
C&O 355
Lecture 4

N. Harvey
http://www.math.uwaterloo.ca/~harvey/

Outline

• Equational form of LPs

• Basic Feasible Solutions for Equational form LPs

• Bases and Feasible Bases

• Brute-Force Algorithm

• Neighboring Bases

Local-Search Algorithm: Pitfalls & Details

1. What is a corner point?

2. What if there are no corner points?

3. What are the “neighboring” corner points?

4. What if there are no neighboring corner points?

5. How can I find a starting corner point?

6. Does the algorithm terminate?

7. Does it produce the right answer?

Algorithm
Let x be any corner point
For each corner point y that is a neighbor of x

If cTy>cTx then set x=y
Halt

Pitfall #2: No corner points?

• This is possible

– Case 1: LP infeasible

– Case 2: Not enough constraints

x1

x2 x2 · 2

x2 ¸ 0

This is unavoidable.
Algorithm must detect this case.

A Fix!
We avoid this case by using equational form.

x1

x2 x2 - x1 ¸ 1

x1 + 6x2 · 15

4x1 - x2 ¸ 10
(0,0)

x1¸0

x2¸0

Converting to Equational Form
• “Inequality form”

• “Equational form”

• Claim: These two forms of LPs are equivalent.

x1

x2
x2 - x1 · 1

x1 + 6x2 · 15

4x1 - x2 · 10
(0,0) x1¸0

x2¸0

(3,2)

x1

x2 Solutions of Ax=b

Feasible region

x3

A · x b

A =x b

Tall, skinny A

Short, wide A

Easy: Just use “Simple LP Manipulations” from Lecture 2

Trick 1: “¸” instead of “·”

Trick 2: “=” instead of “·”

This shows P={ x : Ax=b, x¸0 } is a polyhedron.

“Inequality form” “Equational form”



Trick 1: x2R can be written x=y-z where y,z¸0

So

Trick 2: For u,v2R, u·v , 9w¸0 s.t. u+w=v

So

Rewrite it:
Then

“Inequality form” “Equational form”

´

´

~A = [A;¡A;I] ~c = [c;¡c;0] ~x= [y; z;w]

´



“slack variable”

This is already in equational form!

Pitfall #2: No corner points?
Lemma: Consider the polyhedron P = { Ax=b, x¸0 }.

If P is non-empty, it has at least one corner point.

Proof:

Claim: P contains no line.

Proof: Let L={ r+¸s : ¸2R } be a line, where r,s2Rn and s0.

WLOG si>0. Let x=r+¸s, where ¸=-ri/si-1.

Then xi = ri+(-ri/si-1)si = -si < 0) xP. ¤

Lemma from Lecture 3: “Any non-empty polyhedron
containing no line must have a corner point.”

So P has a corner point. ¥

Local-Search Algorithm: Pitfalls & Details

1. What is a corner point?

2. What if there are no corner points?

3. What are the “neighboring” corner points?

4. What if there are no neighboring corner points?

5. How can I find a starting corner point?

6. Does the algorithm terminate?

7. Does it produce the right answer?

Algorithm
Let x be any corner point
For each corner point y that is a neighbor of x

If cTy>cTx then set x=y
Halt

Let’s revisit #1

BFS for Equational Form LPs

• Recall definition: x2P is a BFS , rank Ax = n
“x has n linearly indep. tight constraints”

• Equational form LPs have another formulation of BFS

• Let P = { x : Ax=b, x¸0 }µRn, where A has size mxn
(Assume rank A=m, i.e., no redundant constraints)

• Notation: For Bµ{1,…,n} define
AB = submatrix of A containing columns indexed by B

• Lemma: Fix x2P. x is a BFS , 9Bµ{1,…,n} with |B|=m s.t.

• AB has full rank

• xi = 0 8iB

Useful Linear Algebra Trick

• Lemma: Let , where W and Y square.

Then det M = det W ¢ det Y.

• Corollary: M non-singular , W, Y both non-singular.

M =
W X

0 Y

Let P = { x : Ax=b, x¸0 }. Assume rank A=m. Fix x2P.

Lemma: x is a BFS , 9Bµ{1,…,n} with |B|=m s.t.
• AB has full rank
• xi = 0 8iB

Proof: (direction. WLOG B={1,…,m}.

x satisfies the constraints:

Ax = b

xi = 0 8iB

Using trick: Since AB and I are non-singular, M is non-singular.

