C\&O 355 Lecture 5

N. Harvey

http://www.math.uwaterloo.ca/~harvey/

Outline

- Neighboring Bases
- Finding Better Neighbors
- "Benefit" of a coordinate
- Quick optimality proof
- Alternative optimality proof
- Generalized neighbors and generalized benefit

> Local-Search Algorithm
> Let B be a feasible basis
> (if none, infeasible)
> For each feasible basis B^{\prime} that is a neighbor of B Compute BFS y defined by B' If $c^{\top} y>c^{\top} x$ then set $x=y$
> Halt

Nhat is a corner point?
Nhat if there are no corner points?
(BFS and bases)
(Infeasible)
3. What are the "neighboring" bases?
4. What if no neighbors are strictly better?
5. How can I find a starting feasible basis?
6. Does the algorithm terminate?
7. Does it produce the right answer?

Neighboring Bases

- Notation: $A_{k}=k^{\text {th }}$ column of A
- Suppose we have a feasible basis B
- It defines BFS x where $x_{B}=A_{B}^{-1} b \geq 0$ and $x_{\bar{B}}=0$
- Can we find a basis "similar" to B but containing some $k \notin B$?
- Suppose we increase x_{k} from 0 to ϵ for some $k \notin B$
- We'll violate the constraints $A x=b$ unless we modify x_{B} Example:

Just one constraint:

$$
A=[1,1,1], b=[1]
$$

Feasible region:

$$
P=\left\{x: x_{1}+x_{2}+x_{3}=1, x \geq 0\right\}
$$

$$
\text { BFS } x=(1,0,0), \text { basis } B=\{1\}
$$

$$
\text { Increase } \mathrm{x} \text {, to } \epsilon \text {. Infeasible! }
$$

Modify x_{1} to 1- ϵ Feasible! Increase $\mid \epsilon$ to 1. Get BFS $y=(0,1,0)$.
How did we decide this?

Neighboring Bases

- Notation: $A_{k}=k^{\text {th }}$ column of A
- Suppose we have a feasible basis B
- It defines BFS x where $x_{B}=A_{B}{ }^{-1} b \geq 0$ and $x_{\bar{B}}=0$
- Can we find a basis "similar" to B but containing some $k \notin B$?
- Suppose we increase x_{k} from 0 to ϵ for some $k \notin B$
- We'll violate the constraints $A x=b$ unless we modify x_{B}
- Replace x_{B} with y_{B} satisfying $A_{B} y_{B}+\epsilon A_{k}=b$

$$
y=[\underbrace{y_{B}}_{B}, ~ \underset{\uparrow}{\epsilon} \underbrace{\underbrace{0}}_{\overrightarrow{B \cup\{k\}}}]
$$

- Given that $y_{\overline{B \cup\{k\}}\}}=0$ and $y_{k}=\epsilon$, there is a unique y ensuring $A y=b$

$$
\mathrm{A}_{\mathrm{B}} \mathrm{~V}_{\mathrm{B}}+\epsilon \mathrm{A}_{\mathrm{k}}=\mathrm{b} \Rightarrow \mathrm{y}_{\mathrm{B}}=\mathrm{A}_{\mathrm{B}}^{-1}\left(\mathrm{~b}-\epsilon \mathrm{A}_{\mathrm{k}}\right)=\mathrm{x}_{\mathrm{B}}-\epsilon \mathrm{A}_{\mathrm{B}}^{-1} \mathrm{~A}_{\mathrm{k}}
$$

- So $y(\epsilon)=x+\epsilon d$ where: $d_{B}=-A_{B}{ }^{-1} A_{k}, d_{k}=1$, and $d_{i}=0 \forall i \notin B \cup\{k\}$

Neighboring Bases

- Suppose we increase x_{k} from 0 to ϵ for some $k \notin B$
- We'll violate the constraints $A x=b$ unless we modify x_{B}
- Replace x_{B} with y_{B} satisfying $A_{B} y_{B}+\epsilon A_{k}=b$

$$
\Rightarrow y_{B}=A_{B}{ }^{-1}\left(b-\epsilon A_{k}\right)=x_{B}-\epsilon A_{B}^{-1} A_{k}
$$

