C&O 355 Lecture 24

N. Harvey

Topics

- Semidefinite Programs (SDP)
- Vector Programs (VP)
- Quadratic Integer Programs (QIP)
- QIP & SDP for Max Cut
- Finding a cut from the SDP solution
- Analyzing the cut

Semidefinite Programs

$$\begin{array}{ll} \max & c^{\mathsf{T}} x \\ \text{s.t.} & Ax = b \\ & y^{\mathsf{T}} X y \geq 0 \ \forall y \in \mathbb{R}^d \end{array}$$

- Where
 - $-x \in \mathbb{R}^n$ is a vector and n = d(d+1)/2
 - A is a mxn matrix, $c{\in}\mathbb{R}^n$ and $b{\in}R^m$
 - X is a d_xd symmetric matrix, and x is the vector corresponding to X.
- There are **infinitely many** constraints!

PSD matrices \equiv Vectors in \mathbb{R}^d

- Key Observation: PSD matrices correspond directly to vectors and their dot-products.
- \rightarrow : Given vectors $v_1, ..., v_d$ in \mathbb{R}^d , let V be the d_xd matrix whose ith column is v_i . Let X = V^TV. Then X is PSD and $X_{i,j} = v_i^T v_j \forall i, j$.
- \leftarrow : Given a dxd PSD matrix X, find spectral decomposition X = U D U^T, and let V = D^{1/2} U. To get vectors in \mathbb{R}^d , let $v_i = i^{th}$ column of V. Then X = V^TV \Rightarrow X_{i,j} = $v_i^T v_j \forall i, j$.

Vector Programs

• A Semidefinite Program:

$$\begin{array}{ll} \max & c^{\mathsf{T}} x \\ \text{s.t.} & Ax = b \\ & y^{\mathsf{T}} X y \geq 0 \ \forall y \in \mathbb{R}^d \end{array}$$

• Equivalent definition as "vector program"

$$\max \sum_{i=1}^{d} \sum_{j=1}^{d} c_{i,j} v_i^{\mathsf{T}} v_j$$

s.t.
$$\sum_{i=1}^{d} \sum_{j=1}^{d} a_{i,j,k} v_i^{\mathsf{T}} v_j = b_k \qquad \forall k = 1, ..., m$$
$$v_1, ..., v_d \in \mathbb{R}^d$$

Integer Programs Our usual Integer Program

re are no efficient, generalpose algorithms for solving assuming $P \neq NP$.

$$\forall k = 1, ..., m$$

 $\in \{-1,1\}$

Quadratic Integer Program

$$\max \sum_{i=1}^{d} \sum_{\substack{j=1 \\ d}}^{d} c_{i,j} x_i x_j$$

s.t.
$$\sum_{i=1}^{d} \sum_{\substack{j=1 \\ j=1}}^{d} a_{i,j,k} x_i x_j = b_k$$

 $x_1, ..., x_d$

Let's make things even harder: **Quadratic Objective Function & Quadratic Constraints!**

$$\forall k = 1, ..., m$$

Could also use {0,1} here. {-1,1} is more convenient.

QIPs & Vector Programs

• Quadratic Integer Program

(QIP) max $\sum_{i=1}^{d} \sum_{j=1}^{d} c_{i,j} x_i x_j$ s.t. $\sum_{i=1}^{d} \sum_{j=1}^{d} a_{i,j,k} x_i x_j = b_k$ $\forall k = 1, ..., m$ $x_1, ..., x_d \in \{-1, 1\}$

• Vector Programs give a natural relaxation:

$$(\mathsf{VP}) \qquad \max \qquad \sum_{i=1}^{d} \sum_{\substack{j=1 \\ d}}^{d} c_{i,j} v_i^{\mathsf{T}} v_j$$
$$(\mathsf{VP}) \qquad \text{s.t.} \qquad \sum_{i=1}^{d} \sum_{\substack{j=1 \\ j=1}}^{d} a_{i,j,k} v_i^{\mathsf{T}} v_j = b_k \qquad \forall k = 1, ..., m$$
$$v_i^{\mathsf{T}} v_i = 1 \qquad \forall i = 1, ..., d$$
$$v_1, ..., v_d \in \mathbb{R}^d$$

Why is this a relaxation? If we added constraint
 v_i ∈ {(-1,0,...,0), (1,0,...,0)} ∀i, then VP is equivalent to QIP

QIP for Max Cut

- Let G=(V,E) be a graph with n vertices.
 For U ⊆ V, let δ(U) = { {u,v} : u∈U, v∉U }
 Find a set U ⊆ V such that |δ(U)| is maximized.
- Make a variable x_u for each $u \in V$

(QIP)
$$\max_{\substack{\{u,w\}\in E\\ \text{s.t.}}} \sum_{\substack{\{u,w\}\in E\\ x_u \in \{-1,1\}}} \frac{\frac{1}{2}(1-x_ux_w)}{\forall u \in V}$$

- Claim: Given feasible solution x, let U = { u : x_u = -1 }. Then |δ(U)| = objective value at x.
- **Proof:** Note that $\frac{1}{2}(1 x_u x_w) = \begin{cases} 0 & \text{if } x_u = x_w \\ 1 & \text{if } x_u \neq x_w \end{cases}$ So objective value = $|\{\{u,w\}: x_u \neq x_w\}| = |\delta(U)|$.