So x satisfies n constraints of P with equality, and these
constraints are linearly independent.

) x is a BFS. ¥

´
A

0 I
x =

b

0

B B

AB AB

0 I

m

m n-m

n-m

M

Let P = { x : Ax=b, x¸0 }. Assume rank A=m. Fix x2P.

Lemma: x is a BFS , 9Bµ{1,…,n} with |B|=m s.t.
• AB has full rank
• xi = 0 8iB

Proof:) direction.
x a BFS) rank Ax=n

The rows of A are linearly independent (m of them)

Can augment rows of A to a basis, using only tight row-vectors
(i.e., add n-m more tight rows, preserving linear independence)

Let S = { i : constraint “-xi·0” was added to basis }. So |S|=n-m.
WLOG, S={m+1,…,n}.

x ·The constraints:

The tight constraints:

The tight row-vectors have rank n

A

-A

-I

b

-b

0

Note xi=0 8i2S.

S
S

because Ax=b

Let P = { x : Ax=b, x¸0 }. Assume rank A=m. Fix x2P.

Lemma: x is a BFS , 9Bµ{1,…,n} with |B|=m s.t.
• AB has full rank
• xi = 0 8iB

Proof:) direction.
x a BFS) rank Ax=n

The rows of A are linearly indep. (m of them)

Can augment rows of A to a basis, using only tight row-vectors
(i.e., add n-m more tight rows, preserving linear independence)

Let S = { i : constraint “-xi·0” was added to basis }. So |S|=n-m.
WLOG, S={m+1,…,n}.
Rows are basis) M non-sing.) AS non-sing. Take B=S. ¥

SS

A

0 I

AS AS

0 I

m

m n-m

n-m
M =

Note xi=0 8i2S.

rows in our basis

Bases
Let P = { x : Ax=b, x¸0 }. Assume rank A=m. Fix x2P.

Lemma: x is a BFS , 9Bµ{1,…,n} with |B|=m s.t.
• AB has full rank
• xi = 0 8iB

Let’s use B to define a vector x. Set:
xB = AB

-1 b and xi=0 8iB

If x¸0, B is called a feasible basis.

Above lemma can be restated:
• If x is a BFS, then there is (at least one) feasible basis that defines it
• If basis B defines x and x¸0 then x is a BFS

Restrict x to components in B

B is called a “basis”

Say this x is defined by B
Note: Ax = b
Is x¸0? Maybe not…

Our definitions:
• Bµ{1,…,n} is a basis if |B|=m and AB has full rank
• Basis B defines x if ABxB=b and xi=0 8iB

Our Lemma:
• If x is a BFS, then there is (at least one) basisthat defines it
• If basis B defines x and x¸0 then x is a BFS

Corollary: P={ x : Ax=b, x¸0 } has at most extreme points

Gives simple algorithm for solving LP max { cTx : x2P }

¡
n
m

¢

Brute-Force Algorithm
z = -1

For every Bµ{1,…,n} with |B|=m
If AB has full rank (B is a basis)

Solve AB xB = b for x; set xB=0
If x¸0 and cTx>z (x is a BFS)

z = cTx

Gives optimal value, assuming LP is not unbounded

Two Observations

1) It is natural to iterate over
bases instead of BFS

2) Multiple bases can define
same BFS) algorithm can
revisit same x

Revised Algorithm
Let B be a feasible basis (if none, infeasible)

For each feasible basis B’ that is a neighbor of B
Compute BFS y defined by B’
If cTy>cTx then set x=y

Halt

• Revised Local-Search algorithm that gives bases a
more prominent role than corner points

• This will help us define “neighbors”

1. What is a corner point?

2. What if there are no corner points?

3. What are the “neighboring” corner points?

4. What if there are no neighboring corner points?

5. How can I find a starting corner point?

6. Does the algorithm terminate?

7. Does it produce the right answer?

Local-Search Algorithm
Let B be a feasible basis (if none, infeasible)

For each feasible basis B’ that is a neighbor of B
Compute BFS y defined by B’
If cTy>cTx then set x=y

Halt

Neighboring Bases
• Notation: Ak = kth column of A

• Suppose we have a feasible basis B (|B|=m, AB full rank)

– It defines BFS x where xB = AB
-1b and xB = 0

• Can we find a basis “similar” to B but containing some kB?

• …next time…

