C\&O 355 Lecture 4

N. Harvey

http://www.math.uwaterloo.ca/~harvey/

Outline

- Equational form of LPs
- Basic Feasible Solutions for Equational form LPs
- Bases and Feasible Bases
- Brute-Force Algorithm
- Neighboring Bases

Local-Search Algorithm: Pitfalls \& Details

```
Algorithm
Let x be any corner point
For each corner point }y\mathrm{ that is a neighbor of }
    If c}\mp@subsup{c}{}{\top}y>\mp@subsup{c}{}{\top}x\mathrm{ then set }x=
Halt
```

Nhat is a corner point?
L. What if there are no corner points?
3. What are the "neighboring" corner points?
4. What if there are no neighboring corner points?
5. How can I find a starting corner point?
6. Does the algorithm terminate?
7. Does it produce the right answer?

Pitfall \#2: No corner points?

- This is possible
- Case 1: LP infeasible

This is unavoidable.
Algorithm must detect this case.

- Case 2: Not enough constraints

$$
\begin{array}{ll}
\max & x_{1}+x_{2} \\
\text { s.t. } & x_{2} \leq 2 \\
& x_{2} \geq 0
\end{array}
$$

A Fix!

We avoid this case by using equational form.

Converting to Equational Form

- "Inequality form"

$$
\begin{gathered}
\max \quad c^{\top} x \\
\text { s.t. } A x \leq b \\
\text { Tall, skinny A } \quad \mathrm{A} \quad \mathrm{x} \leq \square \mathrm{b}
\end{gathered}
$$

- "Equational form"
max $c^{\top} x$
s.t. $A x=b$

Short, wide A

- Claim: These two forms of LPs are equivalent.
s.t. $A x \leq b$

$$
\text { s.t. } A x=b
$$

$$
x \quad \geq 0
$$

Easy: Just use "Simple LP Manipulations" from Lecture 2
Trick 1: " \geq " instead of " \leq "
Trick 2: "=" instead of " \leq "

This shows $\mathrm{P}=\{\mathrm{x}: \mathrm{Ax}=\mathrm{b}, \mathrm{x} \geq 0\}$ is a polyhedron.
"Inequality form"
$\min c^{\top} x$
s.t. $A x \leq b$
"Equational form"
$\rightarrow \quad \begin{array}{ll}\quad \begin{array}{l}\text { min } \\ \text { s.t. }\end{array} & A x=b \\ & x \geq 0\end{array}$

Trick 1: $\mathrm{x} \in \mathbb{R}$ can be written $\mathrm{x}=\mathrm{y}-\mathrm{z}$ where $\mathrm{y}, \mathrm{z} \geq 0$
So $\min c^{\top} x$
$\min c^{\top}(y-z)$
s.t. $A x \leq b \equiv$ s.t. $A(y-z) \leq b$ "slack variable" $y, z \geq 0$
Trick 2: For $\mathrm{u}, \mathrm{v} \in \mathbb{R}, \mathrm{u} \leq \mathrm{v} \Leftrightarrow \exists \mathrm{w} \geq 0$ s.t. $\mathrm{u}+\mathrm{w}=\mathrm{v}$
So $\min c^{\top}(y-z) \quad \min c^{\top}(y-z)$

$$
\begin{array}{ll}
\text { s.t. } & A(y-z) \leq b \\
y, z & \geq 0
\end{array} \quad \equiv \quad \begin{array}{lll}
& \text { s.t. } & A(y-z)+w \\
\\
y, z, w & \geq 0
\end{array}
$$

Rewrite it: $\quad \tilde{A}=[A,-A, I]$ Thesis $\{\Theta$, react, 0$]$] equational 和nuo $]$!
Then $\min c^{\top}(y-z)$

$$
\min \quad \tilde{c}^{\top} \tilde{x}
$$

$$
\begin{array}{ll}
\text { s.t. } & A(y-z)+w \\
y, z, w & \geq 0
\end{array}
$$

Pitfall \#2: No corner points?

Lemma: Consider the polyhedron $P=\{A x=b, x \geq 0\}$. If P is non-empty, it has at least one corner point.

