C\&O 355 Lecture 3

N. Harvey

http://www.math.uwaterloo.ca/~harvey/

Outline

- Review Local-Search Algorithm
- Pitfall \#1: Defining corner points
- Polyhedra that don't contain a line have corner points
- Pitfall \#2: No corner points?
- Equational form of LPs

Local-Search Algorithm: Pitfalls \& Details

```
Algorithm
Let \(x\) be any corner point
For each corner point \(y\) that is a neighbor of \(x\) If \(c^{\top} y>c^{\top} x\) then set \(x=y\)
Halt
```


Local-Search Algorithm: Pitfalls \& Details

```
Algorithm
Let \(x\) be any corner point
For each corner point \(y\) that is a neighbor of \(x\) If \(c^{\top} y>c^{\top} x\) then set \(x=y\)
Halt
```

1. What is a corner point?
2. What if there are no corner points?
3. What are the "neighboring" corner points?
4. How to choose a neighboring point?
5. How can I find a starting corner point?
6. Does the algorithm terminate?
7. Does it produce the right answer?

Pitfall \#1: What is a corner point?

- How should we define corner points?
- Under any reasonable definition, point x should be considered a corner point

Pitfall \#1: What is a corner point?

- Attempt \#1: "x is the 'farthest point' in some direction"
- Let $P=\{$ feasible region $\}$
- There exists $c \in \mathbb{R}^{n}$ s.t. $c^{\top} x>c^{\top} y$ for all $y \in P \backslash\{x\}$
- "For some objective function, x is the unique optimal point when maximizing over $P^{\prime \prime}$
- Such a point x is called a "vertex"

Pitfall \#1: What is a corner point?

- Attempt \#2: "There is no feasible line-segment that goes through x in both directions"
- Whenever $\mathbf{x}=\alpha \mathbf{y}+(1-\alpha) \mathbf{z}$ with $\mathbf{y}, \mathrm{z} \neq \mathbf{x}$ and $\alpha \in(0,1)$, then either y or z must be infeasible.
- "If you write x as a convex combination of two feasible points y and z, the only possibility is $x=y=z$ "
- Such a point x is called an "extreme point"

Pitfall \#1: What is a corner point?

- Attempt \#3: "x lies on the boundary of many constraints"
- Note: This discussion differs from textbook

Pitfall \#1: What is a corner point?

- Attempt \#3: "x lies on the boundary of manyconstraints"
- Note: This discussion differs from textbook
- What if I introduce redundant constraints?

Not the right condition

$$
\begin{aligned}
x_{1}+6 x_{2} & \leq 15 \\
2 x_{1}+12 x_{2} & \leq 30
\end{aligned}
$$

y also lies on boundary of two constraints

Pitfall \#1: What is a corner point?

- Revised Attempt \#3: "x lies on the boundary of many linearly independent constraints"
- Feasible region: $\mathrm{P}=\left\{\mathrm{x}: \mathrm{a}_{\mathrm{i}}^{\mathrm{T}} \mathrm{x} \leq \mathrm{b}_{\mathrm{i}} \forall \mathrm{i}\right\} \subset \mathbb{R}^{\mathrm{n}}$
- Let $\mathcal{I}_{\mathrm{x}}=\left\{\mathrm{i}: \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{x}=\mathrm{b}_{\mathrm{i}}\right\}$ and $\mathcal{A}_{\mathrm{x}}=\left\{\mathrm{a}_{\mathrm{i}}: \mathrm{i} \in \mathcal{I}_{\mathrm{x}}\right\}$. ("Tight constraints")
- x is a "basic feasible solution (BFS)" if rank $\mathcal{A}_{\mathrm{x}}=\mathrm{n}$

$$
\begin{gathered}
x_{1}+6 x_{2} \leq 15 \\
2 x_{1}+12 x_{2} \leq 30 \\
\text { constraints are } \\
\text { early dependent }
\end{gathered}
$$

Lemma: Let P be a polyhedron. The following are equivalent.
i. x is a vertex
ii. x is an extreme point
iii. x is a basic feasible solution (BFS)

