C\&O 355
 Lecture 24

N. Harvey

Topics

- Semidefinite Programs (SDP)
- Vector Programs (VP)
- Quadratic Integer Programs (QIP)
- QIP \& SDP for Max Cut
- Finding a cut from the SDP solution
- Analyzing the cut

Semidefinite Programs

$$
\begin{array}{ll}
\max & c^{\top} x \\
\text { s.t. } & A x=b \\
& y^{\top} X y \geq 0 \quad \forall y \in \mathbb{R}^{d}
\end{array}
$$

- Where
$-x \in \mathbb{R}^{n}$ is a vector and $n=d(d+1) / 2$
- A is a $m \times n$ matrix, $c \in \mathbb{R}^{n}$ and $b \in R^{m}$
$-X$ is a dxd symmetric matrix, and x is the vector corresponding to X .
- There are infinitely many constraints!

PSD matrices \equiv Vectors in \mathbb{R}^{d}

- Key Observation: PSD matrices correspond directly to vectors and their dot-products.
- \rightarrow : Given vectors v_{1}, \ldots, v_{d} in \mathbb{R}^{d}, let V be the $d x d$ matrix whose $i^{\text {th }}$ column is v_{i}. Let $X=V^{\top} V$. Then X is PSD and $X_{i, j}=v_{i}^{\top} v_{j} \forall i, j$.
- \leftarrow : Given a dxd PSD matrix X, find spectral decomposition $X=U D U^{\top}$, and let $V=D^{1 / 2} U$. To get vectors in $\mathbb{R}^{\text {d }}$, let $v_{i}=i^{\text {th }}$ column of V. Then $\mathrm{X}=\mathrm{V}^{\top} \mathrm{V} \Rightarrow \mathrm{X}_{\mathrm{i}, \mathrm{j}}=\mathrm{v}_{\mathrm{i}}^{\top} \mathrm{v}_{\mathrm{j}} \forall \mathrm{i}, \mathrm{j}$.

Vector Programs

- A Semidefinite Program:

$$
\begin{array}{ll}
\max & c^{\top} x \\
\text { s.t. } & A x=b \\
& y^{\top} X y \geq 0 \quad \forall y \in \mathbb{R}^{d}
\end{array}
$$

- Equivalent definition as "vector program"

$$
\begin{array}{lll}
\max & \sum_{i=1}^{d} \sum_{j=1}^{d} c_{i, j} v_{i}^{\top} v_{j} & \\
\text { s.t. } & \sum_{i=1}^{d} \sum_{j=1}^{d} a_{i, j, k} v_{i}^{\top} v_{j} & =b_{k} \quad \forall k=1, \ldots, m \\
& v_{1}, \ldots, v_{d} & \in \mathbb{R}^{d}
\end{array}
$$

Integer Programs

- Our usual Integer Program

$$
\begin{array}{lll}
\max & \sum_{i=1}^{d} c_{i} x_{i} & \begin{array}{l}
\text { There are no efficient, general- } \\
\text { purpose algorithms for solving } \\
\text { IPs, assuming } \mathrm{P} \neq \mathrm{NP} \text {. }
\end{array} \\
\text { s.t. } & \sum_{i=1}^{d} a_{i, k} x_{i}=b_{k} & \forall k=1, \ldots, m \\
& x_{1}, \ldots, x_{d} \in\{0,1\} &
\end{array}
$$

- Quadratic Integer Program

$$
\begin{array}{lll}
\max & \sum_{i=1}^{d} \sum_{j=1}^{d} c_{i, j} x_{i} x_{j} & \begin{array}{l}
\text { Let's make things even harder: } \\
\text { Quadratic Objective Function } \& \\
\text { Quadratic Constraints! }
\end{array} \\
\text { s.t. } & \sum_{i=1}^{d} \sum_{j=1}^{d} a_{i, j, k} x_{i} x_{j}=b_{k} & \forall k=1, \ldots, m \\
& x_{1}, \ldots, x_{d} & \forall\{-1,1\}
\end{array}
$$

QIPs \& Vector Programs

- Quadratic Integer Program

$$
\begin{array}{ll}
\max & \sum_{i=1}^{d} \sum_{j=1}^{d} c_{i, j} x_{i} x_{j} \\
\text { s.t. } & \sum_{i=1}^{d} \sum_{j=1}^{d} a_{i, j, k} x_{i} x_{j}=b_{k} \quad \forall k=1, \ldots, m \\
& x_{1}, \ldots, x_{d}
\end{array} \in\{-1,1\}
$$

- Vector Programs give a natural relaxation:

$$
\begin{array}{lll}
\max & \sum_{i=1}^{d} \sum_{j=1}^{d} c_{i, j} v_{i}^{\top} v_{j} & \\
\text { s.t. } & \sum_{i=1}^{d} \sum_{j=1}^{d} a_{i, j, k} v_{i}^{\top} v_{j} & =b_{k} \quad \forall k=1, \ldots, m \\
& v_{i}^{\top} v_{i} & =1
\end{array} \quad \forall i=1, \ldots, d
$$

- Why is this a relaxation? If we added constraint $v_{i} \in\{(-1,0, \ldots, 0),(1,0, \ldots, 0)\} \forall i$, then VP is equivalent to QIP

QIP for Max Cut

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph with n vertices.