Proof:

Claim: P contains no line.
Proof: Let $L=\{r+\lambda s: \lambda \in \mathbb{R}\}$ be a line, where $r, s \in \mathbb{R}^{n}$ and $s \neq 0$.
WLOG $s_{i}>0$. Let $x=r+\lambda s$, where $\lambda=-r_{i} / s_{i}-1$.
Then $x_{i}=r_{i}+\left(-r_{i} / s_{i}-1\right) s_{i}=-s_{i}<0 \Rightarrow x \notin P . \square$
Lemma from Lecture 3: "Any non-empty polyhedron containing no line must have a corner point."
So P has a corner point.

Local-Search Algorithm: Pitfalls \& Details

```
Algorithm
Let x be any corner point
For each corner point }y\mathrm{ that is a neighbor of }
    If }\mp@subsup{c}{}{\top}y>\mp@subsup{c}{}{\top}x\mathrm{ then set }x=
Halt
```

Nhat is a corner point?
Nhat if there are no corner points?
3. What are the "neighboring" corner points?
4. What if there are no neighboring corner points?
5. How can I find a starting corner point?
6. Does the algorithm terminate?
7. Does it produce the right answer?

BFS for Equational Form LPs

- Recall definition: $\mathrm{x} \in \mathrm{P}$ is a $\mathrm{BFS} \Leftrightarrow \operatorname{rank} \mathcal{A}_{\mathrm{x}}=\mathrm{n}$

"x has n linearly indep. tight constraints"

- Equational form LPs have another formulation of BFS
- Let $P=\{x: A x=b, x \geq 0\} \subseteq \mathbb{R}^{n}$, where A has size $m x n$ (Assume rank $A=m$, i.e., no redundant constraints)
- Notation: For $B \subseteq\{1, \ldots, n\}$ define
$A_{B}=$ submatrix of A containing columns indexed by B
- Lemma: Fix $x \in P . x$ is a $B F S \Leftrightarrow \exists B \subseteq\{1, \ldots, n\}$ with $|B|=m$ s.t.
- A_{B} has full rank
- $x_{i}=0 \quad \forall i \notin B$

Useful Linear Algebra Trick

- Lemma: Let $M=$| W | x |
| :---: | :---: |
| 0 | Y | , where W and Y square.

Then $\operatorname{det} \mathrm{M}=\operatorname{det} \mathrm{W} \cdot \operatorname{det} \mathrm{Y}$.

- Corollary: M non-singular $\Leftrightarrow \mathrm{W}, \mathrm{Y}$ both non-singular.

Let $P=\{x: A x=b, x \geq 0\}$. Assume rank $A=m$. Fix $x \in P$.
Lemma: x is a $B F S \Leftrightarrow \exists B \subseteq\{1, \ldots, n\}$ with $|B|=m$ s.t.

- A_{B} has full rank
- $x_{i}=0 \forall i \notin B$

Proof: \Leftarrow direction. WLOG $B=\{1, \ldots, m\}$.
x satisfies the constraints:

$$
\begin{aligned}
A x & =b \\
x_{i} & =0 \quad \forall i \notin B
\end{aligned}
$$

Using trick: Since A_{B} and I are non-singular, M is non-singular.
So x satisfies n constraints of P with equality, and these constraints are linearly independent.
$\Rightarrow \mathrm{x}$ is a BFS .

Let $P=\{x: A x=b, x \geq 0\}$. Assume rank $A=m$. Fix $x \in P$.
Lemma: x is a $B F S \Leftrightarrow \exists B \subseteq\{1, \ldots, n\}$ with $|B|=m$ s.t.

- A_{B} has full rank
- $x_{i}=0 \forall i \notin B$

Proof: \Rightarrow direction.
x a BFS $\Rightarrow \operatorname{rank} \mathcal{A}_{\mathrm{x}}=\mathrm{n}$
The constraints:
The tight constraints:

The tight row-vectors have rank n
The rows of A are linearly independent (m of them)
Can augment rows of A to a basis, using only tight row-vectors
(i.e., add n-m more tight rows, preserving linear independence)

Let $\mathrm{S}=\left\{\mathrm{i}\right.$: constraint " $-\mathrm{x}_{\mathrm{i}} \leq 0$ " was added to basis $\}$. So $|\mathrm{S}|=\mathrm{n}-\mathrm{m}$.
WLOG, $S=\{m+1, \ldots, n\}$. Note $x_{i}=0 \forall i \in S$.