Lemma: Let P be a polyhedron. The following are equivalent.
i. x is a vertex
ii. x is an extreme point
iii. x is a basic feasible solution (BFS)

Proof of $(\mathrm{i}) \Rightarrow(\mathrm{ii})$:
x is a vertex $\Rightarrow \exists \mathrm{c}$ s.t. x is unique maximizer of $\mathrm{c}^{\top} x$ over P
Suppose $\mathrm{x}=\alpha \mathrm{y}+(1-\alpha) \mathrm{z}$ where $\mathrm{y}, \mathrm{z} \in \mathrm{P}$ and $\alpha \in(0,1)$.
Suppose $y \neq x$. Then

$$
\begin{aligned}
& \underbrace{\mathrm{c}^{\top} \mathrm{X}=\alpha \underbrace{\mathrm{c}^{\top} \mathrm{y}}+(1-\alpha)} \underbrace{\mathrm{c}^{\top} \mathrm{z}}_{\leq \mathrm{c}^{\top} \mathrm{x}} \\
& \Rightarrow \quad \text { (since } \mathrm{c}^{\top} \mathrm{x} \text { is optimal value) } \\
& \Rightarrow \quad \mathrm{c}^{\top} \mathrm{x}<\alpha \mathrm{c}^{\top} \mathrm{x}+(1-\alpha) \mathrm{c}^{\top} \mathrm{x}=\mathrm{c}^{\top} \mathrm{x} \text { (since } \mathrm{x} \text { is unique optimizer) } \\
& \text { Contradiction! }
\end{aligned}
$$

So $y=x$. Symmetrically, $z=x$.
So x is an extreme point of P. \square

Lemma: Let $\mathrm{P}=\left\{\mathrm{x}: \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{x} \leq \mathrm{b}_{\mathrm{i}} \forall \mathrm{i}\right\} \subset \mathbb{R}^{\mathrm{n}}$. The following are equivalent.
i. x is a vertex
ii. x is an extreme point
iii. x is a basic feasible solution (BFS)

Proof Idea of (ii) \Rightarrow (iii):
x not a BFS $\Rightarrow \operatorname{rank} \mathcal{A}_{\mathrm{x}} \leq \mathrm{n}-1$

- Each tight constraint removes one degree of freedom
- At least one degree of freedom remains
- So x can "wiggle" while staying on all the tight constraints
- Then x is a convex combination of two points obtained by "wiggling".
- So x is not an extreme point.

Lemma: Let $\mathrm{P}=\left\{\mathrm{x}: \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{x} \leq \mathrm{b}_{\mathrm{i}} \forall \mathrm{i}\right\} \subset \mathbb{R}^{\mathrm{n}}$. The following are equivalent.
i. x is a vertex
ii. x is an extreme point
iii. x is a basic feasible solution (BFS)

Proof of $(\mathrm{ii}) \Rightarrow$ (iii): We'll show contrapositive.
x not a BFS \Rightarrow rank $\mathcal{A}_{\mathrm{x}}<\mathrm{n}$
(Recall $\mathcal{A}_{\mathrm{x}}=\left\{\mathrm{a}_{\mathrm{i}}: \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{x}=\mathrm{b}_{\mathrm{i}}\right\}$)
Claim: $\exists \mathrm{w} \in \mathbb{R}^{\mathrm{n}}, \mathrm{w} \neq 0$, s.t. $\mathrm{a}_{\mathrm{i}}{ }^{\top} \mathrm{w}=0 \forall \mathrm{a}_{\mathrm{i}} \in \mathcal{A}_{\mathrm{x}} \quad$ (w orthogonal to all of \mathcal{A}_{x})
Proof: Let M be matrix whose rows are the a_{i} 's in \mathcal{A}_{x}.
dim row-space $(M)+\operatorname{dim}$ null-space $(M)=n$
But dim row-space $(M)<n \Rightarrow \exists w \neq 0$ in the null space. \square

