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1. What is a corner point? (BFS and bases)

2. What if there are no corner points? (Infeasible)

3. What are the “neighboring” bases? (Increase one coordinate)

4. What if no neighbors are strictly better?
(Might move to a basis that isn’t strictly better (if ±=0), but whenever x changes it’s strictly better)

5. How can I find a starting feasible basis?

6. Does the algorithm terminate? (If Bland’s rule used)

7. Does it produce the right answer? (Yes)

Local-Search Algorithm
Let B be a feasible basis (If none, Halt: LP is infeasible)

For each entering coordinate kB
If “benefit” of coordinate k is > 0

Compute y(±) (If ±=1, Halt: LP is unbounded)

Find leaving coordinate h2B (y(±)h=0)

Set x=y(±) and B’=Bn{h}[{k}
Halt: return x



Finding a starting point
• Consider LP max { cTx : x2P } where P={ x : Ax=b, x¸0 }

• How can we find a feasible point?

• Trick: Just solve a different LP!

– Note: c is irrelevant. We can introduce a new objective function

– WLOG, b¸0 (Can multiply constraints by -1)

– Allow “Ax=b” constraint to be violated via “artificial variables”:
Q = { (x,y) : Ax+y=b, x¸0, y¸0 }

– Note:  (x,0)2Q  , x2P.  Can we find such a point?

– Solve the new LP min { §i yi : (x,y)2Q } 

– If the optimal value is 0, then x2P. If not, P is empty!

– How do we find feasible point for the new LP?

• (x,y)=(0,b) is a trivial solution!



1. What is a corner point? (BFS and bases)

2. What if there are no corner points? (Infeasible)

3. What are the “neighboring” bases? (Increase one coordinate)

4. What if no neighbors are strictly better?
(Might move to a basis that isn’t strictly better (if ±=0), but whenever x changes it’s strictly better)

5. How can I find a starting feasible basis? (Solve an easier LP)

6. Does the algorithm terminate? (If Bland’s rule used)

7. Does it produce the right answer? (Yes)

Local-Search Algorithm
Let B be a feasible basis (If none, Halt: LP is infeasible)

For each entering coordinate kB
If “benefit” of coordinate k is > 0

Compute y(±) (If ±=1, Halt: LP is unbounded)

Find leaving coordinate h2B (y(±)h=0)

Set x=y(±) and B’=Bn{h}[{k}
Halt: return x



Two Small Issues
• Our discussion of equational form LPs assumed 

that A has full row rank
– If A has contradictory constraints, LP is infeasible
– If A has redundant constraints, delete them
– See textbook p41

• To start the algorithm, we need a BFS. Our trick 
found a feasible point, but maybe not a BFS.
– Given any feasible point x, it is easy to find a BFS y 

with cTy¸ cTx (unless LP is unbounded).
• Very similar to our argument that polyhedra

containing no line have an extreme point.
– See textbook p47-48



Duality

“Another key visit took place in October 1947 at the Institute for 
Advanced Study (IAS) where Dantzig met with John von Neumann.  
Dantzig recalls, “I began by explaining the formulation of the linear 
programming model… I described it to him as I would to an 
ordinary mortal.  „Get to the point,‟ he snapped. In less than a minute, 
I slapped the geometric and algebraic versions of my problem on the 
blackboard. He stood up and said, „Oh that.‟” Just a few years earlier 
von Neumann had co-authored his landmark monograph on game 
theory. Dantzig goes on, “for the next hour and a half he proceeded 
to give me a lecture on the mathematical theory of linear programs.” 
Dantzig credited von Neumann with edifying him on Farkas‟ lemma 
and the duality theorem (of linear programming).”

from http://www.ams.org/notices/200703/fea-cottle.pdf

http://www.ams.org/notices/200703/fea-cottle.pdf
http://www.ams.org/notices/200703/fea-cottle.pdf
http://www.ams.org/notices/200703/fea-cottle.pdf


Duality: Geometric View

• If c=[-1,1] then cTx=-x1+x2·1

• x is feasible and constraint is tight ) x is optimal

x1

x2
-x1+x2· 1

x1 + 6x2 · 15

Objective Function c



Duality: Geometric View

• If c=[1,6] then cTx=x1+6x2·15

• x is feasible and constraint is tight ) x is optimal

x1

x2
-x1+x2· 1

x1 + 6x2 · 15

Objective Function c



Duality: Geometric View

• If c=®¢[1,6] and ®>0 then cTx=®¢(x1+6x2)·15®

• x is feasible and constraint is tight ) x is optimal

x1

x2
-x1+x2· 1

x1 + 6x2 · 15

Objective Function c



Duality: Geometric View
• What if c does not align with any constraint?

