C&O 355 Lecture 8

N. Harvey http://www.math.uwaterloo.ca/~harvey/

Outline

- Solvability of Linear Equalities & Inequalities
- Farkas' Lemma
- Fourier-Motzkin Elimination

Strong Duality

(for inequality form LP)

Strong Duality Theorem:

Primal has an opt. solution $x \Leftrightarrow$ Dual has an opt. solution y. Furthermore, optimal values are same: $c^Tx = b^Ty$.

- Weak Duality implies $c^Tx \leq b^Ty$. So strong duality says $c^Tx \geq b^Ty$. (for feasible x,y) (for optimal x,y)
- Restatement of Theorem:

Primal has an optimal solution

- \Leftrightarrow Dual has an optimal solution
- \Leftrightarrow the following system is solvable:

$$Ax \le b \qquad A^{\mathsf{T}}y = c \qquad y \ge 0 \qquad c^{\mathsf{T}}x \ge b^{\mathsf{T}}y$$

"Solving an LP is equivalent to solving a system of inequalities"

• Can we characterize when systems of inequalities are solvable?

- Lemma: Exactly one of the following holds:
 - There exists x satisfying Ax=b
 - There exists y satisfying $y^T A=0$ and $y^T b<0$
- Proof:

Simple consequence of Gaussian elimination working.

Perform row eliminations on augmented matrix [A | b], so that A becomes upper-triangular

If resulting system has ith row of A equal to zero but b_i non-zero then no solution exists Or y^Tb>0, by negating y

– This can be expressed as $y^TA=0$ and $y^Tb<0$.

Otherwise, back-substitution yields a solution.

- Lemma: Exactly one of the following holds:
 - There exists x satisfying Ax=b
 (b is in column space of A)
 - There exists y satisfying $y^TA=0$ and $y^Tb<0$
- Geometrically...

- Lemma: Exactly one of the following holds:
 - There exists x satisfying Ax=b
 (b is in column space of A)

(or it is not)

- There exists y satisfying $y^TA=0$ and $y^Tb<0$
- Geometrically...

- Lemma: Exactly one of the following holds:
 - There exists x satisfying Ax=b
 (b is in column space of A)
 - There exists y satisfying $y^TA=0$ and $y^Tb>0$

(or it is not)

• **Geometrically...** col-space(A) \subseteq H_{y,0} but b \in H⁺⁺_{y,0} Hyperplane $H_{a,b} = \{ x \in \mathbb{R}^n : a^T x = b \}$ Positive open halfspace $H_{a,b}^{++} = \{ x \in \mathbb{R}^n : a^T x > b \}$

- Lemma: Exactly one of the following holds: -There exists $x \ge 0$ satisfying Ax=b (b is in cone($A_1,...,A_n$)) -There exists y satisfying $y^TA \ge 0$ and $y^Tb < 0$
- Geometrically...

Let cone(A₁,...,A_n) = { $\Sigma_i \lambda_i A_i : \lambda \ge 0$ } "cone generated by A₁,...,A_n"

- Lemma: Exactly one of the following holds: –There exists $x \ge 0$ satisfying Ax=b (b is in cone($A_1,...,A_n$)) –There exists y satisfying $y^TA \ge 0$ and $y^Tb<0$ (y gives a "separating hyperplane")
- Geometrically... cone(A_1, \ldots, A_n) $\in H_{y,0}^+$ but $b \in H_{y,0}^-$ Positive closed halfspace $H_{a,b}^+ = \{ x \in \mathbb{R}^n : a^T x \ge b \}$ Negative open halfspace $H_{a,b}^{--} = \{ x \in \mathbb{R}^n : a^T x < b \}$ $cone(A_1,...,A_n)$ A Х₁ X₃

- Lemma: Exactly one of the following holds: –There exists $x \ge 0$ satisfying Ax=b (b is in cone($A_1,...,A_n$)) –There exists y satisfying $y^TA \ge 0$ and $y^Tb < 0$ (y gives a "separating hyperplane")
- This is called "Farkas' Lemma"
 - It has many interesting proofs. (see Ch 6 of text)
 - It is "equivalent" to strong duality for LP.
 - There are several "equivalent" versions of it.