Lemma: Let $\mathrm{P}=\left\{\mathrm{x}: \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{x} \leq \mathrm{b}_{\mathrm{i}} \forall \mathrm{i}\right\} \subset \mathbb{R}^{\mathrm{n}}$. The following are equivalent.
i. x is a vertex
ii. x is an extreme point
iii. x is a basic feasible solution (BFS)

Proof of (ii) \Rightarrow (iii): We'll show contrapositive.
x not a $\mathrm{BFS} \Rightarrow \operatorname{rank} \mathcal{A}_{\mathrm{x}}<\mathrm{n}$
Claim: $\exists \mathrm{w} \in \mathbb{R}^{\mathrm{n}}, \mathrm{w} \neq 0$, s.t. $\mathrm{a}_{\mathrm{i}}^{\top} \mathrm{w}=0 \forall \mathrm{a}_{\mathrm{i}} \in \mathcal{A}_{\mathrm{x}}$
(Recall $\mathcal{A}_{\mathrm{x}}=\left\{\mathrm{a}_{\mathrm{i}}: \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{x}=\mathrm{b}_{\mathrm{i}}\right\}$)
(w orthogonal to all of \mathcal{A}_{x})

Let $\mathrm{y}=\mathrm{x}+\epsilon \mathrm{w}$ and $\mathrm{z}=\mathrm{x}-\epsilon \mathrm{w}$, where $\epsilon>0$.
Claim: If ϵ very small then $y, z \in P$.
Proof: First consider tight constraints at x. (i.e., those in I_{x})

$$
a_{i}^{\top} y=a_{i}^{\top} x+\epsilon a_{i}^{\top} w=b_{i}+0
$$

So y satisfies this constraint. Similarly for z.
Next consider the loose constraints at x.
(i.e., those not in \mathcal{I}_{x})

$$
b_{i}-a_{i}^{\top} y=\underbrace{b_{i}-a_{i}^{\top} x}_{\text {Positive }}-\underset{\text { As small as } u}{\epsilon a_{i}^{\top} w} \geq 0
$$

So y satisfies these constraints. Similarly for z. \square

Lemma: Let $\mathrm{P}=\left\{\mathrm{x}: \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{x} \leq \mathrm{b}_{\mathrm{i}} \forall \mathrm{i}\right\} \subset \mathbb{R}^{\mathrm{n}}$. The following are equivalent.
i. x is a vertex
ii. x is an extreme point
iii. x is a basic feasible solution (BFS)

Proof of $(\mathrm{ii}) \Rightarrow$ (iii): We'll show contrapositive.
x not a BFS $\Rightarrow \operatorname{rank} \mathcal{A}_{x}<n$
Claim: $\exists \mathrm{w} \in \mathbb{R}^{\mathrm{n}}, \mathrm{w} \neq 0$, s.t. $\mathrm{a}_{\mathrm{i}}^{\top} \mathrm{w}=0 \forall \mathrm{a}_{\mathrm{i}} \in \mathcal{A}_{\mathrm{x}}$
(Recall $\mathcal{A}_{\mathrm{x}}=\left\{\mathrm{a}_{\mathrm{i}}: \mathrm{a}_{\mathrm{i}}{ }^{\top} \mathrm{x}=\mathrm{b}_{\mathrm{i}}\right\}$)
(w orthogonal to all of \mathcal{A}_{x})

Let $\mathrm{y}=\mathrm{x}+\epsilon \mathrm{w}$ and $\mathrm{z}=\mathrm{x}-\epsilon \mathrm{w}$, where $\epsilon>0$.
Claim: If ϵ very small then $y, z \in P$.
Then $\mathrm{x}=\alpha \mathrm{y}+(1-\alpha) \mathrm{z}$, where $\mathrm{y}, \mathrm{z} \in \mathrm{P}, \mathrm{y}, \mathrm{z} \neq \mathrm{x}$, and $\alpha=1 / 2$.
So x is not an extreme point.

