^2=1$, (x-1)^2-4*(x-1)*(y-1)+13*(y-1)^2=9], x=-5..5, y=-5..5, numpoints=10000, color=[red,blue]);

