C&O 355 Lecture 5

N. Harvey http://www.math.uwaterloo.ca/~harvey/

Outline

- Neighboring Bases
- Finding Better Neighbors
- "Benefit" of a coordinate
- Quick optimality proof
- Alternative optimality proof
 - Generalized neighbors and generalized benefit

Local-Search Algorithm

Let B be a feasible basis (if none, infeasible) For each feasible basis B' that is a neighbor of B Compute BFS y defined by B' If c^Ty>c^Tx then set x=y Halt

(BFS and bases)

Nhat if there are no corner points?(Infeasible)

- 3. What are the "neighboring" bases?
- 4. What if no neighbors are strictly better?
- 5. How can I find a starting feasible basis?
- 6. Does the algorithm terminate?
- 7. Does it produce the right answer?

- **Notation:** $A_k = k^{th}$ column of A
- Suppose we have a feasible basis B $(|B|=m, A_B \text{ full rank})$ - It defines BFS x where $x_B = A_B^{-1}b \ge 0$ and $x_{\overline{B}} = 0$
 - Can we find a basis "similar" to B but containing some k∉B?
 - Suppose we increase x_k from 0 to ϵ for some $k \notin B$
 - We'll violate the constraints Ax=b unless we modify x_B

Example:

- Notation: $A_k = k^{th}$ column of A
- Suppose we have a feasible basis B $(|B|=m, A_B \text{ full rank})$ - It defines BFS x where $x_B = A_B^{-1}b \ge 0$ and $x_{\overline{B}} = 0$
- Can we find a basis "similar" to B but containing some $k \notin B$?
- Suppose we increase x_k from 0 to ϵ for some $k \notin B$
 - We'll violate the constraints Ax=b unless we modify x_B
 - Replace x_B with y_B satisfying $A_B y_B + \epsilon A_k = b$

$$y = \left[\underbrace{y_{B}}_{B}, \underbrace{\epsilon}_{k}, \underbrace{0}_{B \cup \{k\}} \right]$$

- Given that $y_{\overline{B}\cup\{k\}}=0$ and $y_k=\epsilon$, there is a **unique y** ensuring Ay=b A_B $y_B + \epsilon A_k = b \implies y_B = A_B^{-1}(b-\epsilon A_k) = x_B - \epsilon A_B^{-1}A_k$
- So y(ϵ)=x+ ϵ d where: d_B=-A_B⁻¹A_k, d_k=1, and d_i=0 $\forall i \notin B \cup \{k\}$

- Suppose we increase x_k from 0 to ϵ for some $k \notin B$
 - We'll violate the constraints Ax=b unless we modify x_B
 - Replace x_B with y_B satisfying $A_B y_B + \epsilon A_k = b$ $\Rightarrow y_B = A_B^{-1}(b - \epsilon A_k) = x_B - \epsilon A_B^{-1}A_k$
 - So y(ϵ)=x+ ϵ d where: d_B=-A_B⁻¹A_k, d_k=1, and d_i=0 $\forall i \notin B \cup \{k\}$
- $y(\epsilon)$ feasible if $y(\epsilon) \ge 0$, but not basic: it has (probably) m+1 non-zeros!
 - $\mathbf{y}(\epsilon) \ge \mathbf{0} \iff \forall \mathbf{i}, \mathbf{y}(\epsilon)_{\mathbf{i}} = \mathbf{x}_{\mathbf{i}} + \epsilon \mathbf{d}_{\mathbf{i}} \ge \mathbf{0} \iff \epsilon \le \min\{-\mathbf{x}_{\mathbf{i}}/\mathbf{d}_{\mathbf{i}} : \mathbf{i} \text{ s.t. } \mathbf{d}_{\mathbf{i}} < \mathbf{0} \}$
 - If min= ∞ , then feasible region is unbounded in direction d.
 - Otherwise, let h be an i minimizing min. Let $\delta = -x_h/d_h$. (Note: h \in B)
 - Then $y(\delta)_h = x_h + \delta d_h = 0$, so $y(\delta)$ has $\leq m$ non-zeros

A = [1, 1, 1], b = [1] BFS **x**=(1,0,0), basis B={1} d = (-1, 1, 0) $\epsilon \le -x_1/d_1 = 1$ Take δ =1 and h=1