Lemma: Let $\mathrm{P}=\left\{\mathrm{x}: \mathrm{a}_{\mathrm{i}}{ }^{\top} \mathrm{x} \leq \mathrm{b}_{\mathrm{i}} \forall \mathrm{i}\right\} \subset \mathbb{R}^{\mathrm{n}}$. The following are equivalent.
i. x is a vertex
ii. x is an extreme point
iii. x is a basic feasible solution (BFS)

Proof of (iii) \Rightarrow (i):
Let x be a $\mathrm{BFS} \Rightarrow \operatorname{rank} \mathcal{A}_{\mathrm{x}}=\mathrm{n}$
(Recall $\left.\mathcal{A}_{x}=\left\{a_{i}: a_{i}^{\top} x=b_{i}\right\}\right)$
Let $\mathrm{c}=\Sigma_{\mathrm{i} \in \mathcal{I}_{\mathrm{x}}} \mathrm{a}_{\mathrm{i}}$.
Claim: $c^{\top} x=\Sigma_{i \in \mathcal{I}_{x}} b_{i}$
Proof: $c^{\top} x=\Sigma_{i \in \mathcal{I}_{x}} \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{x}=\Sigma_{\mathrm{i} \in \mathcal{I}_{\mathrm{x}}} \mathrm{b}_{\mathrm{i}} . \quad \square$

Lemma: Let $\mathrm{P}=\left\{\mathrm{x}: \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{x} \leq \mathrm{b}_{\mathrm{i}} \forall \mathrm{i}\right\} \subset \mathbb{R}^{\mathrm{n}}$. The following are equivalent.
i. x is a vertex
ii. x is an extreme point
iii. x is a basic feasible solution (BFS)

Proof of (iii) \Rightarrow (i):
Let x be a $\mathrm{BFS} \Rightarrow \operatorname{rank} \mathcal{A}_{\mathrm{x}}=\mathrm{n}$
(Recall $\mathcal{A}_{\mathrm{x}}=\left\{\mathrm{a}_{\mathrm{i}}: \mathrm{a}_{\mathrm{i}}{ }^{\top} \mathrm{x}=\mathrm{b}_{\mathrm{i}}\right\}$)
Let $\mathrm{c}=\Sigma_{\mathrm{i} \in \mathcal{I}_{\mathrm{x}}} \mathrm{a}_{\mathrm{i}}$.
Claim: $c^{\top} x=\Sigma_{i \in I_{x}} b_{i}$
Claim: x is an optimal point of $\max \left\{\mathrm{c}^{\top} x: x \in P\right\}$.
Proof: $y \in P \Rightarrow a_{i}^{\top} y \leq b_{i}$ for all $i \quad$ If one of these is strict, $\Rightarrow c^{\top} y=\Sigma_{i \in \mathcal{I}_{x}} a_{i}^{\top} y \leq \Sigma_{i \in \mathcal{I}_{x}} b_{i}=c^{\top} x$. $\square \quad$ then this is strict.

Claim: x is the unique optimal point of $\max \left\{c^{\top} x: x \in P\right\}$. Proof: If for any $i \in \mathcal{I}_{x}$ we have $a_{i}^{\top} y<b_{i}$ then $c^{\top} y<c^{\top} x$.
So every optimal point y has $a_{i}^{\top} y=b_{i}$ for all $i \in \mathcal{I}_{x}$.
Since rank $\mathcal{A}_{\mathrm{x}}=\mathrm{n}$, there is only one solution: $\mathrm{y}=\mathrm{x}$! \square

Lemma: Let $\mathrm{P}=\left\{\mathrm{x}: \mathrm{a}_{\mathrm{i}}{ }^{\top} \mathrm{x} \leq \mathrm{b}_{\mathrm{i}} \forall \mathrm{i}\right\} \subset \mathbb{R}^{\mathrm{n}}$. The following are equivalent.
i. x is a vertex
ii. x is an extreme point
iii. x is a basic feasible solution (BFS)

Proof of (iii) \Rightarrow (i):
Let x be a $\mathrm{BFS} \Rightarrow \operatorname{rank} \mathcal{A}_{\mathrm{x}}=\mathrm{n}$
(Recall $\left.\mathcal{A}_{x}=\left\{a_{i}: a_{i}^{\top} x=b_{i}\right\}\right)$
Let $\mathrm{c}=\Sigma_{\mathrm{i} \in \mathcal{I}_{\mathrm{x}}} \mathrm{a}_{\mathrm{i}}$.
Claim: $c^{\top} x=\Sigma_{i \in \mathcal{I}_{x}} b_{i}$
Claim: x is an optimal point of $\max \left\{c^{\top} x: x \in P\right\}$.
Claim: x is the unique optimal point of $\max \left\{c^{\top} x: x \in P\right\}$.
So x is a vertex.

