C\&O 355 Lecture 8

N. Harvey

http://www.math.uwaterloo.ca/~harvey/

Outline

- Solvability of Linear Equalities \& Inequalities
- Farkas' Lemma
- Fourier-Motzkin Elimination

Strong Duality

(for inequality form LP)
Primal LP:

$$
\begin{array}{ll}
\max & c^{\top} x \\
\text { s.t. } & A x \leq b
\end{array}
$$

$$
\begin{array}{lll}
& \min & b^{\top} y \\
\text { Dual LP: } & \text { s.t. } & A^{\top} y=c \\
& & y \geq 0
\end{array}
$$

Strong Duality Theorem:

Primal has an opt. solution $x \Leftrightarrow$ Dual has an opt. solution y. Furthermore, optimal values are same: $c^{\top} x=b^{\top} y$.

- Weak Duality implies $c^{\top} x \leq b^{\top} y$. So strong duality says $c^{\top} x \geq b^{\top} y$. (for feasible x, y)
- Restatement of Theorem:

Primal has an optimal solution
\Leftrightarrow Dual has an optimal solution
\Leftrightarrow the following system is solvable:

$$
A x \leq b \quad A^{\top} y=c \quad y \geq 0 \quad c^{\top} x \geq b^{\top} y
$$

"Solving an LP is equivalent to solving a system of inequalities"

- Can we characterize when systems of inequalities are solvable?

Systems of Equalities

- Lemma: Exactly one of the following holds:
- There exists x satisfying $A x=b$
- There exists y satisfying $y^{\top} A=0$ and $y^{\top} b<0$
- Proof:

Simple consequence of Gaussian elimination working. Perform row eliminations on augmented matrix [$\mathrm{A} \mid \mathrm{b}$], so that A becomes upper-triangular
If resulting system has $\mathrm{i}^{\text {th }}$ row of A equal to zero but b_{i} non-zero then no solution exists

- This can be expressed as $\mathrm{y}^{\top} \mathrm{A}=0$ and $\mathrm{y}^{\top} \mathrm{b}<0$.

Otherwise, back-substitution yields a solution.

Systems of Equalities

- Lemma: Exactly one of the following holds:
- There exists x satisfying $A x=b$
(b is in column space of A)
- There exists y satisfying $y^{\top} A=0$ and $y^{\top} b<0$
- Geometrically...

Systems of Equalities

- Lemma: Exactly one of the following holds:
- There exists x satisfying $A x=b$
(b is in column space of A)
- There exists y satisfying $y^{\top} A=0$ and $y^{\top} b<0$
(or it is not)
- Geometrically...

Systems of Equalities

- Lemma: Exactly one of the following holds:
- There exists x satisfying $A x=b$
(b is in column space of A)
- There exists y satisfying $y^{\top} A=0$ and $y^{\top} b>0$
(or it is not)
- Geometrically... col-space $(A) \subseteq H_{y, 0}$ but $b \in H_{y, 0}^{++}$

Hyperplane

$$
H_{a, b}=\left\{x \in \mathbb{R}^{n}: a^{\top} x=b\right\}
$$

Positive open halfspace $H_{a, b}^{++}=\left\{x \in \mathbb{R}^{n}: a^{\top} x>b\right\}$

Systems of Inequalities

- Lemma: Exactly one of the following holds:
-There exists $x \geq 0$ satisfying $A x=b$
- There exists y satisfying $y^{\top} A \geq 0$ and $y^{\top} b<0$
- Geometrically...