Gyula Farkas

Gyula Farkas

Variants of Farkas' Lemma

2D System of Inequalities

- Given x, for what values of y is (x,y) feasible?
 - Need: $y \le x+6$, $y \le -x+3$, $y \ge -2x-5$, and $y \ge x-4$

2D System of Inequalities

- Given x, for what values of y is (x,y) feasible?
 - i.e., y≤min{3x+6, -x+3} and y≥max{ -2x-5, x-4 }
 - For x=-0.8, (x,y) feasible if $y \le \min\{3.6, 3.8\}$ and $y \ge \max\{-3.4, -4.8\}$
 - For x=-3, (x,y) feasible if y≤min{-3,6} and y≥max{1,-7} Impossible!

2D System of Inequalities

- Consider the polyhedron
 Q = { (x,y) : -3x+y≤6, x+y≤3, -y-2x≤5, x-y≤4 }
- Given x, for what values of y is (x,y) feasible?
 - i.e., y≤min{3x+6, -x+3} and y≥max{ -2x-5, x-4 }
 - Such a y exists ⇔ max{-2x-5, x-4} ≤ min{3x+6, -x+3}
 ⇔ the following inequalities are solvable

- **Conclusion:** Q is non-empty \Leftrightarrow Q' is non-empty.
- This is easy to decide because Q' involves only 1 variable!

Fourier-Motzkin Elimination

Joseph Fourier

- **Generalization:** given a polyhedron $Q = \{ (x_1, ..., x_n) : Ax \le b \}$, we want to find polyhedron $Q' = \{ (x_1, ..., x_{n-1}) : A'x' \le b' \}$ satisfying $(x_1, ..., x_{n-1}) \in Q' \iff \exists x_n \text{ s.t. } (x_1, ..., x_{n-1}, x_n) \in Q$
- Q' is called a **projection** of Q
- Fourier-Motzkin Elimination is a procedure for producing Q' from Q
- Consequences:
 - An (inefficient!) algorithm for solving systems of inequalities, and hence for solving LPs too
 - A way of proving Farkas' Lemma by induction

- Lemma: Let $Q = \{ (x_1, \dots, x_n) : Ax \le b \}$. There is a polyhedron $Q' = \{ (x_1, \dots, x_{n-1}) : A'x' \le b' \}$ satisfying
 - 1) **Q** is non-empty \Leftrightarrow **Q'** is non-empty
 - Every inequality defining Q' is a non-negative linear combination of the inequalities defining Q.
- **Proof:** Divide inequalities of Q into three groups:

 $Z=\{i:a_{i,n}=0\} \qquad P=\{j:a_{j,n}>0\} \qquad N=\{k:a_{k,n}<0\}$

- WLOG, $a_{j,n}=1 \forall j \in P$ and $a_{k,n}=-1 \forall k \in N$
- For any $x \in \mathbb{R}^n$, let $x' \in \mathbb{R}^{n-1}$ be vector obtained by deleting coordinate x_n
- The constraints defining Q' are:
 - $a_i' \mathbf{x'} \leq b_i \forall i \in \mathbb{Z}$
 - $a_{j}'\mathbf{x}' + a_{k}'\mathbf{x}' \leq b_{j} + b_{k} \ \forall j \in P, \forall k \in N$

This says every "lower" constraint is \leq every "upper" constraint

This is sum of j^{th} and k^{th} constraints of Q, because n^{th} coordinate of $a_i + a_k$ is zero!

- This proves (2).
- (2) implies: every x∈Q satisfies all inequalities defining Q'.
 So Q is non-empty ⇒ Q' is non-empty.

