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Topics

• Semidefinite Programs (SDP)

• Vector Programs (VP)

• Quadratic Integer Programs (QIP)

• QIP & SDP for Max Cut

• Finding a cut from the SDP solution

• Analyzing the cut



Semidefinite Programs

• Where

– x2Rn is a vector and n = d(d+1)/2

– A is a mxn matrix, c2Rn and b2Rm

– X is a dxd symmetric matrix,
and x is the vector corresponding to X.

• There are infinitely many constraints!



PSD matrices ´ Vectors in Rd

• Key Observation: PSD matrices correspond 
directly to vectors and their dot-products.

• : Given vectors v1,…,vd in Rd,

let V be the dxd matrix whose ith column is vi.
Let X = VTV. Then X is PSD and Xi,j = vi

Tvj 8i,j.

• : Given a dxd PSD matrix X, find spectral 
decomposition X = UDUT, and let V = D1/2 U.
To get vectors in Rd, let vi = ith column of V.

Then X = VT V  ) Xi,j = vi
Tvj 8i,j.



Vector Programs
• A Semidefinite Program:

• Equivalent definition as “vector program”



• Our usual Integer Program

• Quadratic Integer Program

Integer Programs

There are no efficient, general-
purpose algorithms for solving 
IPs, assuming PNP.

Let’s make things even harder:
Quadratic Objective Function & 
Quadratic Constraints!

Could also use {0,1} here.
{-1,1} is more convenient.



• Quadratic Integer Program

• Vector Programs give a natural relaxation:

• Why is this a relaxation?

QIPs & Vector Programs

(QIP)

(VP)

If we added constraint
vi2 { (-1,0,…,0), (1,0,…,0)} 8i, then VP is equivalent to QIP



QIP for Max Cut
• Let G=(V,E) be a graph with n vertices.

For U µ V, let ±(U) = { {u,v} : u2U, vU }
Find a set U µ V such that |±(U)| is maximized.

• Make a variable xu for each u 2 V

• Claim: Given feasible solution x, let U = { u : xu = -1 }.
Then |±(U)| = objective value at x.

• Proof: Note that

So objective value = |{ {u,w} : xuxw }| = |±(U)|.     ¤

(QIP)



VP & SDP for Max Cut
• Make a variable xu for each u 2 V

• Vector Program Relaxation

• Corresponding Semidefinite Program

(QIP)

(VP)

(SDP)

This used to be d,
but now it’s n,
because n = |V|.



QIP vs SDP

• How does solving the SDP help us solve the QIP?

• When we solved problems exactly (e.g. Matching, 
Min Cut), we showed IP and LP are equivalent.

• This is no longer true: QIP & SDP are different.

(QIP) (SDP)

Cannot be solved efficiently,
unless P = NP Can be solved by Ellipsoid Method

Objective Value

0 QIP Optimum
(The Max Cut)

Local Ratio Alg
(Gets 50% of Max Cut)

SDP Optimum

• How can the SDP Optimum be better than Max Cut?
The SDP optimum is not feasible for QIP – it’s not a cut!



Our Game Plan
Objective Value

0 QIP Optimum
(The Max Cut)

Local Ratio Alg SDP Optimum

• Solve the SDP

• Extract Our Cut from SDP optimum
(This will be a genuine cut, feasible for QIP)

• Prove that Our Cut is close to SDP Optimum,
i.e.                                   is as large as possible.

) Our Cut is close to QIP Optimum,
i.e., 

• So Our Cut is within a factor ® of the optimum

Our Cut

Value( Our Cut ) 
Value( SDP Opt )

® = 

Value( Our Cut ) 
Value( QIP Opt ) ¸ ®

®



The Goemans-Williamson Algorithm

• Theorem: [Goemans, Williamson 1994]
There exists an algorithm to extract a cut from 
the SDP optimum such that

Value( Cut ) 
Value( SDP Opt )

® = ¸ 0.878… 

Michel Goemans David Williamson

http://www-math.mit.edu/~goemans/
http://www-math.mit.edu/~goemans/
http://www-math.mit.edu/~goemans/
http://www-math.mit.edu/~goemans/
http://www.orie.cornell.edu/orie/people/faculty/profile2.cfm?netid=dw36&CFID=75485992&CFTOKEN=27192722&jsessionid=c430decaa1474e594d3d