- Suppose we increase x_k from 0 to ϵ for some $k \notin B$
 - We'll violate the constraints Ax=b unless we modify x_B
 - Replace x_B with y_B satisfying $A_B y_B + \epsilon A_k = b$ $\Rightarrow y_B = A_B^{-1}(b - \epsilon A_k) = x_B - \epsilon A_B^{-1}A_k$
 - So y(ϵ)=x+ ϵ d where: $d_B = -A_B^{-1}A_k$, $d_k = 1$, and $d_i = 0 \forall i \notin B \cup \{k\}$
- $y(\epsilon)$ feasible if $y(\epsilon) \ge 0$, but not basic: it has (probably) m+1 non-zeros!
 - $y(\epsilon) \ge 0 \iff \forall i, y(\epsilon)_i = x_i + \epsilon d_i \ge 0 \iff \epsilon \le \min\{-x_i/d_i : i \text{ s.t. } d_i < 0\}$
 - If min= ∞ , then feasible region is unbounded in direction d.
 - Otherwise, let h be an i minimizing min. Let $\delta = -x_h/d_h$. (Note: h \in B)
 - Then $y(\delta)_h = x_h + \delta d_h = 0$, so $y(\delta)$ has $\leq m$ non-zeros
- **Claim:** Let $B'=B\setminus\{h\}\cup\{k\}$. Then B' is a basis.
- Proof: Suppose not. Then A_k is a lin. comb. of vectors in A_{B\{h}}. But A_k is a unique lin. comb. of vectors in A_B, since B is a basis. So coefficient of h in this lin. comb. must be 0. The lin. comb. is -d_B, since -A_Bd_B=A_k. But -d_h≠0. Contradiction! □

- Suppose we increase x_k from 0 to ϵ for some $k \notin B$
 - We'll violate the constraints Ax=b unless we modify x_B
 - Replace x_B with y_B satisfying $A_B y_B + \epsilon A_k = b$ $\Rightarrow y_B = A_B^{-1}(b - \epsilon A_k) = x_B - \epsilon A_B^{-1}A_k$
 - So y(ϵ)=x+ ϵ d where: d_B=-A_B⁻¹A_k, d_k=1, and d_i=0 $\forall i \notin B \cup \{k\}$
- $y(\epsilon)$ feasible if $y(\epsilon) \ge 0$, but not basic: it has (probably) m+1 non-zeros!
 - $y(\epsilon) \ge 0 \iff \forall i, y(\epsilon)_i = x_i + \epsilon d_i \ge 0 \iff \epsilon \le \min\{-x_i/d_i : i \text{ s.t. } d_i < 0\}$
 - If min= ∞ , then feasible region is unbounded in direction d.
 - Otherwise, let h be an i minimizing min. Let $\delta = -x_h/d_h$. (Note: h \in B)
 - Then $y(\delta)_h = x_h + \delta d_h = 0$, so $y(\delta)$ has $\leq m$ non-zeros
- **Claim:** Let $B'=B\setminus\{h\}\cup\{k\}$. Then B' is a basis.
- **Claim:** $y(\delta)$ is a BFS determined by B'.
- Proof: We enforced Ay=b. We showed y(δ)≥0. (y is feasible)
 We showed B' is a basis. We ensured y_i=0 ∀i∉B'. □

- Suppose we increase x_k from 0 to ϵ for some $k \notin B$
 - We'll violate the constraints Ax=b unless we modify x_B
 - Replace x_B with y_B satisfying $A_B y_B + \epsilon A_k = b$ $\Rightarrow y_B = A_B^{-1}(b - \epsilon A_k) = x_B - \epsilon A_B^{-1}A_k$
 - So y(ϵ)=x+ ϵ d where: d_B=-A_B⁻¹A_k, d_k=1, and d_i=0 $\forall i \notin B \cup \{k\}$
- $y(\epsilon)$ feasible if $y(\epsilon) \ge 0$, but not basic: it has (probably) m+1 non-zeros!
 - $y(\epsilon) \ge 0 \iff \forall i, y(\epsilon)_i = x_i + \epsilon d_i \ge 0 \iff \epsilon \le \min\{-x_i/d_i : i \text{ s.t. } d_i < 0\}$
 - If min= ∞ , then feasible region is unbounded in direction d.
 - Otherwise, let h be an iminimizing min. Let $\delta = -x_h/d_h$. (Note: h \in B)
 - Then $y(\delta)_h = x_h + \delta d_h = 0$, so $y(\delta)$ has $\leq m$ non-zeros
- **Claim:** Let $B'=B\setminus\{h\}\cup\{k\}$. Then B' is a basis.
- **Claim:** $y(\delta)$ is a BFS determined by B'.
- B' is a neighboring basis of B, and $y(\delta)$ is a neighboring BFS of x. (Unless $\delta=0$, in which case $y(\delta)=x$.)