Let $P=\{x: A x=b, x \geq 0\}$. Assume rank $A=m$. Fix $x \in P$.
Lemma: x is a $B F S \Leftrightarrow \exists B \subseteq\{1, \ldots, n\}$ with $|B|=m$ s.t.

- A_{B} has full rank
- $x_{i}=0 \forall i \notin B$

Proof: \Rightarrow direction.
x a BFS $\Rightarrow \operatorname{rank} \mathcal{A}_{\mathrm{x}}=\mathrm{n}$

The rows of A are linearly indep. (m of them)
Can augment rows of A to a basis, using only tight row-vectors
(i.e., add n-m more tight rows, preserving linear independence)

Let $\mathrm{S}=\left\{\mathrm{i}\right.$: constraint " $-\mathrm{x}_{\mathrm{i}} \leq 0$ " was added to basis $\}$. So $|\mathrm{S}|=\mathrm{n}-\mathrm{m}$.
WLOG, $\mathrm{S}=\{\mathrm{m}+1, \ldots, \mathrm{n}\}$. Note $\mathrm{x}_{\mathrm{i}}=0 \forall \mathrm{i} \in \mathrm{S}$.
Rows are basis $\Rightarrow M$ non-sing. $\Rightarrow A_{\bar{s}}$ non-sing. Take $B=\bar{S}$.

Bases

Let $P=\{x: A x=b, x \geq 0\}$. Assume rank $A=m$. Fix $x \in P$.
Lemma: x is a $B F S \Leftrightarrow B \subseteq\{1, \ldots, n\}$ with $|B|=m$ s.t.

- A_{B} has full rank
- $x_{i}=0 \quad \forall i \notin B$
- B is called a "basis"

Let's use B to define a vector x. Set:

If $x \geq 0, B$ is called a feasible basis.
Above lemma can be restated:

- If x is a BFS, then there is (at least one) feasible basis that defines it
- If basis B defines x and $x \geq 0$ then x is a BFS

Our definitions:

- $B \subseteq\{1, \ldots, n\}$ is a basis if $|B|=m$ and A_{B} has full rank
- Basis B defines x if $A_{B} x_{B}=b$ and $x_{i}=0 \quad \forall i \notin B$

Our Lemma:

- If x is a BFS, then there is (at least one) basisthat defines it
- If basis B defines x and $x \geq 0$ then x is a BFS

Corollary: $P=\{x: A x=b, x \geq 0\}$ has at most $\binom{n}{m}$ extreme points Gives simple algorithm for solving LP max $\left\{c^{\top} x: x \in P\right\}$

Brute-Force Algorithm	
$z=-\infty$	
For every $B \subseteq\{1, \ldots, n\}$ with $\|B\|=m$	
If A_{B} has full rank \quad (B is a basis)	
Solve $A_{B} X_{B}=b$ for x; set $x \bar{B}=0$	
If $x \geq 0$ and $c^{\top} x>z$	
$z=c^{\top} x$	

Two Observations

1) It is natural to iterate over bases instead of BFS
2) Multiple bases can define same BFS \Rightarrow algorithm can revisit same x
```
    Revised Algorithm
Let B be a feasible basis
(if none, infeasible)
For each feasible basis B' that is a neighbor of B
    Compute BFS y defined by B'
    If c}\mp@subsup{c}{}{\top}y>\mp@subsup{c}{}{\top}x\mathrm{ then set }x=
Halt
```

- Revised Local-Search algorithm that gives bases a more prominent role than corner points
- This will help us define "neighbors"

> Local-Search Algorithm
> Let B be a feasible basis
> (if none, infeasible)
> For each feasible basis B^{\prime} that is a neighbor of B Compute BFS y defined by B' If $c^{\top} y>c^{\top} x$ then set $x=y$
> Halt

Nhat is a corner point?
Nhat if there are no corner points?
3. What are the "neighboring" corner points?
4. What if there are no neighboring corner points?
5. How can I find a starting corner point?
6. Does the algorithm terminate?
7. Does it produce the right answer?

Neighboring Bases

- Notation: $A_{k}=k^{\text {th }}$ column of A
- Suppose we have a feasible basis B
- It defines BFS x where $x_{B}=A_{B}{ }^{-1} b$ and $x_{\bar{B}}=0$
- Can we find a basis "similar" to B but containing some $k \notin B$?
- ...next time...