More on corner points

Definition: A line is a set $L=\{r+\lambda s: \lambda \in \mathbb{R}\}$ where $r, s \in \mathbb{R}^{n}$ and $s \neq 0$.
Lemma: Let $P=\left\{x: a_{i}{ }^{\top} x \leq b_{i} \forall i\right\}$. Suppose P is non-empty and P does not contain any line. Then P has a corner point.
Proof Idea: Pick any $x \in P$. Suppose x not a BFS.

- At least one degree of freedom remains at x
- So x can "wiggle" while staying on all the tight constraints
- x cannot wiggle off to infinity in both directions because P contains no line
- So when x wiggles, it hits a constraint
- When it hits first constraint, it is still feasible.
- So we have found a point y which has a new tight constraint.

Definition: A line is a set $L=\{r+\lambda s: \lambda \in \mathbb{R}\}$ where $r, s \in \mathbb{R}^{n}$ and $s \neq 0$.
Lemma: Let $P=\left\{x: a_{i}^{\top} x \leq b_{i} \forall i\right\}$. Suppose P is non-empty and P does not contain any line. Then P has a corner point.
Proof: Pick $x \in P$. Suppose x not a BFS.
Claim: $\exists \mathrm{w} \in \mathbb{R}^{\mathrm{n}}, \mathrm{w} \neq 0$, s.t. $\mathrm{a}_{\mathrm{i}}^{\top} \mathrm{w}=0 \quad \forall \mathrm{i} \in \mathcal{I}_{\mathrm{x}}$
Let $y(\epsilon)=x+\epsilon w$. Note $y(0)=x \in P$.
Claim: $\exists \epsilon$ s.t. $\mathrm{y}(\epsilon) \notin \mathrm{P}$. WLOG $\epsilon>0$.

Lemma: Let $\mathrm{P}=\left\{\mathrm{x}: \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{x} \leq \mathrm{b}_{\mathrm{i}} \forall \mathrm{i}\right\}$. Suppose P is non-empty and P does not contain any line. Then P has a corner point.
Proof: Pick $x \in P$. Suppose x not a BFS.
Claim: $\exists \mathrm{w} \in \mathbb{R}^{\mathrm{n}}, \mathrm{w} \neq 0$, s.t. $\mathrm{a}_{\mathrm{i}}^{\top} \mathrm{w}=0 \quad \forall \mathrm{i} \in \mathcal{I}_{\mathrm{x}}$
(We saw this before)
Let $y(\epsilon)=x+\epsilon w$. Note $y(0)=x \in P$.
Claim: $\exists \epsilon$ s.t. $y(\epsilon) \notin \mathrm{P}$. WLOG $\epsilon>0$.
So set $\delta=0$ and gradually increase δ. What is largest δ s.t. $\mathbf{x} \in \mathrm{P}$?

$$
\begin{aligned}
\mathrm{y}(\delta) \in \mathrm{P} & \Leftrightarrow \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{y}(\delta) \leq \mathrm{b}_{\mathrm{i}} \forall \mathrm{i} \\
& \Leftrightarrow \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{x}+\delta \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{w} \leq \mathrm{b}_{\mathrm{i}} \forall \mathrm{i} \\
& \left.\Leftrightarrow \delta \leq \mathrm{b}_{\mathrm{i}}-\mathrm{a}_{\mathrm{i}}^{\top} \mathrm{x}\right) / \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{w} \quad \forall \mathrm{i} \text { s.t. } \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{w}>0
\end{aligned}
$$