Let cone $\left(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)=\left\{\Sigma_{i} \lambda_{i} \mathrm{~A}_{\mathrm{i}}: \lambda \geq 0\right\}$ "cone generated by $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}{ }^{\prime \prime}$

Systems of Inequalities

- Lemma: Exactly one of the following holds:
-There exists $x \geq 0$ satisfying $A x=b$
-There exists y satisfying $y^{\top} A \geq 0$ and $y^{\top} b<0 \quad$ (y gives a "separating hyperplane")
- Geometrically... cone $\left(A_{1}, \ldots, A_{n}\right) \in H_{y, 0}^{+}$but $b \in H_{y, 0}^{-}$

Positive closed halfspace $H_{a, b}^{+}=\left\{x \in \mathbb{R}^{n}: a^{\top} x \geq b\right\}$
Negative open halfspace $H_{a, b}^{--}=\left\{x \in \mathbb{R}^{n}: a^{\top} x<b\right\}$

Systems of Inequalities

- Lemma: Exactly one of the following holds:
-There exists $x \geq 0$ satisfying $A x=b$
(b is in cone $\left(A_{1}, \ldots, A_{n}\right)$)
-There exists y satisfying $y^{\top} A \geq 0$ and $y^{\top} b<0 \quad$ (y gives a "separating hyperplane")
- This is called "Farkas' Lemma"
- It has many interesting proofs. (see Ch 6 of text)
- It is "equivalent" to strong duality for LP.
- There are several "equivalent" versions of it.

Gyula Farkas

Variants of Farkas' Lemma

The System	$A x \leq b$	$A x=b$
has no solution $x \geq 0$ iff	$\exists y \geq 0, A^{\top} y \geq 0, b^{\top} y<0$	$\exists y \in \mathbb{R}^{n}, A^{\top} y \geq 0, b^{\top} y<0$
has no solution $x \in \mathbb{R}^{n}$ iff	$\exists y \geq 0, A^{\top} y=0, b^{\top} y<0$	$\exists y \in \mathbb{R}^{n}, A^{\top} y=0, b^{\top} y<0$

This is the simple lemma on systems of equalities

2D System of Inequalities

Consider the polyhedron $Q=\{(x, y):-3 x+y \leq 6$, $x+y \leq 3$,
$-y-2 x \leq 5$,
$x-y \leq 4\}$

- Given x, for what values of \mathbf{y} is (x, y) feasible?
- Need: $y \leq x+6, y \leq-x+3, y \geq-2 x-5$, and $y \geq x-4$

2D System of Inequalities

Consider the polyhedron $Q=\{(x, y):-3 x+y \leq 6$, $x+y \leq 3$, $-y-2 x \leq 5$, $x-y \leq 4\}$

- Given x, for what values of y is (x, y) feasible?
- i.e., $y \leq \min \{3 x+6,-x+3\}$ and $y \geq \max \{-2 x-5, x-4\}$
- For $x=-0.8,(x, y)$ feasible if $y \leq \min \{3.6,3.8\}$ and $y \geq \max \{-3.4,-4.8\}$
- For $x=-3,(x, y)$ feasible if $y \leq \min \{-3,6\}$ and $y \geq \max \{1,-7\}$ Impossible!

2D System of Inequalities

- Consider the polyhedron
$Q=\{(x, y):-3 x+y \leq 6, x+y \leq 3,-y-2 x \leq 5, x-y \leq 4\}$
- Given x, for what values of y is (x, y) feasible?
- i.e., $y \leq \min \{3 x+6,-x+3\}$ and $y \geq \max \{-2 x-5, x-4\}$
- Such a y exists $\Leftrightarrow \max \{-2 x-5, x-4\} \leq \min \{3 x+6,-x+3\}$
\Leftrightarrow the following inequalities are solvable
- Conclusion: Q is non-empty $\Leftrightarrow \mathrm{Q}^{\prime}$ is non-empty.
- This is easy to decide because Q^{\prime} involves only 1 variable!

Fourier-Motzkin Elimination

- Generalization: given a polyhedron $Q=\left\{\left(x_{1}, \ldots, x_{n}\right): A x \leq b\right\}$, we want to find polyhedron $Q^{\prime}=\left\{\left(x_{1}, \ldots, x_{n-1}\right): A^{\prime} x^{\prime} \leq b^{\prime}\right\}$ satisfying

$$
\left(x_{1}, \ldots, x_{n-1}\right) \in Q^{\prime} \quad \Leftrightarrow \quad \exists x_{n} \text { s.t. }\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \in Q
$$