VP & SDP for Max Cut

• Make a variable x_u for each $u \in V$

(QIP)
$$\max_{\{u,w\}\in E} \sum_{\substack{\{u,w\}\in E}} \frac{1}{2}(1-x_u x_w)$$

s.t. $x_u \in \{-1,1\} \quad \forall u \in V$

• Vector Program Relaxation

(VP)

$$\max_{\{u,w\}\in E} \sum_{\substack{\{u,w\}\in E}} \frac{1}{2}(1-v_u^{\mathsf{T}}v_w)$$
s.t.

$$v_u^{\mathsf{T}}v_u = 1 \quad \forall u \in V$$

$$v_u \in \mathbb{R}^n, \quad \forall u \in V$$
This used to be d,
but now it's n,
because n = |V|.
$$\max_{\substack{\{u,w\}\in E}} \sum_{\substack{1\\i=1}} \frac{1}{2}(1-X_{u,w})$$

(SDP)

$$\begin{array}{ll} \max & \sum_{\{u,w\} \in E} \frac{1}{2} (1 - X_{u,w}) \\ \text{s.t.} & X_{u,u} = 1 & \forall u \in V \\ & y^{\mathsf{T}} X y \geq 0 & \forall y \in \mathbb{R}^n \end{array}$$

- How does solving the SDP help us solve the QIP?
- When we solved problems exactly (e.g. Matching, Min Cut), we showed IP and LP are equivalent.
- This is no longer true: QIP & SDP are different.

Objective Value

 How can the SDP Optimum be better than Max Cut? The SDP optimum is not feasible for QIP – it's not a cut!

Our Game Plan

- Extract Our Cut from SDP optimum (This will be a genuine cut, feasible for QIP)
- Prove that Our Cut is close to SDP Optimum, i.e. $\alpha = \frac{Value(Our Cut)}{Value(SDP Opt)}$ is as large as possible.
 - \Rightarrow Our Cut is close to QIP Optimum,
 - i.e., $\frac{\text{Value(Our Cut)}}{\text{Value(QIP Opt)}} \ge \alpha$
- So $\operatorname{Our}\operatorname{Cut}$ is within a factor α of the optimum

The Goemans-Williamson Algorithm

• Theorem: [Goemans, Williamson 1994] There exists an algorithm to extract a cut from the SDP optimum such that $\alpha = \frac{Value(Cut)}{Value(SDP Opt)} \ge 0.878...$

Michel Goemans

David Williamson

The Goemans-Williamson Algorithm

- Theorem: [Goemans, Williamson 1994] There exists an algorithm to extract a cut from the SDP optimum such that $\alpha = \frac{\text{Value(Cut)}}{\text{Value(SDP Opt)}} \ge 0.878...$
- Astonishingly, this seems to be optimal:
- Theorem: [Khot, Kindler, Mossel, O'Donnell 2005] No efficient algorithm can approximate Max Cut with factor better than 0.878..., assuming a certain conjecture in complexity theory. (Similar to P≠NP)

The Goemans-Williamson Algorithm

Solve the Max Cut Vector Program

V₇

$$(VP) \begin{array}{l} \max \sum_{\{u,w\}\in E} \frac{1}{2}(1-v_{u}^{\mathsf{T}}v_{w}) \\ \text{s.t.} \quad v_{u}^{\mathsf{T}}v_{u} = 1 \qquad \forall u \in V \\ v_{u} \in \mathbb{R}^{n} \quad \forall u \in V \end{array}$$
Pick a *random* hyperplane through origin
$$H = \{ \mathbf{x} : \mathbf{a}^{\mathsf{T}}\mathbf{x} = \mathbf{0} \} \qquad (i.e., a \text{ is a random vector})$$
Return U = { u : a^T v_u ≥ 0 }
$$V_{u} = \{ u : \mathbf{a}^{\mathsf{T}}v_{u} \ge \mathbf{0} \}$$
In other words,
$$x_{u} = \begin{cases} 1 & \text{if } a^{\mathsf{T}}v_{u} \ge \mathbf{0} \\ 0 & \text{if } a^{\mathsf{T}}v_{u} < \mathbf{0} \end{cases}$$

- \Rightarrow Need to do a probabilistic analysis
- Focus on a particular edge {u,w}:
 What is the probability it is cut by Our Cut?