• Can we “generate” a new constraint aligned with c?

x1

x2
-x1+x2· 1

x1 + 6x2 · 15

Objective Function c



Duality: Geometric View
• Can we “generate” a new constraint aligned with c?
• One way is to “average” the tight constraints
• Maybe u+v = c?
• Then cTx = (u+v)Tx = (-x1+x2) + (x1+6x2) · 1 + 15 = 16
• x is feasible and both constraints tight ) x is optimal

x1

x2

-x1+x2· 1

x1+6x2·15

Objective Function c

u=[-1,1]

v=[1,6]



Duality: Geometric View
• Can we “generate” a new constraint aligned with c?
• One way is to “average” the tight constraints
• Maybe ®u+¯v = c for ®,¯>0?
• Then cTx = (®u+¯v)Tx = ®(-x1+x2) + ¯(x1+6x2) · ®+15¯
• x is feasible and both constraints tight ) x is optimal

x1

x2

-x1+x2· 1

x1+6x2·15

Objective Function c

u=[-1,1]

v=[1,6]



Duality: Geometric View
• Can we “generate” a new constraint aligned with c?
• One way is to “average” the tight constraints
• Definition: cone(u,v)={ ®u+¯v : ®,¯¸0 }

“cone generated by u & v”
• Conclusion: For any c in cone(u,v), x is optimal

x1

x2

-x1+x2· 1

x1+6x2·15

Objective Function c

u=[-1,1]

v=[1,6]

x



x feasible ) a1
T x · b1 and  a2

T x · b2

) (a1+a2)T x · b1+b2 (new valid constraint)

More generally, for any ¸1,…,¸
m
¸0

x feasible ) (§
i
¸
i
a

i
)T x ·§

i
¸
i
bi (new valid constraint)

“Any non-negative linear combination of the 
constraints gives a new valid constraint”

Definition: A new constraint aTx·b is valid if it is 
satisfied by all feasible points

To get upper bound on objective function cTx, need (§i ¸iai) = c

Want best upper bound  ) want to minimize §i ¸ibi

Duality: Algebraic View



Duality: Algebraic View

To get upper bound on objective function cTx, need (§
i
¸
i
a

i
) = c

Want best upper bound  ) want to minimize §
i
¸
i
bi

We can write this as an LP too!

Primal LP

´

Theorem: “Weak Duality Theorem”
If x feasible for Primal and ¸ feasible for Dual then cTx· bT¸.

Proof: cT x  =  (AT ¸)T x  =  ¸T A x  · ¸T b.  ¥
Since ¸¸0 and Ax·b

Dual LP



´

new variables
(non-negative)

transpose transpose

transpose

Dual LP Inequality Form

Dual of Dual

´

Let x = v-u
w is a “slack variable”

Primal

Conclusion: “Dual of Dual is Primal!”

Dual of Dual



Dual of Equality Form LP

For any ¸2Rm,  x feasible  ) ¸T Ax = ¸T b (new valid constraint)

“Any linear combination of the constraints
gives a new valid constraint”

Get upper bound on objective function cTx if ¸T A ¸ cT

Want best upper bound  ) want to minimize ¸T b

Note!

Note!
using x¸0

Primal LP

Dual LP

Similar arguments show:
• “Weak Duality Theorem”

If x feasible for Primal and ¸ feasible for Dual then cTx· bT¸.
• “Dual of Dual is Primal”



Rules for Duals
Primal Dual

Objective max cTx min bTy

Variables x1, …, xn y1,…, ym

Constraint matrix A AT

Right-hand vector b c

Constraints
versus
Variables

ith constraint:  ·
ith constraint:  ¸
ith constraint:  =

xi¸ 0
xi· 0
xi unrestricted

yi¸ 0
yi· 0
yi unrestricted

jth constraint: ¸
jth constraint: ·
jth constraint: =

Note:
Not symmetric

Useful Mnemonic
“Natural” bound on a variable is ¸ 0
“Natural” constraint for a maximization problem is · 0
“Natural” constraint for a minimization problem is ¸ 0

“Natural”



Example: Bipartite Matching
(from Lecture 2)

• Given bipartite graph G=(V, E)

• Find a maximum size matching
– A set M µ E s.t. every vertex has at most one incident edge in M

• But we don’t know how to solve IPs. Try an LP instead.

(LP)

• Write an integer program

(IP)



Example: Bipartite Matching
(from Lecture 2)

• The LP formulation is:

(Primal)

• Using “Rules for Duals”:

(Dual)



Primal vs Dual

Weak Duality Theorem:
If x feasible for Primal and ¸ feasible for Dual then cTx· bT¸.

Infeasible Unbounded Opt. Exists

Infeasible

Unbounded

Opt. Exists

Primal

Dual Impossible Impossible

Impossible

Fundamental Theorem of LP: For any LP, the outcome is either:
Infeasible, Unbounded, Optimum Point Exists.

Possible

Possible

Strong Duality Theorem:
If Primal has an opt. solution x, then Dual has an opt. solution ¸.
Furthermore, optimal values are same: cTx = bT¸.

Impossible

Impossible

Possible

Possible

Exercise!



Strong Duality
(for equational form LP)

Suppose LP is not infeasible and not unbounded.

Algorithm terminates with BFS x defined by basis B.

Define:                               .

Claim: ¸ feasible for Dual LP.

Proof: alg terminates  ) benefits vector

.  So ¸ feasible.  ¤

Claim: cTx = bT¸.

Proof: .  ¤
So x and ¸ are both optimal!   ¥

Primal LP: Dual LP:

since B defines x

since xB = 0



Certificates
For any LP, I can convince you that optimal value is…

• ¸ k: by giving a primal feasible x with obj. value ¸ k.

• · k: by giving a dual feasible ¸ with obj. value · k.

Theorem: Such certificates always exists.     (stated in Lecture 2)

Proof: Immediate from strong duality theorem.  ¥

Theorems like this are very strong and useful.

Other famous examples:

• Konig / Hall’s Theorem (Graph theory)

• Max-flow Min-cut Theorem (Network flow theory)

• Hilbert’s Nullstellensatz (Algebraic geometry)