(Always satisfied if $\mathrm{a}_{\mathrm{i}}{ }^{\top} \mathrm{w} \leq 0$)

Let h be the i that minimizes this. Then $\delta=\left(\mathrm{b}_{\mathrm{h}}-\mathrm{a}_{\mathrm{h}}{ }^{\top} \mathrm{x}\right) / \mathrm{a}_{\mathrm{h}}{ }^{\top} \mathrm{w}$.
Claim: $\mathcal{I}_{x} \subseteq \mathcal{I}_{y(\delta)}$.
Proof: If $\mathrm{i} \in \mathcal{I}_{\mathrm{x}}$ then $\mathrm{a}_{\mathrm{i}}{ }^{\top} \mathrm{x}=\mathrm{b}_{\mathrm{i}}$. But $\mathrm{a}_{\mathrm{i}}{ }^{\top} \mathrm{w}=0$, so $\mathrm{a}_{\mathrm{i}}{ }^{\top} \mathrm{y}(\delta)=\mathrm{b}_{\mathrm{i}}$ too. \square

Lemma: Let $P=\left\{x: a_{i}^{\top} x \leq b_{i} \forall i\right\}$. Suppose P is non-empty and P does not contain any line. Then P has a corner point.
Proof: Pick $x \in P$. Suppose x not a BFS.
Claim: $\exists \mathrm{w} \in \mathbb{R}^{\mathrm{n}}, \mathrm{w} \neq 0$, s.t. $\mathrm{a}_{\mathrm{i}}^{\top} \mathrm{w}=0 \quad \forall \mathrm{i} \in \mathcal{I}_{\mathrm{x}}$
(We saw this before)
Let $y(\epsilon)=x+\epsilon w$. Note $y(0)=x \in P$.
Claim: $\exists \epsilon$ s.t. $\mathrm{y}(\epsilon) \notin \mathrm{P}$. WLOG $\epsilon>0$.
So set $\delta=0$ and gradually increase δ. What is largest δ s.t. $\mathbf{x} \in \mathrm{P}$?

$$
\begin{aligned}
\mathrm{y}(\delta) \in \mathrm{P} & \Leftrightarrow \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{y}(\delta) \leq \mathrm{b}_{\mathrm{i}} \forall \mathrm{i} \\
& \Leftrightarrow \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{x}+\delta \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{w} \leq \mathrm{b}_{\mathrm{i}} \forall \mathrm{i} \\
& \Leftrightarrow \delta \leq \underbrace{}_{\left.\mathrm{i}-\mathrm{a}_{\mathrm{i}}^{\top} \mathrm{x}\right) / \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{w} \quad \forall \mathrm{i} \text { s.t. } \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{w}>0}
\end{aligned}
$$

Let h be the i that minimizes this. Then $\delta=\left(\mathrm{b}_{\mathrm{h}}-\mathrm{a}_{\mathrm{h}}{ }^{\top} \mathrm{x}\right) / \mathrm{a}_{\mathrm{h}}{ }^{\top} \mathrm{w}$.
Claim: $\mathcal{I}_{x} \subseteq \mathcal{I}_{y}(\delta)$.
Claim: $\mathrm{h} \in \mathcal{I}_{y(\delta)} \backslash \mathcal{I}_{x}$.
Proof: By definition $a_{h}{ }^{\top} w>0$, so $h \notin \mathcal{I}_{x}$.
But $a_{h}{ }^{\top} y(\delta)=a_{h}{ }^{\top} x+\delta a_{h}{ }^{\top} w=a_{h}{ }^{\top} x+\left(\left(b_{h}-a_{h}{ }^{\top} x\right) / a_{h}{ }^{\top} w\right) a_{h}{ }^{\top} w=b_{h} \Rightarrow h \in \mathcal{I}_{y(\delta)} . \square$

