
C&O 355
Lecture 6

N. Harvey
http://www.math.uwaterloo.ca/~harvey/

Outline

• Proof of Optimality

• Does the algorithm terminate?

• Bland’s Rule

• Corollaries

1. What is a corner point? (BFS and bases)

2. What if there are no corner points? (Infeasible)

3. What are the “neighboring” bases? (Increase one coordinate)

4. What if no neighbors are strictly better?
(Might move to a basis that isn’t strictly better (if ±=0), but whenever x changes it’s strictly better)

5. How can I find a starting feasible basis?

6. Does the algorithm terminate?

7. Does it produce the right answer?

Local-Search Algorithm
Let B be a feasible basis (If none, Halt: LP is infeasible)

For each entering coordinate kB
If “benefit” of coordinate k is > 0

Compute y(±) (If ±=1, Halt: LP is unbounded)

Find leaving coordinate h2B (y(±)h=0)

Set x=y(±) and B’=Bn{h}[{k}
Halt: return x

The Benefits Vector
• Recall: Benefit of coordinate k is ck - cB

TAB
-1Ak

• Let’s define a benefits vector r to record all the benefits
• Define:
• Note: For kB, rk is benefit of coordinate k

For k2B, rk=0

• Claim: For any point z, we have cTz = cTx + rB
TzB

• Proof:

Quick Optimality Proof
• Suppose algorithm terminates with BFS x and basis B

• Claim: x is optimal.

• Proof: Loop terminates) every kB has benefit · 0) r · 0

• For any feasible point z, we have:

cTz = cTx + rB
TzB· cTx) x is optimal. ¥

¸ 0 since z feasible· 0 since loop terminated

1. What is a corner point? (BFS and bases)

2. What if there are no corner points? (Infeasible)

3. What are the “neighboring” bases? (Increase one coordinate)

4. What if no neighbors are strictly better?
(Might move to a basis that isn’t strictly better (if ±=0), but whenever x changes it’s strictly better)

5. How can I find a starting feasible basis?

6. Does the algorithm terminate?

7. Does it produce the right answer? (Yes)

Local-Search Algorithm
Let B be a feasible basis (If none, Halt: LP is infeasible)

For each entering coordinate kB
If “benefit” of coordinate k is > 0

Compute y(±) (If ±=1, Halt: LP is unbounded)

Find leaving coordinate h2B (y(±)h=0)

Set x=y(±) and B’=Bn{h}[{k}
Halt: return x

Does Algorithm Terminate?
• Depends on rule for choosing entering / leaving coordinates

• For some rules, examples exist where algorithm cycles forever
[Hoffman 1951]

• How can this happen?
– If coordinate k has benefit>0 but ±=0 then basis changes but BFS doesn’t

– So the BFS x is degenerate (it is defined by multiple bases)

– Geometrically, there are >m tight constraints at x

– “Unlikely coincidences” exist among the constraints

• Oldest rule to avoid cycling: “Perturbation method”
[Dantzig, Orden, Wolfe 1954]

– Basic idea: Add random noise to vector b. Then no unlikely coincidences will
occur in constraints. If noise very small, optimal basis of noisy problem is also
an optimal basis of original problem.

• Amazingly simple rule: “Smallest index rule” [Bland 1977]

– Choose entering coordinate k to be smallest
i.e., k = min{ i : coordinate i has positive benefit }

– Choose leaving coordinate h to be the smallest
i.e., h = min{ i : coordinate i has y(±)i=0 }

Cycling

• Suppose algorithm cycles

• Let F = { i : i is an entering coordinate at some step on cycle }

• Claim 1: All BFS on cycle are the same BFS x, and xi=0 8i2F.

• Proof: If BFS changes then objective value increases. (Positive benefit)

Obj. value never decreases, so we can’t cycle back to worse BFS.
So every step on cycle has ±=0) y(±)=x.

• A leaving coordinate h always has y(±)h=0. But y(±)=x, so xh=0. ¤

If it enters during cycle, it must leave during cycle

Bland’s Rule Works
• Claim: Bland’s rule never cycles.

• Proof Idea:

– Suppose it cycles

– Let F = { i : i is an entering coordinate at some step on cycle }

– Let v = maximum i in F

– Consider steps when v is entering or leaving

– If v is entering/leaving, then every other i2F is ineligible
(because we always choose smallest i to enter/leave)

– We can infer some strong properties about all other i2F

– Use those strong properties to get a contradiction

– How? Non-obvious…

• Define an auxiliary LP, show that it has an optimal solution,
and it is also unbounded.