Neighboring Bases: Summary

- Suppose we have a feasible basis B $(|B|=m, A_{B} \text{ full rank})$ - It defines BFS x where $x_B = A_B^{-1}b \ge 0$ and $x_B = 0$
- Pick a coordinate $(k \notin B)$
- Compute $y(\delta)$
 - $y(\epsilon)=x+\epsilon d$ where: $d_B=-A_B^{-1}A_k$, $d_k=1$, and $d_i=0$ $\forall i \notin B \cup \{k\}$
 - $-\delta = \max\{\epsilon : y(\epsilon) \text{ feasible }\}$
- If $\delta < \infty$ then $y(\delta)$ is a BFS (This is completely determined by B and k)
- Pick any $h \in B$ with $y(\delta)_h = 0$

k is called "entering coordinate"

h is called "leaving coordinate"

(Might be several possible h)

- $y(\delta)$ is determined by B'=B\{h}\cup\{k\}
- $y(\delta)$ is a **neighboring BFS** of x, and B' is a **neighboring basis** of B Unless $\delta = 0 \Rightarrow y(\delta) = x$. B' is a neighboring basis but, $y(\delta)$ is the same BFS. or $\delta = \infty \Rightarrow$ feasible region unbounded in direction d.

Local-Search Algorithm

Let B be a feasible basis (if none, infeasible) For each neighboring basis B' of B Compute BFS y defined by B' If c^Ty>c^Tx then set x=y Halt

(BFS and bases)

Nhat if there are no corner points? (Infeasible)

*N*hat are the "neighboring" bases? (Increase one coordinate)

- 4. What if no neighbors are strictly better?
- 5. How can I find a starting feasible basis?
- 6. Does the algorithm terminate?

*N*hat is a corner point?

7. Does it produce the right answer?

Finding better neighbors

- Consider LP max { $c^Tx : Ax=b, x \ge 0$ }
- We have BFS x determined by basis B
- Find a neighbor: pick $k \notin B$, compute $y(\delta)$
- Is $y(\delta)$ better? $\Leftrightarrow c^{T}y(\delta) > c^{T}x$

 $\Leftrightarrow c^{\mathsf{T}}(\mathsf{x} + \delta \mathsf{d}) > c^{\mathsf{T}}\mathsf{x} \Leftrightarrow c^{\mathsf{T}}\mathsf{d} > 0$

(Assuming δ >0)

 $(c^{T}y(\delta)>c^{T}x)$

- c^Td is the **benefit** of increasing coordinate k (Might be negative)
- If δ =0 we have same BFS \Rightarrow same objective value (y(δ)=x)
- Suppose c^Td>0
 - If $\delta = \infty$, then LP is unbounded (y(δ) feasible and $c^{T}y(\delta) = \infty$)
 - If $0 < \delta < \infty$, then $y(\delta)$ is a strictly better BFS
- Concise expression for benefit
 - Recall: $d_B = -A_B^{-1}A_k$, $d_k = 1$, and $d_i = 0 \forall i \notin B \cup \{k\}$

 $\Rightarrow \text{ Benefit of coordinate k is } c^{T}d = c_{k} - c_{B}^{T} A_{B}^{-1}A_{k}$

Local-Search Algorithm

Let B be a feasible basis (If none, Halt: LP is infeasible) For each $k \notin B$ If "benefit" of coordinate k is > 0 Compute $y(\delta)$ (If $\delta = \infty$, Halt: LP is unbounded) Find leaving variable $h \in B$ ($y(\delta)_h = 0$) Set $x = y(\delta)$ and $B' = B \setminus \{h\} \cup \{k\}$ Halt: return x

Nhat is a corner point?

Nhat if there are no corner points?

Nhat are the "neighboring" bases?

Nhat if no neighbors are strictly better?

Might move to a basis that isn't strictly better (if δ =0), but whenever x changes it's strictly better)

- 5. How can I find a starting feasible basis?
- 6. Does the algorithm terminate?
- 7. Does it produce the right answer?

(BFS and bases)

(Infeasible)

(Increase one coordinate)

Example

See http://www.math.uwaterloo.ca/~harvey/F09/Lecture5Example.pdf