- So $y(\epsilon)=x+\epsilon d$ where: $d_{B}=-A_{B}{ }^{-1} A_{k}, d_{k}=1$, and $d_{i}=0 \forall i \notin B \cup\{k\}$
- $\mathrm{y}(\epsilon)$ feasible if $\mathrm{y}(\epsilon) \geq 0$, but not basic: it has (probably) $\mathrm{m}+1$ non-zeros!
$-\mathrm{y}(\epsilon) \geq 0 \Leftrightarrow \forall \mathrm{i}, \mathrm{y}(\epsilon)_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}+\epsilon \mathrm{d}_{\mathrm{i}} \geq 0 \Leftrightarrow \epsilon \leq \min \left\{-\mathrm{x}_{\mathrm{i}} / \mathrm{d}_{\mathrm{i}}\right.$: i s.t. $\left.\mathrm{d}_{\mathrm{i}}<0\right\}$
- If $\min =\infty$, then feasible region is unbounded in direction d.
- Otherwise, let h be an i minimizing min. Let $\delta=-\mathrm{x}_{\mathrm{h}} / \mathrm{d}_{\mathrm{h}}$. (Note: $\left.\mathrm{h} \in \mathrm{B}\right)$
- Then $\mathrm{y}(\delta)_{\mathrm{h}}=\mathrm{x}_{\mathrm{h}}+\delta \mathrm{d}_{\mathrm{h}}=0$, so $\mathrm{y}(\delta)$ has $\leq \mathrm{m}$ non-zeros

$$
\begin{aligned}
& \mathrm{A}=[1,1,1], \mathrm{b}=[1] \\
& \mathrm{BFS} \mathrm{x}=(1,0,0), \text { basis } \mathrm{B}=\{1\} \\
& \mathrm{d}=(-1,1,0) \\
& \epsilon \leq-\mathrm{x}_{1} / \mathrm{d}_{1}=1 \\
& \text { Take } \delta=1 \text { and } \mathrm{h}=1
\end{aligned}
$$

Neighboring Bases

- Suppose we increase x_{k} from 0 to ϵ for some $k \notin B$
- We'll violate the constraints $A x=b$ unless we modify x_{B}
- Replace x_{B} with y_{B} satisfying $A_{B} y_{B}+\epsilon A_{k}=b$

$$
\Rightarrow y_{B}=A_{B}^{-1}\left(b-\epsilon A_{k}\right)=x_{B}-\epsilon A_{B}^{-1} A_{k}
$$

- So $y(\epsilon)=x+\epsilon d$ where: $d_{B}=-A_{B}{ }^{-1} A_{k}, d_{k}=1$, and $d_{i}=0 \forall i \notin B \cup\{k\}$
- $\mathrm{y}(\epsilon)$ feasible if $\mathrm{y}(\epsilon) \geq 0$, but not basic: it has (probably) $\mathrm{m}+1$ non-zeros!
$-\mathrm{y}(\epsilon) \geq 0 \Leftrightarrow \forall \mathrm{i}, \mathrm{y}(\epsilon)_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}+\epsilon \mathrm{d}_{\mathrm{i}} \geq 0 \Leftrightarrow \epsilon \leq \min \left\{-\mathrm{x}_{\mathrm{i}} / \mathrm{d}_{\mathrm{i}}\right.$: i s.t. $\left.\mathrm{d}_{\mathrm{i}}<0\right\}$
- If $\min =\infty$, then feasible region is unbounded in direction d.
- Otherwise, let h be an i minimizing min. Let $\delta=-\mathrm{x}_{\mathrm{h}} / \mathrm{d}_{\mathrm{h}}$. (Note: $\left.\mathrm{h} \in \mathrm{B}\right)$
- Then $\mathrm{y}(\delta)_{\mathrm{h}}=\mathrm{x}_{\mathrm{h}}+\delta \mathrm{d}_{\mathrm{h}}=0$, so $\mathrm{y}(\delta)$ has $\leq \mathrm{m}$ non-zeros
- Claim: Let $B^{\prime}=B \backslash\{h\} \cup\{k\}$. Then B^{\prime} is a basis.
- Proof: Suppose not. Then A_{k} is a lin. comb. of vectors in $A_{B \backslash\{h\}}$. But A_{k} is a unique lin. comb. of vectors in A_{B}, since B is a basis. So coefficient of h in this lin. comb. must be 0.
The lin. comb. is $-d_{B}$, since $-A_{B} d_{B}=A_{k}$. But $-d_{h} \neq 0$. Contradiction! \square

Neighboring Bases

- Suppose we increase x_{k} from 0 to ϵ for some $k \notin B$
- We'll violate the constraints $A x=b$ unless we modify x_{B}
- Replace x_{B} with y_{B} satisfying $A_{B} y_{B}+\epsilon A_{k}=b$

$$
\Rightarrow y_{B}=A_{B}^{-1}\left(b-\epsilon A_{k}\right)=x_{B}-\epsilon A_{B}^{-1} A_{k}
$$