• Let B be a basis on cycle just before v enters
Let r be the benefits vector at this step

) v has a positive benefit (rv>0)

• No other i2F is eligible to enter

) every other i2F has non-positive benefit (ri·0 8i2Fn{v})

• Let B’ be a basis on cycle just before v leaves (some u2F enters)
Let d be the direction we’re trying to move in at this step
Recall: y(±) = x+±d, where dB’=- AB’

-1 Au, du=1, di=0 8iB’[{u}

• Recall: leaving coordinate is a minimizer of min{ -xi/di : i s.t. di<0 }
) dv<0

• Recall: xv=0 (by Claim 1)

• No other i2F is eligible to leave
) every other i2F is not a minimizer of this
But xi=0 too) They are not minimizers because di¸0 8i2Fn{v}

Auxiliary LP

• Let x be the BFS (of original LP) for all bases in the cycle

• Claim 2: x is an optimal solution of AuxLP.

• Claim 3: We can increase xu1 without ruining feasibility.
So AuxLP is unbounded.

(AuxLP)

Claim 2: x is optimal for AuxLP

• Subclaim: x is feasible for AuxLP

• xi=0 8iB, since B is a basis determining x

• xi=0 8i2F, by Claim 1

• For any z, we have cTz = cTx + rB
TzB

• Subclaim: For z feasible for AuxLP, rB
TzB· 0

• For coordinate iB[F, we have zi=0

• For coordinate i2Fn{v}, we have ri·0 but zi¸0

• For coordinate v, we have rv>0 but zv·0

• So cTz· cTx) x is optimal ¥

(AuxLP)

Claim 3: AuxLP is unbounded

(AuxLP)

• Claim: B’ is a basis for AuxLP and it determines BFS x.

• Claim: coordinate u has positive benefit.
(Definition of benefit does not depend on sign constraints)

• If we increase xu to ², must adjust xB’ to preserve “Az=b” constraint
– New point is z(²)=x+²d.
– The d vector is the same as before: it does not depend on sign constraints

• z(²) feasible , .

• But iB[F) iB’[{u}. So z(²) feasible 8²¸0. ¥

We know:

1. What is a corner point? (BFS and bases)

2. What if there are no corner points? (Infeasible)

3. What are the “neighboring” bases? (Increase one coordinate)

4. What if no neighbors are strictly better?
(Might move to a basis that isn’t strictly better (if ±=0), but whenever x changes it’s strictly better)

5. How can I find a starting feasible basis?

6. Does the algorithm terminate? (If Bland’s rule used)

7. Does it produce the right answer? (Yes)

Local-Search Algorithm
Let B be a feasible basis (If none, Halt: LP is infeasible)

For each entering coordinate kB
If “benefit” of coordinate k is > 0

Compute y(±) (If ±=1, Halt: LP is unbounded)

Find leaving coordinate h2B (y(±)h=0)

Set x=y(±) and B’=Bn{h}[{k}
Halt: return x

Corollaries
• Corollary: “Fundamental Theorem of LP”

For any LP, the outcome is either:

– An optimal solution exists

– Problem is Infeasible

– Problem is Unbounded

• Corollary: For any equational form LP, if an
optimal solution exists, then a BFS is optimal.

• More coming soon…

Finding a starting basis
• Consider LP max { cTx : x2P } where P={ x : Ax=b, x¸0 }

• How can we find a feasible point?

• Trick: Just solve a different LP!

– Note: c is irrelevant. We can introduce a new objective function

– WLOG, b¸0 (Can multiply constraints by -1)

– Get “relaxation” of P by introducing more “slack variables”:
Q = { (x,y) : Ax+y=b, x¸0, y¸0 }

– Note: (x,0)2Q , x2P. Can we find such a point?

– Solve the new LP min { §i yi : (x,y)2Q }

– If the optimal value is 0, then x2P. If not, P is empty!

– How do we find feasible point for the new LP?

– (x,y)=(0,b) is a trivial solution!

1. What is a corner point? (BFS and bases)

2. What if there are no corner points? (Infeasible)

3. What are the “neighboring” bases? (Increase one coordinate)

4. What if no neighbors are strictly better?
(Might move to a basis that isn’t strictly better (if ±=0), but whenever x changes it’s strictly better)

5. How can I find a starting feasible basis? (Solve an easier LP)

6. Does the algorithm terminate? (If Bland’s rule used)

7. Does it produce the right answer? (Yes)

Local-Search Algorithm
Let B be a feasible basis (If none, Halt: LP is infeasible)

For each entering coordinate kB
If “benefit” of coordinate k is > 0

Compute y(±) (If ±=1, Halt: LP is unbounded)

Find leaving coordinate h2B (y(±)h=0)

Set x=y(±) and B’=Bn{h}[{k}
Halt: return x