For $\mathrm{U} \subseteq \mathrm{V}$, let $\delta(\mathrm{U})=\{\{\mathbf{u}, \mathrm{v}\}: \mathbf{u} \in \mathrm{U}, \mathrm{v} \notin \mathrm{U}\}$
Find a set $\mathrm{U} \subseteq \mathrm{V}$ such that $|\delta(\mathrm{U})|$ is maximized.

- Make a variable x_{u} for each $\mathrm{u} \in \mathrm{V}$

$$
\begin{array}{ll}
\max & \sum_{\{u, w\} \in E} \frac{1}{2}\left(1-x_{u} x_{w}\right) \\
\text { (GIt. } & x_{u} \in\{-1,1\} \quad \forall u \in V
\end{array}
$$

- Claim: Given feasible solution x, let $U=\left\{u: x_{u}=-1\right\}$. Then $|\delta(\mathrm{U})|=$ objective value at x .
- Proof: Note that $\frac{1}{2}\left(1-x_{u} x_{w}\right)= \begin{cases}0 & \text { if } x_{u}=x_{w} \\ 1 & \text { if } x_{u} \neq x_{w}\end{cases}$

So objective value $=\left|\left\{\{\mathrm{u}, \mathrm{w}\}: \mathrm{x}_{\mathrm{u}} \neq \mathrm{x}_{\mathrm{w}}\right\}\right|=|\delta(\mathrm{U})|$. \square

VP \& SDP for Max Cut

- Make a variable x_{u} for each $\mathrm{u} \in \mathrm{V}$

$$
\begin{array}{lll}
& \max & \sum_{\{u, w\} \in E} \frac{1}{2}\left(1-x_{u} x_{w}\right) \\
\text { (QIP) } & \\
& \text { s.t. } & x_{u} \in\{-1,1\} \quad \forall u \in V
\end{array}
$$

- Vector Program Relaxation

$$
\text { (VP) } \quad \max \sum_{\{u, w\} \in E} \frac{1}{2}\left(1-v_{u}^{\top} v_{w}\right)
$$

$$
\text { s.t. } v_{u}^{\top} v_{u}=1 \quad \forall u \in V \quad \text { This used to be d, }
$$

$$
v_{u} \quad \in \mathbb{R}^{n} \quad \forall u \in V \text { but now it's n, }
$$

- Corresponding Semidefinite Program

$$
\begin{array}{rll}
& \max & \sum_{\{u, w\} \in E} \frac{1}{2}\left(1-X_{u, w}\right) \\
& & \\
\text { s.t. } & X_{u, u}=1 & \forall u \in V \\
& y^{\top} X y \geq 0 & \forall y \in \mathbb{R}^{n}
\end{array}
$$

$$
\begin{aligned}
& \text { (QIP) Q|P VS SDP } \\
& \max \quad \sum \frac{1}{2}\left(1-x_{u} x_{w}\right) \quad \max \\
& \text { s.t. } \quad x_{u} \in\{-1,1\} \quad \forall u \in V \\
& \text { Cannot be solved efficiently, } \\
& \text { unless } P=N P \\
& \text { s.t. } X_{u, u}=1 \quad \forall u \in V \\
& y^{\top} X y \geq 0 \quad \forall y \in \mathbb{R}^{n} \\
& \text { Can be solved by Ellipsoid Method }
\end{aligned}
$$

- How does solving the SDP help us solve the QIP?
- When we solved problems exactly (e.g. Matching, Min Cut), we showed IP and LP are equivalent.
- This is no longer true: QIP \& SDP are different.

Objective Value

- How can the SDP Optimum be better than Max Cut? The SDP optimum is not feasible for QIP - it's not a cut!