- Lemma: Let $Q = \{ (x_1, \dots, x_n) : Ax \le b \}$. There is a polyhedron $Q' = \{ (x_1, \dots, x_{n-1}) : A'x' \le b' \}$ satisfying
 - 1) **Q** is non-empty \Leftrightarrow **Q'** is non-empty
 - Every inequality defining Q' is a non-negative linear combination of the inequalities defining Q.
- **Proof:** Divide inequalities of Q into three groups:

 $Z = \{i : a_{i,n} = 0\}$ $P = \{j : a_{j,n} = 1\}$ $N = \{k : a_{k,n} = -1\}$

The constraints defining Q' are:

- $a_j' \mathbf{x}' + a_k' \mathbf{x}' \leq b_j + b_k \ \forall j \in P, \forall k \in N$
- **Claim:** Let $\mathbf{x'} \in \mathbf{Q'}$. There exists \mathbf{x}_n such that $(\mathbf{x'}_1, \dots, \mathbf{x'}_{n-1}, \mathbf{x}_n) \in \mathbf{Q}$.
- **Proof:** Note that $a_k'x'-b_k \leq b_j-a_j'x' \quad \forall j \in P, \forall k \in N. \leftarrow$ $\Rightarrow \max_{k \in N} \{a_k'x'-b_k\} \leq \min_{j \in P} \{b_j-a_j'x'\}$

Let x_n be this value, and let $x = (x'_1, \dots, x'_{n-1}, x_n)$. Then: $a_k x - b_k = a_k' x' - x_n - b_k \le 0 \quad \forall k \in \mathbb{N}$ $b_j - a_j x = b_j - a_j' x' - x_n \ge 0 \quad \forall j \in \mathbb{P}$ $a_i x = a_i' x' \le b_i \quad \forall i \in \mathbb{Z}$

Gyula Farkas

$Ax \leq b$ The System Ax = b $\exists y \geq 0, A^{T}y \geq 0, b^{T}y < 0 \mid \exists y \in \mathbb{R}^{n}, A^{T}y \geq 0, b^{T}y < 0$ has **no** solution $x \ge 0$ iff $\exists y \geq 0, A^{T}y=0, b^{T}y<0$ $\exists y \in \mathbb{R}^{n}, A^{T}y=0, b^{T}y<0$ has **no** solution $x \in \mathbb{R}^n$ iff (We'll prove this one

Variants of Farkas' Lemma

• Lemma: Exactly one of the following holds:

–There exists $x{\in}\mathbb{R}^n$ satisfying $Ax{\leq}b$

–There exists $y \ge 0$ satisfying $y^TA=0$ and $y^Tb<0$

Proof: By induction. Trivial for n=0, so let n≥1.
 Suppose no solution x exists. Use Fourier-Motzkin Elimination.
 Get an equivalent system A'x'≤b' where

(A'|0)=MA b'=Mb

for some **non-negative matrix** M.

Lemma: Let $\mathbf{Q} = \{ (\mathbf{x}_1, \dots, \mathbf{x}_n) : A\mathbf{x} \le \mathbf{b} \}$. There is a polyhedron

- $Q' = \{ (x_1, ..., x_{n-1}) : A'x' \le b' \}$ satisfying
- 1) **Q** is non-empty \Leftrightarrow **Q'** is non-empty
- Every inequality defining Q' is a non-negative linear combination of the inequalities defining Q.

- Lemma: Exactly one of the following holds: —There exists $x \in \mathbb{R}^n$ satisfying $Ax \leq b$
 - –There exists $y \ge 0$ satisfying $y^TA=0$ and $y^Tb<0$
- Proof: By induction. Trivial for n=0, so let n≥1.
 Suppose no solution x exists. Use Fourier-Motzkin Elimination.
 Get an equivalent system A'x'≤b' where

 (A'|0)=MA
 b'=Mb

for some non-negative matrix M.

A'x' \leq b' not solvable $\Rightarrow \exists y' \text{ s.t. } y'^T A' = 0 \text{ and } y'^T b' < 0.$ Let $y = M^T y'$.

Then: $y \ge 0$, because $y' \ge 0$ and M non-negative $y^T A = y'^T M A = y'^T (A' | 0) = 0$ $y^T b = y'^T M b = y'^T b' < 0$