Lemma: Let $P=\left\{x: a_{i}{ }^{\top} x \leq b_{i} \forall i\right\}$. Suppose P is non-empty and P does not contain any line. Then P has a corner point.
Proof: Pick $x \in P$. Suppose x not a BFS.
Claim: $\exists \mathrm{w} \in \mathbb{R}^{\mathrm{n}}, \mathrm{w} \neq 0$, s.t. $\mathrm{a}_{\mathrm{i}}^{\top} \mathrm{w}=0 \quad \forall \mathrm{i} \in \mathcal{I}_{\mathrm{x}}$
(We saw this before)
Let $y(\epsilon)=x+\epsilon w$. Note $y(0)=x \in P$.
Claim: $\exists \epsilon$ s.t. $\mathrm{y}(\epsilon) \notin \mathrm{P}$. WLOG $\epsilon>0$.
So set $\delta=0$ and gradually increase δ. What is largest δ s.t. $\mathbf{x} \in \mathrm{P}$?

$$
\begin{aligned}
\mathrm{y}(\delta) \in \mathrm{P} & \Leftrightarrow \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{y}(\delta) \leq \mathrm{b}_{\mathrm{i}} \forall \mathrm{i} \\
& \Leftrightarrow \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{x}+\delta \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{w} \leq \mathrm{b}_{\mathrm{i}} \forall \mathrm{i} \\
& \Leftrightarrow \delta \leq \underbrace{}_{\left.\mathrm{i}-\mathrm{a}_{\mathrm{i}}^{\top} \mathrm{x}\right) / \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{w} \quad \forall \mathrm{i} \text { s.t. } \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{w}>0}
\end{aligned}
$$

(Always satisfied if $\mathrm{a}_{\mathrm{i}}{ }^{\top} \mathbf{w} \leq 0$)

Let h be the i that minimizes this. Then $\delta=\left(\mathrm{b}_{\mathrm{h}}-\mathrm{a}_{\mathrm{h}}{ }^{\top} \mathrm{x}\right) / \mathrm{a}_{\mathrm{h}}{ }^{\top} \mathrm{w}$.
Claim: $\mathcal{I}_{\mathrm{x}} \subseteq \mathcal{I}_{\mathrm{y}(\delta)}$.
Claim: $\mathrm{h} \in \mathcal{I}_{\mathrm{y}(\delta)} \backslash \mathcal{I}_{\mathrm{x}}$.
Claim: $\mathrm{a}_{\mathrm{h}} \notin \operatorname{span}\left(\mathcal{A}_{\mathrm{x}}\right)$.
Proof: $\mathrm{a}_{\mathrm{h}}{ }^{\top} \mathrm{x}<\mathrm{b}_{\mathrm{h}}$ but $\mathrm{a}_{\mathrm{h}}{ }^{\top} \mathrm{y}(\delta)=\mathrm{b}_{\mathrm{h}} \Rightarrow 0 \neq \mathrm{a}_{\mathrm{h}}{ }^{\top}(\mathrm{y}(\delta)-\mathrm{x})=\epsilon \mathrm{a}_{\mathrm{h}}{ }^{\top} \mathrm{w}$.
But, $\mathrm{a}_{\mathrm{i}}^{\top} \mathrm{w}=0 \forall \mathrm{a}_{\mathrm{i}} \in \mathcal{A}_{\mathrm{x}} \Rightarrow \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{w}=0 \forall \mathrm{a}_{\mathrm{i}} \in \operatorname{span}\left(\mathcal{A}_{\mathrm{x}}\right) \Rightarrow \mathrm{a}_{\mathrm{h}} \notin \operatorname{span}\left(\mathcal{A}_{\mathrm{x}}\right)$. \square

Lemma: Let $P=\left\{x: a_{i}{ }^{\top} x \leq b_{i} \forall i\right\}$. Suppose P is non-empty and P does not contain any line. Then P has a corner point.
Proof: Pick $x \in P$. Suppose x not a BFS.
Claim: $\exists \mathrm{w} \in \mathbb{R}^{\mathrm{n}}, \mathrm{w} \neq 0$, s.t. $\mathrm{a}_{\mathrm{i}}^{\top} \mathrm{w}=0 \quad \forall \mathrm{i} \in \mathcal{I}_{\mathrm{x}}$
(We saw this before) Let $y(\epsilon)=x+\epsilon w$. Note $y(0)=x \in P$.
Claim: $\exists \epsilon$ s.t. $\mathrm{y}(\epsilon) \notin \mathrm{P}$. WLOG $\epsilon>0$.
So set $\delta=0$ and gradually increase δ. What is largest δ s.t. $\mathbf{x} \in \mathrm{P}$?

