C&O 355 Lecture 4

N. Harvey http://www.math.uwaterloo.ca/~harvey/

Outline

- Equational form of LPs
- Basic Feasible Solutions for Equational form LPs
- Bases and Feasible Bases
- Brute-Force Algorithm
- Neighboring Bases

Local-Search Algorithm: Pitfalls & Details

Algorithm

Let x be any corner point For each corner point y that is a neighbor of x If c^Ty>c^Tx then set x=y Halt

Nhat is a corner point?

- 2. What if there are no corner points?
- 3. What are the "neighboring" corner points?
- 4. What if there are no neighboring corner points?
- 5. How can I find a starting corner point?
- 6. Does the algorithm terminate?
- 7. Does it produce the right answer?

Pitfall #2: No corner points?

Converting to Equational Form

• Claim: These two forms of LPs are equivalent.

"Inequality form"
min $c^{\mathsf{T}}x$
s.t. $Ax \le b$ "Equational form"
min $c^{\mathsf{T}}x$
s.t. Ax = b
 $x \ge 0$

Easy: Just use "Simple LP Manipulations" from Lecture 2

Trick 1: " \geq " instead of " \leq "

Trick 2: "=" instead of "≤"

This shows $P=\{x : Ax=b, x \ge 0\}$ is a polyhedron.

"Inequality form" "Equational form" min $c^{\mathsf{T}}x$ min $c^{\mathsf{T}}x$ s.t. $Ax \leq b$ s.t. Ax = bx > 0*Trick 1:* $x \in \mathbb{R}$ can be written x=y-z where $y,z \geq 0$ min $c^{\mathsf{T}}x$ min c'(y-z)So s.t. $A(y-z) \leq b$ s.t. $Ax \leq b$ $y, z \ge 0$ "slack variable" ——— *Trick* 2: For $u,v \in \mathbb{R}$, $u < v \Leftrightarrow \exists w > 0$ s.t. u+w=vmin $c^{\mathsf{T}}(y-z)$ min $c^{\mathsf{T}}(y-z)$ So s.t. $A(y-z) \leq b \equiv$ s.t. A(y-z) + w = by, z > 0 $y, z, w \ge 0$ **Rewrite it:** $\tilde{A} = [A, -A, I]$ This is a ready 0 h equation of the second s Then min $c^{\mathsf{T}}(y-z)$ min $\tilde{c}^{\mathsf{T}}\tilde{x}$ s.t. $A(y-z) + w = b \equiv$ s.t. $\tilde{A}\tilde{x} = b$ > 0y, z, w $\tilde{x} \ge 0$

Pitfall #2: No corner points?

Lemma: Consider the polyhedron $P = \{Ax=b, x \ge 0\}$. If P is non-empty, it has **at least one corner point**.

Proof:

Claim: P contains no line. **Proof:** Let L={ $r+\lambda s : \lambda \in \mathbb{R}$ } be a line, where $r,s \in \mathbb{R}^n$ and $s \neq 0$. WLOG $s_i > 0$. Let $x=r+\lambda s$, where $\lambda = -r_i/s_i-1$. Then $x_i = r_i + (-r_i/s_i-1)s_i = -s_i < 0 \implies x \notin P$. \Box

Lemma from Lecture 3: "Any non-empty polyhedron containing no line must have a corner point."So P has a corner point.

Local-Search Algorithm: Pitfalls & Details

Algorithm

Let x be any corner point For each corner point y that is a neighbor of x If c^Ty>c^Tx then set x=y Halt

Nhat is a corner point?

Let's revisit #1

Nhat if there are no corner points?

- 3. What are the "neighboring" corner points?
- 4. What if there are no neighboring corner points?
- 5. How can I find a starting corner point?
- 6. Does the algorithm terminate?
- 7. Does it produce the right answer?

BFS for Equational Form LPs

- Recall definition: $x \in P$ is a BFS \Leftrightarrow rank $A_x = n$ "x has n linearly indep. tight constraints"
- Equational form LPs have another formulation of BFS
- Let P = { x : Ax=b, x≥0 }⊆ℝⁿ, where A has size mxn (Assume rank A=m, i.e., no redundant constraints)
- Notation: For B⊆{1,...,n} define
 A_B = submatrix of A containing columns indexed by B
- Lemma: Fix $x \in P$. x is a BFS $\Leftrightarrow \exists B \subseteq \{1, ..., n\}$ with |B| = m s.t.
 - A_B has full rank
 - $\mathbf{x}_i = \mathbf{0} \quad \forall i \notin \mathbf{B}$

Useful Linear Algebra Trick

• Lemma: Let $M = \frac{W \times X}{0 \times Y}$, where W and Y square.

Then det M = det W \cdot det Y.

