$$
\begin{array}{lcl}
\operatorname{Max} & x_{1}+x_{2} & \\
\text { s.t. } & -x_{1}+x_{2} & \leq 1 \\
x_{1} & \leq 3 \\
& x_{2} & \leq 2 \\
& x_{1}, x_{2} & \geq 0
\end{array}
$$



Second point $y(\delta)$ (See calculation below)

Convert to Equational Form

$$
\begin{array}{ll}
\text { Max } \begin{array}{ll}
x_{1}+x_{2} \\
\text { sit. }-x_{1}+x_{2}+x_{3} & =1 \\
x_{1} & \\
& x_{4} \\
x \geqslant 0 & =3 \\
x_{\text {Slack }} & =2
\end{array} \underbrace{}_{\text {Variables }}
\end{array}
$$

Finding starting feasible basis
We don't know how... just do it by inspection $B=\{3,4,5\}$ a feasible basis

$$
x=[0,0,1,3,2] \quad O_{j} \quad f_{m}=0
$$

Need to choose "entering coordinate"

Need to choose "entering coordinate"
What is benefit of $x_{1}$ ?

$$
d_{B}=-A_{B}^{-1} A_{1} \quad d_{1}=1 \quad d_{2}=0
$$

$d=\left[\begin{array}{lllll}1 & 0 & 1 & -1 & 0\end{array}\right]$
$c^{2} d=1$ This is benefit of $x_{1}$
Benefit of $x_{2}$ ?

$$
\begin{aligned}
& d_{3}-A_{B^{-1}} A_{2} \quad d_{2}=1 \quad d_{1}=0 \\
& d^{\prime}=\left[0^{\prime} 1-100-1\right] \\
& c^{\top} d^{2}=1 \quad \text { This is benefit of } x_{2}
\end{aligned}
$$

Could increase either $x_{1}$ or $x_{2}$. We doit care which

Increase $x_{2}$ by $\varepsilon$
Move to the new point $y(\varepsilon)$

$$
\begin{aligned}
& y(\varepsilon)=x+\varepsilon d \\
& \delta=\min \left\{-\frac{x_{i}}{d_{i}}: i \text { st. di< }<0\right\} \\
&=\min \left\{-\frac{x_{3}}{d_{3}}, \frac{-x_{5}}{\left.d_{5}\right\}}\right\}=\min \{1,2\}=1 \\
& \delta=1 \quad h=3 \text { is the "leaving coordinate" }
\end{aligned}
$$

Our new BFS is

$$
y(\delta)=\left[\begin{array}{lllll}
0 & 1 & 0 & 3 & 1
\end{array}\right]
$$

Note: $c^{\top} y(\delta)=1>c^{+} x=0$
So new BFS is better
Can continue this process to find optimal point.