- So $y(\epsilon)=x+\epsilon d$ where: $d_{B}=-A_{B}{ }^{-1} A_{k}, d_{k}=1$, and $d_{i}=0 \forall i \notin B \cup\{k\}$
- $\mathrm{y}(\epsilon)$ feasible if $\mathrm{y}(\epsilon) \geq 0$, but not basic: it has (probably) $\mathrm{m}+1$ non-zeros!
$-\mathrm{y}(\epsilon) \geq 0 \Leftrightarrow \forall \mathrm{i}, \mathrm{y}(\epsilon)_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}+\epsilon \mathrm{d}_{\mathrm{i}} \geq 0 \Leftrightarrow \epsilon \leq \min \left\{-\mathrm{x}_{\mathrm{i}} / \mathrm{d}_{\mathrm{i}}\right.$: i s.t. $\left.\mathrm{d}_{\mathrm{i}}<0\right\}$
- If $\min =\infty$, then feasible region is unbounded in direction d.
- Otherwise, let h be an i minimizing min. Let $\delta=-\mathrm{x}_{\mathrm{h}} / \mathrm{d}_{\mathrm{h}}$. (Note: $\left.\mathrm{h} \in \mathrm{B}\right)$
- Then $\mathrm{y}(\delta)_{\mathrm{h}}=\mathrm{x}_{\mathrm{h}}+\delta \mathrm{d}_{\mathrm{h}}=0$, so $\mathrm{y}(\delta)$ has $\leq \mathrm{m}$ non-zeros
- Claim: Let $B^{\prime}=B \backslash\{h\} \cup\{k\}$. Then B^{\prime} is a basis.
- Claim: $\mathrm{y}(\delta)$ is a BFS determined by B^{\prime}.
- Proof: We enforced $\mathrm{A} y=\mathrm{b}$. We showed $\mathrm{y}(\delta) \geq 0$. We showed B^{\prime} is a basis. We ensured $y_{i}=0 \forall i \notin B^{\prime}$. \square

Neighboring Bases

- Suppose we increase x_{k} from 0 to ϵ for some $k \notin B$
- We'll violate the constraints $A x=b$ unless we modify x_{B}
- Replace x_{B} with y_{B} satisfying $A_{B} y_{B}+\epsilon A_{k}=b$

$$
\Rightarrow y_{B}=A_{B}^{-1}\left(b-\epsilon A_{k}\right)=x_{B}-\epsilon A_{B}^{-1} A_{k}
$$

- So $y(\epsilon)=x+\epsilon d$ where: $d_{B}=-A_{B}{ }^{-1} A_{k}, d_{k}=1$, and $d_{i}=0 \forall i \notin B \cup\{k\}$
- $\mathrm{y}(\epsilon)$ feasible if $\mathrm{y}(\epsilon) \geq 0$, but not basic: it has (probably) $\mathrm{m}+1$ non-zeros!
$-\mathrm{y}(\epsilon) \geq 0 \Leftrightarrow \forall \mathrm{i}, \mathrm{y}(\epsilon)_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}+\epsilon \mathrm{d}_{\mathrm{i}} \geq 0 \Leftrightarrow \epsilon \leq \min \left\{-\mathrm{x}_{\mathrm{i}} / \mathrm{d}_{\mathrm{i}}\right.$: i s.t. $\left.\mathrm{d}_{\mathrm{i}}<0\right\}$
- If $\min =\infty$, then feasible region is unbounded in direction d.
- Otherwise, let h be an i minimizing min. Let $\delta=-\mathrm{x}_{\mathrm{h}} / \mathrm{d}_{\mathrm{h}}$. (Note: $\left.\mathrm{h} \in \mathrm{B}\right)$
- Then $\mathrm{y}(\delta)_{\mathrm{h}}=\mathrm{x}_{\mathrm{h}}+\delta \mathrm{d}_{\mathrm{h}}=0$, so $\mathrm{y}(\delta)$ has $\leq \mathrm{m}$ non-zeros
- Claim: Let $B^{\prime}=B \backslash\{h\} \cup\{k\}$. Then B^{\prime} is a basis.
- Claim: $\mathrm{y}(\delta)$ is a BFS determined by B^{\prime}.
- B^{\prime} is a neighboring basis of B , and $\mathrm{y}(\delta)$ is a neighboring BFS of x .