• **Corollary:** M non-singular ⇔ W, Y both non-singular.

Let P = { x : Ax=b, x \geq 0 }. Assume rank A=m. Fix x \in P.

Lemma: x is a BFS $\Leftrightarrow \exists B \subseteq \{1, ..., n\}$ with |B| = m s.t.

- A_B has full rank
- $\mathbf{x}_i = \mathbf{0} \quad \forall i \notin \mathbf{B}$

Using trick: Since A_B and I are non-singular, M is non-singular.

So x satisfies n constraints of P with equality, and these constraints are linearly independent.

 \Rightarrow x is a BFS.

Let P = { x : Ax=b, $x \ge 0$ }. Assume rank A=m. Fix $x \in P$.

Lemma: x is a BFS $\Leftrightarrow \exists B \subseteq \{1,...,n\}$ with |B|=m s.t.

- A_B has full rank
- $x_i = 0 \quad \forall i \notin B$

Proof: \Rightarrow direction. x a BFS \Rightarrow rank \mathcal{A}_{X} =n The constraints: The tight constraints: The tight constraints: The tight row-vectors have rank n The rows of A are linearly independent (m of them) Can augment rows of A to a basis, using only tight row-vectors

(i.e., add n-m more tight rows, preserving linear independence) Let S = { i : constraint "- $x_i \le 0$ " was added to basis }. So |S|=n-m. WLOG, S={m+1,...,n}. Note $x_i=0 \forall i \in S$. Let P = { x : Ax=b, x \geq 0 }. Assume rank A=m. Fix x \in P.

Lemma: x is a BFS $\Leftrightarrow \exists B \subseteq \{1,...,n\}$ with |B|=m s.t.

- A_B has full rank
- $x_i = 0 \quad \forall i \notin B$

Proof: \Rightarrow direction. x a BFS \Rightarrow rank \mathcal{A}_{x} =n M = $M = \begin{pmatrix} m & n-m \\ A_{\overline{S}} & A_{S} \\ 0 & 1 \\ \hline S & S \end{pmatrix}$ rows in our basis

The rows of A are linearly indep. (m of them) Can augment rows of A to a **basis**, using only tight row-vectors (i.e., add n-m more tight rows, preserving linear independence) Let S = { i : constraint "-x_i \leq 0" was added to **basis** }. So |S|=n-m. WLOG, S={m+1,...,n}. Note x_i=0 $\forall i \in S$. Rows are basis \Rightarrow M non-sing. \Rightarrow A_s non-sing. Take B= \overline{S} .

Bases

If $x \ge 0$, B is called a **feasible basis**.

Above lemma can be restated:

- If x is a BFS, then there is (at least one) feasible basis that defines it
- If basis B defines x and $x \ge 0$ then x is a BFS

Our definitions:

- $B \subseteq \{1,...,n\}$ is a basis if |B|=m and A_B has full rank
- Basis B defines x if $A_B x_B = b$ and $x_i = 0 \quad \forall i \notin B$

Our Lemma:

- If x is a BFS, then there is (at least one) basisthat defines it
- If basis B defines x and $x \ge 0$ then x is a BFS

Corollary: P={ x : Ax=b, x \geq 0 } has at most $\binom{n}{m}$ extreme points

Gives simple algorithm for solving LP max { $c^Tx : x \in P$ }

```
Brute-Force Algorithmz = -\inftyFor every B \subseteq \{1, ..., n\} with |B| = mIf A_B has full rank(B is a basis)Solve A_B x_B = b for x; set x_{\overline{B}} = 0If x \ge 0 and c^T x > z(x is a BFS)z = c^T x
```

Gives optimal value, assuming LP is not unbounded

Two Observations

- 1) It is natural to iterate over bases instead of BFS
- 2) Multiple bases can define same BFS ⇒ algorithm can revisit same x

- Revised Local-Search algorithm that gives bases a more prominent role than corner points
- This will help us define "neighbors"

Local-Search Algorithm

Let B be a feasible basis (if none, infeasible) For each feasible basis B' that is a neighbor of B Compute BFS y defined by B' If c^Ty>c^Tx then set x=y Halt

*N*hat is a corner point?

Nhat if there are no corner points?

- 3. What are the "neighboring" corner points?
- 4. What if there are no neighboring corner points?
- 5. How can I find a starting corner point?
- 6. Does the algorithm terminate?
- 7. Does it produce the right answer?

Neighboring Bases

- Notation: $A_k = k^{th}$ column of A
- Suppose we have a feasible basis B (|B|=m, A_B full rank)

- It defines BFS x where $x_B = A_B^{-1}b$ and $x_{\overline{B}} = 0$

- Can we find a basis "similar" to B but containing some k∉B?
- ...next time...