- Q^{\prime} is called a projection of Q
- Fourier-Motzkin Elimination is a procedure for producing Q^{\prime} from Q
- Consequences:
- An (inefficient!) algorithm for solving systems of inequalities, and hence for solving LPs too
- A way of proving Farkas' Lemma by induction
- Lemma: Let $\mathrm{Q}=\left\{\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right): \mathrm{Ax} \leq \mathrm{b}\right\}$. There is a polyhedron $Q^{\prime}=\left\{\left(x_{1}, \ldots, x_{n-1}\right): A^{\prime} x^{\prime} \leq b^{\prime}\right\}$ satisfying

1) Q is non-empty $\Leftrightarrow Q^{\prime}$ is non-empty
2) Every inequality defining Q^{\prime} is a non-negative linear combination of the inequalities defining Q.

- Proof: Divide inequalities of Q into three groups:

$$
Z=\left\{i: a_{i, n}=0\right\} \quad P=\left\{j: a_{j, n}>0\right\} \quad N=\left\{k: a_{k, n}<0\right\}
$$

- WLOG, $\mathrm{a}_{\mathrm{j}, \mathrm{n}}=1 \quad \forall \mathrm{j} \in \mathrm{P}$ and $\mathrm{a}_{\mathrm{k}, \mathrm{n}}=-1 \quad \forall \mathrm{k} \in \mathrm{N}$
- For any $x \in \mathbb{R}^{n}$, let $x^{\prime} \in \mathbb{R}^{n-1}$ be vector obtained by deleting coordinate x_{n}
- The constraints defining Q^{\prime} are:
- $a_{i}^{\prime} x^{\prime} \leq b_{i} \forall i \in Z$
- $a_{j}{ }^{\prime} x^{\prime}+a_{k}{ }^{\prime} x^{\prime} \leq b_{j}+b_{k} \quad \forall j \in P, \forall k \in N$

This says every "lower" constraint is \leq every "upper" constraint

This is sum of $j^{\text {th }}$ and $k^{\text {th }}$ constraints of Q, because $\mathrm{n}^{\text {th }}$ coordinate of $\mathrm{a}_{\mathrm{j}}+\mathrm{a}_{\mathrm{k}}$ is zero!

- This proves (2).
- (2) implies: every $x \in Q$ satisfies all inequalities defining Q^{\prime}. So Q is non-empty $\Rightarrow Q^{\prime}$ is non-empty.
- Lemma: Let $\mathrm{Q}=\left\{\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right): \mathrm{Ax} \leq \mathrm{b}\right\}$. There is a polyhedron $Q^{\prime}=\left\{\left(x_{1}, \ldots, x_{n-1}\right): A^{\prime} x^{\prime} \leq b^{\prime}\right\}$ satisfying

1) Q is non-empty $\Leftrightarrow Q^{\prime}$ is non-empty
2) Every inequality defining Q^{\prime} is a non-negative linear combination of the inequalities defining Q.

- Proof: Divide inequalities of Q into three groups:

$$
\mathrm{Z}=\left\{\mathrm{i}: \mathrm{a}_{\mathrm{i}, \mathrm{n}}=0\right\} \quad \mathrm{P}=\left\{\mathrm{j}: \mathrm{a}_{\mathrm{j}, \mathrm{n}}=1\right\} \quad \mathrm{N}=\left\{\mathrm{k}: \mathrm{a}_{\mathrm{k}, \mathrm{n}}=-1\right\}
$$

- The constraints defining Q^{\prime} are:
- $a_{i}^{\prime} x^{\prime} \leq b_{i} \quad \forall i \in Z$
- $a_{j}^{\prime} x^{\prime}+a_{k}{ }^{\prime} x^{\prime} \leq b_{j}+b_{k} \quad \forall j \in P, \forall k \in N$
- Claim: Let $x^{\prime} \in Q^{\prime}$. There exists x_{n} such that $\left(x_{1}^{\prime}, \ldots, x_{n-1}^{\prime}, x_{n}\right) \in Q$.
- Proof: Note that $a_{k}{ }^{\prime} x^{\prime}-b_{k} \leq b_{j}-a_{j}{ }^{\prime} x^{\prime} \quad \forall j \in P, \forall k \in N$.