Neighboring Bases: Summary

- Suppose we have a feasible basis B
($|B|=m, A_{B}$ full rank)
- It defines BFS x where $x_{B}=A_{B}{ }^{-1} b \geq 0$ and $x_{B}=0$
- Pick a coordinate $k \notin B \longleftarrow \quad k$ is called "entering coordinate"
- Compute $y(\delta)$ h is called "leaving coordinate"
$-\mathrm{y}(\epsilon)=\mathrm{x}+\epsilon \mathrm{d}$ where: $\mathrm{d}_{\mathrm{B}}=-\mathcal{A}_{\mathrm{B}}^{-1} \mathrm{~A}_{\mathrm{k}}, \mathrm{d}_{\mathrm{k}}=1$, and $\mathrm{d}_{\mathrm{i}}=0 \forall \mathrm{i} \notin \mathrm{B} \cup\{\mathrm{k}\}$
$-\delta=\max \{\epsilon: y(\epsilon)$ feasible $\}$
- If $\delta<\infty$ then $y(\delta)$ is a BFS
- Pick any $h \in B$ with $y(\delta)_{h}=0$
(This is completely determined by B and k)
- $\mathrm{y}(\delta)$ is determined by $\mathrm{B}^{\prime}=\mathrm{B} \backslash\{\mathrm{h}\} \cup\{\mathrm{k}\}$
- $\mathrm{y}(\delta)$ is a neighboring BFS of x , and B^{\prime} is a neighboring basis of B Unless $\delta=0 \Rightarrow \mathrm{y}(\delta)=\mathrm{x}$. B^{\prime} is a neighboring basis but, $\mathrm{y}(\delta)$ is the same BFS. or $\delta=\infty \Rightarrow$ feasible region unbounded in direction d.

> Local-Search Algorithm
> Let B be a feasible basis
> (if none, infeasible)
> For each neighboring basis B^{\prime} of B Compute BFS y defined by B' If $c^{\top} y>c^{\top} x$ then set $x=y$
> Halt

Nhat is a corner point?
(BFS and bases)
Nhat if there are no corner points?
(Infeasible)
Nhat are the "neighboring" bases?
4. What if no neighbors are strictly better?
5. How can I find a starting feasible basis?
6. Does the algorithm terminate?
7. Does it produce the right answer?

Finding better neighbors

- Consider LP max $\left\{c^{\top} x: A x=b, x \geq 0\right\}$
- We have BFS x determined by basis B
- Find a neighbor: pick $\mathrm{k} \notin \mathrm{B}$, compute $\mathrm{y}(\delta) \quad(\delta=\max \{\epsilon: y(\epsilon)$ feasible $\})$
- Is $\mathrm{y}(\delta)$ better? $\Leftrightarrow \mathrm{c}^{\top} \mathrm{y}(\delta)>\mathrm{c}^{\top} \mathrm{x}$

$$
\Leftrightarrow c^{\top}(x+\delta d)>c^{\top} x \Leftrightarrow c^{\top} d>0
$$

- $c^{\top} d$ is the benefit of increasing coordinate k (Might be negative)
- If $\delta=0$ we have same $B F S \Rightarrow$ same objective value $\quad(y(\delta)=x)$
- Suppose $c^{\top} d>0$
- If $\delta=\infty$, then LP is unbounded
- If $0<\delta<\infty$, then $\mathrm{y}(\delta)$ is a strictly better BFS
- Concise expression for benefit
- Recall: $d_{B}=-A_{B}{ }^{-1} A_{k}, d_{k}=1$, and $d_{i}=0 \forall i \notin B \cup\{k\}$
\Rightarrow Benefit of coordinate k is $c^{\top} d=c_{k}-c_{B}{ }^{\top} A_{B}{ }^{-1} A_{k}$

```
    Local-Search Algorithm
Let B be a feasible basis
(If none, Halt: LP is infeasible)
For each k }\not\in\textrm{B
    If "benefit" of coordinate k is > 0
        Compute y(\delta) (If \delta=\infty, Halt: LP is unbounded)
        Find leaving variable h\inB
        (y(\delta)h=0)
        Set x=y(\delta) and B'=B\{h}\cup{k}
Halt: return x
```

Nhat is a corner point?
Nhat if there are no corner points?
Nhat are the "neighboring" bases?
Nhat if no neighbors are strictly better?
Might move to a basis that isn't strictly better (if $\delta=0$), but whenever x changes it's strictly better)
5. How can I find a starting feasible basis?
6. Does the algorithm terminate?
7. Does it produce the right answer?

Example

See http://www.math.uwaterloo.ca/~harvey/F09/Lecture5Example.pdf

