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Local-Search Algorithm
Let B be a feasible basis (If none, Halt: LP is infeasible)
For each entering coordinate k¢ B
If “benefit” of coordinate kis >0

Compute y(9) (If 0=00, Halt: LP is unbounded)

Find leaving coordinate h&EB (y(0)n=0)

Set x=y(9) and B’=B\{h}U{k}
Halt: return x

= Nhat is a corner point? (BFS and bases)
= Nhat if there are no corner points? (Infeasible)
= Vhat are the “neighboring” bases? (Increase one coordinate)

¥ Nhat if no neighbors are strictly better?
=iz Mlight move to a basis that isn’t strictly better (if 0=0), but whenever x changes it’s strictly better)

® _How can I find a starting feasible basis?
Y ~ Joes the algorithm terminate? (If Bland’s rule used)

- ,4;" Joes it produce the right answer? (Yes)




Finding a starting point

* Consider LP max { c'x : x€P } where P={ x : Ax=b, x>0 }
* How can we find a feasible point?

* Trick: Just solve a different LP!
— Note: cis irrelevant. We can introduce a new objective function
— WLOG, b>0 (Can multiply constraints by -1)

— Allow “Ax=b” constraint to be violated via “artificial variables”:
Q={(xy) : Ax+y=b, x>0, y>0}

— Note: (x,0)eQ < xeP. Can we find such a point?
— Solve the new LP min { X v, : (x,y)eQ }
— If the optimal value is O, then x€P. If not, P is empty!
— How do we find feasible point for the new LP?

* (x,y)=(0,b) is a trivial solution!



Local-Search Algorithm
Let B be a feasible basis (If none, Halt: LP is infeasible)
For each entering coordinate k¢ B

If “benefit” of coordinate kis >0
Compute y(9) (If 0=00, Halt: LP is unbounded)

Find leaving coordinate h&EB (y(0)n=0)
Set x=y(9) and B’=B\{h}U{k}
Halt: return x

o
= Nhat is a corner point? (BFS and bases)
= MVhat if there are no corner points? (Infeasible)
= Nhat are the “neighboring” bases? (Increase one coordinate)

y Nhat if no neighbors are strictly better?
A& Might move to a basis that isnt strictly better (if 0=0), but whenever x changes it’s strictly better)

J 1iow can | find a starting feasible basis? (Solve an easier LP)
fz { Joes the algorithm terminate? (If Bland’s rule used)
‘4;-" Joes it produce the right answer? (Yes)




(4

Two Small Issues ’jﬁ

>
* Our discussion of equational form LPs assumed

that A has full row rank

— If A has contradictory constraints, LP is infeasible
— If A has redundant constraints, delete them

— See textbook p41

* To start the algorithm, we need a BFS. Our trick

found a feasible point, but maybe not a BFS.
— Given any feasible point x, it is easy to find a BFS y
with cTy > C"X (unless LP is unbounded).
* Very similar to our argument that polyhedra
containing no line have an extreme point.
— See textbook p47-48




Duality

“Another key visit took place in October 1947 at the Institute for
Advanced Study (IAS) where Dantzig met with John von Neumann.
Dantzig recalls, “| began by explaining the formulation of the linear
programming model. .. | described 1t to him as | would to an
ordinary mortal. ‘Get to the point,” he snapped. In less than a minute,
slapped the geometric and algebraic versions of my problem on the
blackboard. He stood up and said, ‘Oh that.” Just a few years earlier
von Neumann had co-authored his landmark monograph on game
theory. Dantzig goes on, “for the next hour and a half he proceeded
to give me a lecture on the mathematical theory of linear programs.”
Dantzig credited von Neumann with edifying him on Farkas’ lemma
and the duality theorem (of linear programming).”

from http://www.ams.org/notices/200703/fea-cottle.pdf



http://www.ams.org/notices/200703/fea-cottle.pdf
http://www.ams.org/notices/200703/fea-cottle.pdf
http://www.ams.org/notices/200703/fea-cottle.pdf

Duality: Geometric View

* If c=[-1,1] then c'™x=-x;+x,<1

* X is feasible and constraint is tight = xis optimal

X, + 6x, < 15

Objective Function ¢




Duality: Geometric View

* If c=[1,6] then c"x=x,+6x,<15
* X is feasible and constraint is tight = xis optimal

X, + 6x, < 15

Objective Function ¢




Duality: Geometric View

* If c=a+[1,6] and a>0 then c'™x=a-(x;+6x,) <15«

* X is feasible and constraint is tight = xis optimal

X, + 6x, < 15

Objective Function ¢




Duality: Geometric View

 What if c does not align with any constraint?
 Can we “generate” a new constraint aligned with c?

X, + 6x, < 15

Objective Function ¢




Duality: Geometric View

Can we “generate” a new constraint aligned with c?
One way is to “average” the tight constraints

Maybe u+v = c?

Then c'™x = (U+V)™ = (-x;+X,) + (x;#6x,) <1+ 15=16

X is feasible and both constraints tight = xis optimal
v=[1,6]

X;+6X,<15

Objective Function c




Duality: Geometric View

Can we “generate” a new constraint aligned with c?
One way is to “average” the tight constraints

Maybe au+3v = c for «,5>07?

