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Duality: Geometric View

* We can “generate” a new constraint aligned with c by
taking a conic combination (non-negative linear combination)
of constraints tight at x.

 What if we use constraints nét tight at x?

X, + 6x, < 15

Objective Function ¢




Duality: Geometric View

* We can “geperate” a new constraint aligned with c by

taking a corlic combination (non-negative linear combination)
of constraints tight at x.

 What if we pse constraints not tight at x?
X+%,< 1

Doesn’t prove x is optimal!

X, + 6x, < 15

Objective Function ¢




Duality: Geometric View

 What if we use constraints not tight at x?

* This linear combination is a feasible dual solution,
but not an optimal dual solution

* Complementary Slackness: To get an optimal dual

Doesn’t prove x is optimal!

X, + 6x, < 15

Objective Function ¢




Primal LP Wea k Dua | |ty Dual LP

max c¢'z min by
s.t.  Ax <b st. Aly =c¢
y=>0

Theorem: “Weak Duality Theorem”
If x feasible for Primal and y feasible for Dual then cx < b'y.
Proof: c"x = (ATy)'x = yTAXx < y'b. B

— Since y>0 and Ax<b



Primal LP Wea k Dua | Itym Dual LP
- min b;y;
max ;le‘j ; Y

n .

1=1

= y >0

Theorem: “Weak Duality Theorem”

If x feasible for Primal and y feasible for Dual then c'x<b'y.

Proof .

chxj— (YA,ij) —Y(YA,jxj)yz<Zb Y
]= 1 1 =1 i=1 =1

When does equality hold here?

Corollary:
If x and y both feasible and c™x=b'y then x and y are both optimal.



Primal LP Wea k Dua | Itym Dual LP
- min b;y;
max ;le‘j ; Y

n .
st. Y Az <bVi=1,..m 5.t ;Ai,jyi =c; Vj=1,..
- y >0

Theorem: “Weak Duality Theorem”
If x feasible for Primal and y feasible for Dual then c'x<b'y.

Proof
m

ZCJ'IJ = . (S:A ,Jy%) = Y (YA ,J%)yz < Zby@

J= =1 j=1

When does equality hold here?
Equality holds for ith term if either y.=0 or Z;?’ZlAi,ja?j = b;



Primal LP Wea k Dua | Itym Dual LP
- min b;y;
max ;le‘j ; Y

n .

1=1
y >0

j=1
Theorem: “Weak Duality Theorem”

If x feasible for Primal and y feasible for Dual then c'x<b'y.
Proof

ZCJIJ_ (YA,J%)%_Y(YA,J%)%<Z{)%

]= 1 =1 1=1

Theorem: “Complementary Slackness”

Suppose x feasible for Primal, y feasible for dual, and
for every i, either y.=0 or Z;?’ZlAi,ja?j = b;,
Then x and y are both optimal.

Proof: Equality holds here.




General Complementary

Slackness Conditions

Let x be feasible for primal and y be feasible for dual.

Objective
Variables
Constraint matrix
Right-hand vector

Constraints
versus
Variables

equality holds either

max c'x _
for primal or dual
X, eer X,
A and
b for all j,

equality holds either
for primal or dual

ith constraint: = _—y unrestricted
|

<~
X jth constrain xandy are
. h Q .
X; ™" constrain both optimal

X; unrestricted jth constraint: =



Example
Primal LP min 5z + 6x9 — 3

s.t. r1 + To =3
1+ 229+ 323 <8
435‘2 + 5333 Z 2

2,3 2 0

Challenge: What is the dual?
What are CS conditions?

Claim: Optimal primal solution is (3,0,5/3).
Can you prove it?



Primal LP Example

min Sx1 + 6x9 — T3

s.t. x1+ 20 =3
T1 4+ 2x9 + 323 <
daxo + dbxrs >

To, T3 >0

CS conditions:

— Either x;+2x,+3x,=8
— Either 4x,+5x;=2

— Either y,+2y+2+4y,=6
— Either 3y,+5y,=-1

max 3y; + 8y2 + 2y3

Dual LP

s.t. 1ty

y1 + 2y2 + 4ys
3Yy2 + dyYs

ory,=0
or y,;=0
or X,=0
or X;=0

x=(3,0,5/3) = y must satisfy:

* y+y,=d y5=0
— y = (16/31 _1/31 O)

y,+5y;=-1

Y2

<
w

AV VAN VAN VAN |
>t

o O

|
—



Complementary Slackness Summary

* Gives “optimality conditions” that must be
satisfied by optimal primal and dual solutions

* (Sometimes) gives useful way to compute
optimum dual from optimum primal
— More about this in Assignment 3

e Extremely useful in “primal-dual algorithms”.
Much more of this in
— C&O0 351: Network Flows
— C&0 450/650: Combinatorial Optimization
— C&0O 754: Approximation Algorithms



We’'ve now finished C&O 350!
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* Actually, they will cover 2 topics that we won’t

— Revised Simplex Method: A faster implementation
of the algorithm we described

— Sensitivity Analysis: If we change c or b, how does
optimum solution change?



Computational Complexity

* Field that seeks to understand how efficiently
computational problems can be solved

— See CS 360, 365, 466, /764...
* What does “efficiently” mean?

— If problem input has size n, how much time to
compute solution? (as a function of n)

— Problem can be solved “efficiently” if it can be
solved in time <n¢, for some constant c.

— P = class of problems that can be solved efficiently.



Computational Complexity

e P =class of problems that can be solved efficiently
i.e., solved in time <n¢, for some constant ¢, where n=input size.

e Related topic: certificates

* Instead of studying efficiency, study how easily can
you certify the answer?

NP = class of problems for which you can efficiently
certify that “answer is yes”

* coNP = class of problems for which you can efficiently
certify that “answer is no”

— Linear Programs

e Can certify that optimal value is large (by giving primal solution x)
* (Can certify that optimal value is small (by giving dual solution y)



Computational Complexity

P

Sorting, string matching,
breadth-first search, ...

 Open Problem: Is P=NP?

* Probably not
e One of the 7 most important problems in mathematics
* You win $1,000,000 if you solve it.



http://www.claymath.org/millennium/

Computational Complexity

P

Sorting, string matching,
breadth-first search, ...

* Open Problem: Is P=NPMNcoNP? Leonid Khachivan

* Maybe... for most problems in NPMNcoNP, they are also in P.

* “Ism a prime number?”. Proven in P in 2002. “Primes in P”
e “ls LP value > k?”. Proven in P in 1979. “Ellipsoid method”


http://www.siam.org/news/news.php?id=197
http://www.siam.org/news/news.php?id=197
http://www.siam.org/news/news.php?id=197

Review

Basics of Euclidean geometry

— Euclidean norm, unit ball, affine maps, volume

Positive Semi-Definite Matrices

— Square roots

Ellipsoids

Rank-1 Updates

Covering Hemispheres by Ellipsoids



2D Example

Define T'(x) = Ax + b where A = (g %) and b = (1)

implicitplot ([x™2+y"2=1, (x-1)"2-4*{x-1)*({yv-1)+13*(y-1)"2=9], x=-h..h, yv=-h..h,
numpoints=10000, color=[red,blue] }:

Ellipsoid T(B)
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