Our Game Plan

Objective Value

- Solve the SDP

- Extract Our Cut from SDP optimum
(This will be a genuine cut, feasible for QIP)
- Prove that Our Cut is close to SDP Optimum, i.e. $\alpha=\frac{\text { Value(Our Cut) }}{\text { Value(SDP Opt) }}$ is as large as possible. \Rightarrow Our Cut is close to QIP Optimum,
i.e., $\quad \frac{\text { Value(Our Cut) }}{\text { Value(QIP Opt) }} \geq \alpha$
- So Our Cut is within a factor α of the optimum

The Goemans-Williamson Algorithm

- Theorem: [Goemans, Williamson 1994] There exists an algorithm to extract a cut from the SDP optimum such that

$$
\alpha=\frac{\text { Value(Cut) }}{\text { Value(SDP Opt) }} \geq 0.878 \ldots
$$

Michel Goemans

David Williamson

The Goemans-Williamson Algorithm

- Theorem: [Goemans, Williamson 1994] There exists an algorithm to extract a cut from the SDP optimum such that

$$
\alpha=\frac{\text { Value(Cut) }}{\text { Value(SDP Opt) }} \geq 0.878 \ldots
$$

- Astonishingly, this seems to be optimal:
- Theorem: [Khot, Kindler, Mossel, O’Donnell 2005] No efficient algorithm can approximate Max Cut with factor better than $0.878 . .$. , assuming a certain conjecture in complexity theory. (Similar to $P \neq N P$)

The Goemans-Williamson Algorithm

- Solve the Max Cut Vector Program

$$
\begin{array}{llll}
& \max & \sum_{\{u, w\} \in E} \frac{1}{2}\left(1-v_{u}^{\top} v_{w}\right) \\
\text { (VP) } & & \\
& \text { s.t. } & v_{u}^{\top} v_{u}=1 & \forall u \in V \\
& v_{u} \in \mathbb{R}^{n} \quad \forall u \in V
\end{array}
$$

- Pick a random hyperplane through origin

$$
H=\left\{x: a^{\top} x=0\right\} \quad \text { (i.e., } a \text { is a random vector) }
$$

- Return $U=\left\{u: a^{\top} v_{u} \geq 0\right\}$

$$
U=\{u, w, x\}
$$

In other words,

$$
x_{u}= \begin{cases}1 & \text { if } a^{\top} v_{u} \geq 0 \\ 0 & \text { if } a^{\top} v_{u}<0\end{cases}
$$

Analysis of Algorithm

Objective Value

(The Max Cut)

- Our Cut is $U=\left\{u: a^{\top} v_{u} \geq 0\right\}$
α
- Need to prove $\alpha=\frac{\text { Value(Our Cut) }}{\text { Value(SDP Opt) }}$ is large
- But a is a random vector, so U is a random set \Rightarrow Need to do a probabilistic analysis
- Focus on a particular edge $\{u, w\}$: What is the probability it is cut by Our Cut?
- Main Lemma: $\operatorname{Pr}[$ edge $\{u, w\}$ cut $]=\frac{\arccos \left(v_{u}^{\top} v_{w}\right)}{\pi}$.
- Main Lemma: $\operatorname{Pr}[$ edge $\{u, w\}$ cut $]=\frac{\arccos \left(v_{u}^{\top} v_{w}\right)}{\pi}$.
- Proof: Pr [edge $\{u, w\}$ cut]

$$
\begin{aligned}
& =\operatorname{Pr}[\text { exactly one of } u, w \text { is in } U] \\
& =\operatorname{Pr}[\underbrace{\operatorname{sign}\left(a^{\top} v_{u}\right) \neq \operatorname{sign}\left(a^{\top} v_{w}\right)}]
\end{aligned}
$$

red line lies between v_{u} and v_{w}

- Since direction of red line is uniformly distributed,
$\operatorname{Pr}\left[\right.$ red line lies between v_{u} and $\left.v_{w}\right]=\frac{2 \theta}{2 \pi}$

- Main Lemma: $\operatorname{Pr}[\operatorname{edge}\{u, w\} \operatorname{cut}]=\frac{\arccos \left(v_{u}^{\top} v_{w}\right)}{\pi}$.
- Proof: Pr [edge $\{u, w\}$ cut]

$$
\begin{aligned}
& =\operatorname{Pr}[\text { exactly one of } u, w \text { is in } U] \\
& =\operatorname{Pr}[\underbrace{\operatorname{sign}\left(a^{\top} v_{u}\right) \neq \operatorname{sign}\left(a^{\top} v_{w}\right)}]
\end{aligned}
$$

red line lies between v_{u} and v_{w}

- Since direction of red line is uniformly distributed,

$$
\operatorname{Pr}\left[\text { red line lies between } v_{u} \text { and } v_{w}\right]=\frac{2 \theta}{2 \pi}
$$

- So $\operatorname{Pr}[$ edge $\{u, w\}$ cut $]=\frac{\theta}{\pi}$.
- Recall: $\mathrm{v}_{\mathrm{u}}{ }^{\top} \mathrm{v}_{\mathrm{w}}=\left\|\mathrm{v}_{\mathrm{u}}\right\| \cdot\left\|\mathrm{v}_{\mathrm{w}}\right\| \cdot \cos (\theta)$
- Since $\left\|\mathrm{v}_{\mathrm{u}}\right\|=\left\|\mathrm{v}_{\mathrm{w}}\right\|=1$, we have $\theta=\arccos \left(v_{u}^{\top} v_{w}\right)$
- Main Lemma: $\operatorname{Pr}[\operatorname{edge}\{u, w\} \operatorname{cut}]=\frac{\arccos \left(v_{u}^{\top} v_{w}\right)}{\pi}$.
- Claim: For all $\mathbf{x} \in[-1,1], \frac{\arccos (x)}{\pi} \geq 0.878 \cdot \frac{1-x}{2}$
- Proof: By picture:

- Can be formalized using calculus.
- Main Lemma: $\operatorname{Pr}[\operatorname{edge}\{u, w\} \operatorname{cut}]=\frac{\arccos \left(v_{u}^{\top} v_{w}\right)}{\pi}$.
- Claim: For all $\mathbf{x} \in[-1,1], \frac{\arccos (x)}{\pi} \geq 0.878 \cdot \frac{1-x}{2}$
- So we can analyze \# cut edges:

$$
\begin{aligned}
\mathrm{E}[\# \text { cut edges }] & =\sum_{\{u, w\} \in E} \operatorname{Pr}[\operatorname{edge}\{u, w\} \text { cut }] \\
& =\sum_{\{u, w\} \in E} \frac{\arccos \left(v_{u}^{\top} v_{w}\right)}{\pi} \\
& \geq 0.878 \sum_{\{u, w\} \in E} \frac{1}{2}\left(1-v_{u}^{\top} v_{w}\right) \\
& =0.878 \cdot(\text { SDP optimal value })
\end{aligned}
$$

- Recall: $\alpha=\frac{\text { Value(Our Cut) }}{\text { Value(SDP Opt) }}$. So $\mathrm{E}[\alpha] \geq 0.878$.

Objective Value

0 Local Ratio Alg Our Cut QIP Optimum SDP Optimum (The Max Cut)

$$
\alpha \geq 0.878
$$

- So we can analyze \# cut edges:

$$
\begin{aligned}
\mathrm{E}[\# \text { cut edges }] & =\sum_{\{u, w\} \in E} \operatorname{Pr}[\operatorname{edge}\{u, w\} \text { cut }] \\
& =\sum_{\{u, w\} \in E} \frac{\arccos \left(v_{u}^{\top} v_{w}\right)}{\pi} \\
& \geq 0.878 \sum_{\{u, w\} \in E} \frac{1}{2}\left(1-v_{u}^{\top} v_{w}\right) \\
& =0.878 \cdot(\text { SDP optimal value })
\end{aligned}
$$

- Recall: $\alpha=\frac{\text { Value(Our Cut) }}{\text { Value(SDP Opt) }}$. So $\mathrm{E}[\alpha] \geq 0.878$.

Objective Value

- So, in expectation, the algorithm gives a 0.878 -approximation to the Max Cut.

Matlab Example

Green edges are cut 38 of them

Blue edges are not cut 8 of them

SDP Opt. Value ≈ 39.56
\Rightarrow QIP Opt. Value ≤ 39
$\alpha \approx 38 / 39.56=0.9604$
H cuts 38 edges
So Max Cut is either 38 or 39

- Random graph: 20 vertices, 46 edges.
- Embedded on unit-sphere in \mathbb{R}^{20}, then projected onto 2 random directions.

Puzzle

- My solution:

- Install SDPT3 (Matlab software for solving SDPs) It has example code for solving Max Cut.
- Run this code:

$\begin{aligned} & \text { load 'Data.txt'; A = Data; } \\ & n=\operatorname{size}(A, 1) ; \\ & m=\operatorname{sum}(\operatorname{sum}(A)) / 2 ; \end{aligned}$	\% Load adjacency matrix from file $\% \mathrm{n}=$ number of vertices in the graph $\% \mathrm{~m}=$ number of edges of the graph
$\mathrm{X}=\mathrm{R}\{1\}$;	$\% \mathrm{x}$ is the optimal solution to SDP
$\mathrm{V}=\operatorname{chol}(\mathrm{X})$;	\% Columns of V are solution to vector Program
$\mathrm{a}=\operatorname{randn}(1, \mathrm{n})$;	\% The vector a defines a random hyperplane
$\mathrm{x}=\operatorname{sign}(\mathrm{a} * \mathrm{~V}$	\% x is our integral solution
cut $=\mathrm{m} / 2-\mathrm{x}^{\prime} \mathrm{*}^{\prime}{ }^{\text {\% }} \mathrm{x} / 4$	\% This counts how many edges are cut by x
sdpopt = -objval	\% This is the SDP optimal value
ratio = cut/sdpopt	\% This compares cut to SDP optimum

Here we use the fact that product of Normal Distributions is spherically symmetric.

- Output: cut=2880, sdpOpt=3206.5, ratio=0.8982