 $\frac{\arccos(v_u^\mathsf{T} v_w)}{\ldots}$

 π

• Main Lemma: $\Pr[\text{edge } \{u, w\} \text{ cut }] =$

 $\frac{\arccos(v_u^{\mathsf{T}}v_w)}{}$ • Main Lemma: $\Pr[\text{edge } \{u, w\} \text{ cut}] =$ • **Proof:** $\Pr[\text{edge } \{u, w\} \text{ cut}]$ $= \Pr[$ exactly one of u, w is in U] $= \Pr\left[\operatorname{sign}(a^{\mathsf{T}}v_u) \neq \operatorname{sign}(a^{\mathsf{T}}v_w)\right]$ red line lies between v₁₁ and v_w • Since direction of red line is uniformly distributed, $\Pr\left[\text{red line lies between } v_u \text{ and } v_w\right] = \frac{2\theta}{2\pi}$ V_u $V_{\rm w}$

• Main Lemma: $\Pr[\text{edge } \{u, w\} \text{ cut }] = \frac{\arccos(v_u^{\mathsf{T}} v_w)}{\pi}.$

• **Proof:**
$$\Pr[\text{edge } \{u, w\} \text{ cut}]$$

$$= \Pr[\text{ exactly one of } u, w \text{ is in } U]$$

$$= \Pr[\text{ sign}(a^{\mathsf{T}}v_u) \neq \text{ sign}(a^{\mathsf{T}}v_w)]$$
red line lies between v_u and v_w
• Since direction of red line is uniformly distributed,
 $\Pr[\text{ red line lies between } v_u \text{ and } v_w] = \frac{2\theta}{2\pi}$
• So $\Pr[\text{ edge } \{u, w\} \text{ cut}] = \frac{\theta}{\pi}$.
• **Recall:** $\mathsf{v}_u^{\mathsf{T}}\mathsf{v}_w = ||\mathsf{v}_u|| \cdot ||\mathsf{v}_w|| \cdot \cos(\theta)$
• Since $||\mathsf{v}_u|| = ||\mathsf{v}_w|| = 1$, we have $\theta = \arccos(v_u^{\mathsf{T}}v_w)$

• Can be formalized using calculus.

• Main Lemma: $\Pr[\text{edge } \{u, w\} \text{ cut}] = \frac{\arccos(v_u^{\top} v_w)}{\pi}$ • Claim: For all $x \in [-1,1]$, $\frac{\arccos(x)}{\pi} \ge 0.878 \cdot \frac{1-x}{2}$ So we can analyze # cut edges: $E[\# \text{ cut edges}] = \sum \Pr[\text{edge } \{u, w\} \text{ cut}]$ $\{u,w\} \in E$ $= \sum_{\pi} \frac{\arccos(v_u^{\mathsf{T}} v_w)}{\pi} \quad \checkmark$ $\{u,w\} \in E$ $\geq 0.878 \quad \sum \quad \frac{1}{2}(1 - v_u^{\mathsf{T}} v_w)$ $\{u,w\} \in E$ $= 0.878 \cdot (\text{SDP optimal value})$ • Recall: $\alpha = \frac{\text{Value}(\text{ Our Cut })}{\text{Value}(\text{ SDP Opt })}$. So E[α] \geq 0.878.

• So, in expectation, the algorithm gives a 0.878-approximation to the Max Cut.

Matlab Example

Green edges are cut 38 of them

Blue edges are not cut 8 of them

SDP Opt. Value \approx 39.56 \Rightarrow QIP Opt. Value \leq 39 $\alpha \approx$ 38/39.56 = 0.9604

H cuts 38 edges So Max Cut is either 38 or 39

- Random graph: 20 vertices, 46 edges.
- Embedded on unit-sphere in \mathbb{R}^{20} , then projected onto 2 random directions.

Puzzle

- My solution:
 - Install <u>SDPT3</u> (Matlab software for solving SDPs)
 It has example code for solving Max Cut.
 - Run this code:

```
load 'Data.txt'; A = Data;
                                % Load adjacency matrix from file
                                \% n = number of vertices in the graph
n = size(A,1);
m = sum(sum(A))/2;
                                % m = number of edges of the graph
[b]k,Avec,C,b,X0,y0,Z0,objva],R] = maxcut(A,1,1); % Run the SDP solver
X = R{1};
                                % X is the optimal solution to SDP
V = chol(x):
                                % Columns of V are solution to Vector Program
                                % The vector a defines a random hyperplane
a = randn(1,n);
x = sign(a * V)';
                                % x is our integral solution
cut = m/2 - x'*A*x/4
                                % This counts how many edges are cut by x
sdpOpt = -objval
                                % This is the SDP optimal value
ratio = cut/sdpOpt
                                % This compares cut to SDP optimum
```

Here we use the fact that product of Normal Distributions is spherically symmetric.

• **Output:** cut=2880, sdpOpt=3206.5, ratio=0.8982