$$
\begin{aligned}
\mathrm{y}(\delta) \in \mathrm{P} & \Leftrightarrow \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{y}(\delta) \leq \mathrm{b}_{\mathrm{i}} \forall \mathrm{i} \\
& \Leftrightarrow \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{x}+\delta \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{w} \leq \mathrm{b}_{\mathrm{i}} \forall \mathrm{i} \\
& \Leftrightarrow \delta \leq \underbrace{}_{\left.\mathrm{i}-\mathrm{a}_{\mathrm{i}}^{\top} \mathrm{x}\right) / \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{w} \quad \forall \mathrm{i} \text { s.t. } \mathrm{a}_{\mathrm{i}}^{\top} \mathrm{w}>0}
\end{aligned}
$$

(Always satisfied if $a_{i}^{\top} w \leq 0$)

Let h be the i that minimizes this. Then $\delta=\left(\mathrm{b}_{\mathrm{h}}-\mathrm{a}_{\mathrm{h}}{ }^{\top} \mathrm{x}\right) / \mathrm{a}_{\mathrm{h}}{ }^{\top} \mathrm{w}$.
Claim: $\mathcal{I}_{x} \subseteq \mathcal{I}_{y(\delta)}$.
Claim: $\mathrm{h} \in \mathcal{I}_{\mathrm{y}(\delta)} \backslash \mathcal{I}_{\mathrm{x}}$.
Claim: $\mathrm{a}_{\mathrm{h}} \notin \operatorname{span}\left(\mathcal{A}_{\mathrm{x}}\right)$.
So rank $\mathcal{A}_{y(\delta)}>\operatorname{rank} \mathcal{A}_{\mathrm{x}}$. Repeat this argument with $\mathrm{y}(\delta)$ instead of x . Eventually find z with rank $\mathcal{A}_{\mathrm{z}}=\mathrm{n} \Rightarrow \mathrm{z}$ is a BFS.

Local-Search Algorithm: Pitfalls \& Details

```
Algorithm
Let x be any corner point
For each corner point }y\mathrm{ that is a neighbor of }
    If c}\mp@subsup{c}{}{\top}y>\mp@subsup{c}{}{\top}x\mathrm{ then set }x=
Halt
```

Nhat is a corner point?
L. What if there are no corner points?
3. What are the "neighboring" corner points?
4. What if there are no neighboring corner points?
5. How can I find a starting corner point?
6. Does the algorithm terminate?
7. Does it produce the right answer?

Pitfall \#2: No corner points?

- This is possible
- Case 1: LP infeasible

This is unavoidable.
Algorithm must detect this case.

- Case 2: Not enough constraints

A Fix!

$$
\begin{array}{ll}
\max & x_{1}+x_{2} \\
\text { s.t. } & x_{2} \leq 2 \\
& x_{2} \geq 0
\end{array}
$$

We avoid this case by manipulating the LP a bit...

Converting to Equational Form

- General form of an LP $\max c^{\top} x$
s.t. $A x \leq b$
"Intersection of finitely
many half-spaces"

- Another form of an LP

$$
\begin{array}{ll}
\max & c^{\top} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{array}
$$

"Intersection of an affine space with the non-negative orthant"

Converting to Equational Form

- General form of an LP

$$
\begin{array}{ll}
\max & c^{\top} x \\
\text { s.t. } & A x \leq b
\end{array}
$$

"Inequality form"
or "Canonical form"

- Another form of an LP

$$
\begin{array}{ll}
\max & c^{\top} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{array}
$$

"Equational form"
or "Standard form"

- Claim: These two forms of LPs are equivalent.