$$
\Rightarrow \underbrace{\max _{k \in N}\left\{a_{k}^{\prime} x^{\prime}-b_{k}\right\}} \leq \min _{j \in P}\left\{b_{j}-a_{j}^{\prime} x^{\prime}\right\}
$$

Let x_{n} be this value, and let $x=\left(x_{1}{ }_{1}, \ldots, x_{n-1}^{\prime}, x_{n}\right)$.
Then:

$$
\left.\begin{array}{l}
a_{k} x-b_{k}=a_{k}^{\prime} x^{\prime}-x_{n}-b_{k} \leq 0 \quad \forall k \in N \\
b_{j}-a_{j} x=b_{j}-a_{j} x^{\prime}-x_{n} \geq 0 \quad \forall j \in P \\
a_{i} x=a_{i}^{\prime} x^{\prime} \leq b_{i} \quad \forall i \in Z
\end{array}\right\} \Rightarrow x \in Q
$$

Variants of Farkas' Lemma

The System	$A x \leq b$	$A x=b$
has no solution $x \geq 0$ iff	$\exists y \geq 0, A^{\top} y \geq 0, b^{\top} y<0$	$\exists y \in \mathbb{R}^{n}, A^{\top} y \geq 0, b^{\top} y<0$
has no solution $x \in \mathbb{R}^{n}$ iff	$\exists y \geq 0, A^{\top} y=0, b^{\top} y<0$	$\exists y \in \mathbb{R}^{n}, A^{\top} y=0, b^{\top} y<0$

We'll prove this one

- Lemma: Exactly one of the following holds:
-There exists $x \in \mathbb{R}^{n}$ satisfying $A x \leq b$
-There exists $y \geq 0$ satisfying $y^{\top} A=0$ and $y^{\top} b<0$
- Proof: By induction. Trivial for $n=0$, so let $n \geq 1$.

Suppose no solution x exists. Use Fourier-Motzkin Elimination.
Get an equivalent system $A^{\prime} x^{\prime} \leq b^{\prime}$ where

$$
\left(A^{\prime} \mid 0\right)=M A \quad b^{\prime}=M b
$$

for some non-negative matrix M.
Lemma: Let $Q=\left\{\left(x_{1}, \ldots, x_{n}\right): A x \leq b\right\}$. There is a polyhedron
$Q^{\prime}=\left\{\left(x_{1}, \ldots, x_{n-1}\right): A^{\prime} x^{\prime} \leq b^{\prime}\right\}$ satisfying

1) Q is non-empty $\Leftrightarrow Q^{\prime}$ is non-empty
2) Every inequality defining Q^{\prime} is a non-negative linear combination of the inequalities defining Q.

- Lemma: Exactly one of the following holds:
-There exists $x \in \mathbb{R}^{n}$ satisfying $A x \leq b$
-There exists $y \geq 0$ satisfying $y^{\top} A=0$ and $y^{\top} b<0$
- Proof: By induction. Trivial for $n=0$, so let $n \geq 1$.

Suppose no solution x exists. Use Fourier-Motzkin Elimination.
Get an equivalent system $A^{\prime} x^{\prime} \leq b^{\prime}$ where

$$
\left(A^{\prime} \mid 0\right)=M A \quad b^{\prime}=M b
$$

for some non-negative matrix M.
$A^{\prime} x^{\prime} \leq b^{\prime}$ not solvable $\Rightarrow \exists y^{\prime}$ s.t. $y^{\top} A^{\prime}=0$ and $y^{\prime \top} b^{\prime}<0$.
Let $y=M^{\top} y^{\prime}$.
Then:

$$
\begin{aligned}
& y \geq 0, \text { because } y^{\prime} \geq 0 \text { and } M \text { non-negative } \\
& y^{\top} A=y^{\prime \top} M A=y^{\prime \top}\left(A^{\prime} \mid 0\right)=0 \\
& y^{\top} b=y^{\prime \top} M b=y^{\top} b^{\prime}<0
\end{aligned}
$$