Then c'™x = (au+4v)™x = a(-x,+X,) + B(x,+6x%,) < a+150
X is feasible and both constraints tight = xis optimal
v=[1,6]

X;+6X,<15

Objective Function c




Duality: Geometric View

Can we “generate” a new constraint aligned with c?
One way is to “average” the tight constraints
Definition: cone(u,v)={ au+0v : o,>0}

“cone generated by u & v”

Conclusion: For any c in cone(u,v), x is optimal

v=[1,6]

X;+6X,<15

Objective Function c




Duality: Algebraic View

max CTLU

s.t. a;rac' < b; Vi=1,...m
Definition: A new constraint a'™x<b is valid if it is
satisfied by all feasible points

x feasible = a,'x<b; and a,"x < b,
= (a;+a,)" x < b, +b, (new valid constraint)

More generally, for any )\1,...,)\m20
X feasible = (EZ )\iai)T X < Ei )\ibi (new valid constraint)

“Any non-negative linear combination of the
constraints gives a new valid constraint”

To get upper bound on objective function c'x, need (2/; \;a;) =c

Want best upper bound = want to minimize 2/; \;b;



Duality: Algebraic View

max CTCU

_ Primal LP
Z-T:r; < b; Vi=1,...m

s.t. a

To get upper bound on objective function c'x, need (X' )\,ai) =c
7 1

Want best upper bound = want to minimize 2. )\ibi
1

We can write this as an LP too!

s.t. D> Nia; = ¢ st. AT)=c Dual LP
A>0 A>0

Theorem: “Weak Duality Theorem”
If x feasible for Primal and ) feasible for Dual then c'x < bT\.
Proof: c'x = (AT A\)"'x = ATAXx < ATb. &

~— Since A>0 and Ax<b



Dual of Dual

Dual LP Inequality Form
min b'\
st. AT =c —

A>0
. / U new variables

Primal min | (¢, —¢, 0) | v (non-negative)
max c¢'z w
s.t.  Ax <b — U
Let x = v-u st. (4, -4, —1) =
w is a “slack variable” w

u,v,w >0 Dual of Dual

Conclusion:

‘Dual of Dual is Primal!”



Dual of Equality Form LP

max CTLU

Note! S.t. Ax = b Primal LP

For any AeéR™, x feasible = ATAx=A"b (newvalid constraint)

“Any linear combination of the constraints Note!
gives a new valid constraint” using x=0

Get upper bound on objective function c'x if \TA > ¢’
Want best upper bound = want to minimize ATb
min  b' )\

st. ATA>e¢

Dual LP

Similar arguments show:
e “Weak Duality Theorem”

If x feasible for Primal and )\ feasible for Dual then c'x < bT\.
e “Dual of Dual is Primal”



Rules for Duals

Objective max c'x min by
Variables X1, ooor X, Yo Y
Constraint matrix A

Right-hand vector

Not symmetric

Constraints thm constram@ y, >0
versus constraint: y; <0

Variables ith constraint: y, unrestricted
x. >0 jth constraint: >
x; <0 j!" constraint: <
X; unrestricted jth constraint: =

Useful Mnemonic

“Natural” bound on a variableis > 0

“Natural” constraint for a maximization problem is <0
“Natural” constraint for a minimization problem is > 0

“Natura



Example: Bipartite Matching

(from Lecture 2)

* Given bipartite graph G=(V, E)
* Find a maximum size matching

— Aset M C E s.t. every vertex has at most one incident edge in M
* Write an integer program

max ) . ..p Te
|P
( ) s.t. Ze incident to v Le g 1 Vv cV

Te € {0,1} Ve e E
 But we don’t know how to solve IPs. Try an LP instead.

max ) ..p Te
8.t ze incident to v e <1 VweV

Le ZO VGEE

(LP)



Example: Bipartite Matching

(from Lecture 2)

e The LP formulation is:

max ZeeE Te
Primal
( ) s.t. Ze incident to v Le S 1 V’U < V

Le 20 VBEE

e Using “Rules for Duals”:

min Z’UEV Yo
st. Yuty, >1 Ve ={u,v} € F

Yo > () YveV

(Dual)



Primal vs Dual

Fundamental Theorem of LP: For any LP, the outcome is either:
Infeasible, Unbounded, Optimum Point Exists.

Weak Duality Theorem:
If x feasible for Primal and ) feasible for Dual then c'x < bT\.

Exercise! Primal
Infeasible Possible Possible Impossible
M Unbounded Possible Impossible Impossible
Opt. Exists Impossible Impossible Possible

Strong Duality Theorem:
If Primal has an opt. solution x, then Dual has an opt. solution A.
Furthermore, optimal values are same: c'x = b \.



Strong Duality

(for equational form LP)

-
I tHax e F I min 5"\
Primal LP;: — Dual LP;
S.t. Arx =b st AT > ¢
x>0

Suppose LP is not infeasible and not unbounded.

Algorithm terminates with BFS x defined by basis B.

Define: A = (A3") ¢p.

Claim: A\ feasible for Dual LP.

Proof: alg terminates = benefits vector 7 =c' —cp A5 A <0
— AT(Agl)TCB > . So \feasible. [ since B defines x

Claim: c'x=Db'"\. /ﬁ since xg =0
T T

Proof: b' \=\'b=cpA'b=cparp=c'z. O

So x and A are both optimal! W



Certificates

For any LP, | can convince you that optimal value is..J
* > k: by giving a primal feasible x with obj. value > k.
» < k: by giving a dual feasible A with obj. value < k.

Theorem: Such certificates always exists.  (stated in Lecture 2)
Proof: Immediate from strong duality theorem. B

Theorems like this are very strong and useful.

Other famous examples:

* Konig / Hall’'s Theorem (Graph theory)
 Max-flow Min-cut Theorem (Network flow theory)
e Hilbert’s Nullstellensatz (Algebraic geometry)