The Goemans-Williamson Algorithm

• Astonishingly, this seems to be optimal:

• Theorem: [Khot, Kindler, Mossel, O’Donnell 2005]
No efficient algorithm can approximate Max Cut with 
factor better than 0.878…, assuming a certain 
conjecture in complexity theory. (Similar to PNP)

• Theorem: [Goemans, Williamson 1994]
There exists an algorithm to extract a cut from 
the SDP optimum such that

Value( Cut ) 
Value( SDP Opt )

® = ¸ 0.878… 



The Goemans-Williamson Algorithm
• Solve the Max Cut Vector Program

• Pick a random hyperplane through origin
H = { x : aTx = 0 } (i.e., a is a random vector)

• Return U = { u : aT vu ¸0 }

(VP)

origin

vu

vw
vx

vy

vz
vt

U = { u, w, x }

In other words,



Analysis of Algorithm

• Our Cut is U = { u : aT vu ¸0 }

• Need to prove is large

• But a is a random vector, so U is a random set
) Need to do a probabilistic analysis

• Focus on a particular edge {u,w}:
What is the probability it is cut by Our Cut?

• Main Lemma:

Objective Value

0 QIP Optimum
(The Max Cut)

Local Ratio Alg SDP OptimumOur Cut

®

Value( Our Cut ) 
Value( SDP Opt )

® = 



• Main Lemma:

• Proof: 

• Since direction of red line is uniformly distributed,
red line lies between vu and vw

vu

vw

a µ

µ



• Main Lemma:

• Proof: 

• Since direction of red line is uniformly distributed,

• So 

• Recall: vu
T vw = kvuk¢kvwk¢ cos(µ)

• Since kvuk=kvwk=1, we have ¥

red line lies between vu and vw



• Main Lemma:

• Claim: For all x2[-1,1],

• Proof: By picture:

• Can be formalized using calculus. ¥

arccos(x)

0.878 (1-x) /2 



• Main Lemma:

• Claim: For all x2[-1,1],

• So we can analyze # cut edges:

• Recall: .  So E[ ® ] ¸ 0.878.Value( Our Cut ) 
Value( SDP Opt )

® = 



• So we can analyze # cut edges:

• Recall: .  So E[ ® ] ¸ 0.878.Value( Our Cut ) 
Value( SDP Opt )

® = 

Objective Value

0 QIP Optimum
(The Max Cut)

Local Ratio Alg SDP OptimumOur Cut

® ¸ 0.878



• So, in expectation, the algorithm gives a
0.878-approximation to the Max Cut. ¥

Objective Value

0 QIP Optimum
(The Max Cut)

Local Ratio Alg SDP OptimumOur Cut

® ¸ 0.878



Matlab Example

• Random graph: 20 vertices, 46 edges.

• Embedded on unit-sphere in R20, then

projected onto 2 random directions.

Hyperplane H
U

Green edges are cut
38 of them

Blue edges are not cut
8 of them

SDP Opt. Value ¼ 39.56
) QIP Opt. Value · 39
® ¼ 38/39.56 = 0.9604

H cuts 38 edges
So Max Cut is either 38 or 39



Puzzle
• My solution:

– Install SDPT3 (Matlab software for solving SDPs)
It has example code for solving Max Cut.

– Run this code:

• Output: cut=2880, sdpOpt=3206.5, ratio=0.8982

load 'Data.txt'; A = Data; % Load adjacency matrix from file
n = size(A,1); % n = number of vertices in the graph
m = sum(sum(A))/2; % m = number of edges of the graph

[blk,Avec,C,b,X0,y0,Z0,objval,R] = maxcut(A,1,1); % Run the SDP solver

X = R{1};                       % X is the optimal solution to SDP
V = chol(X);                    % Columns of V are solution to Vector Program

a = randn(1,n);                 % The vector a defines a random hyperplane
x = sign( a * V )';             % x is our integral solution
cut = m/2 - x'*A*x/4            % This counts how many edges are cut by x
sdpOpt = -objval % This is the SDP optimal value
ratio = cut/sdpOpt % This compares cut to SDP optimum

Here we use the fact that product of Normal Distributions is spherically symmetric.

http://www.math.nus.edu.sg/~mattohkc/sdpt3.html

