C&O 355
Lecture 24

N. Harvey

http://www.math.uwaterloo.ca/~harvey/

Topics

Semidefinite Programs (SDP)
Vector Programs (VP)

Quadratic Integer Programs (QIP)
QIP & SDP for Max Cut

Finding a cut from the SDP solution
Analyzing the cut

Semidefinite Programs

max CT X

s.t. Ax=b
y' Xy >0 Yy € R?

* Where
— x€R" is a vector and n = d(d+1)/2
— A is @ mxn matrix, ccR" and b&eR™

— X is a dxd symmetric matrix,
and x is the vector corresponding to X.

* There are infinitely many constraints!

PSD matrices = Vectors in IR®

* Key Observation: PSD matrices correspond
directly to vectors and their dot-products.

* =: Given vectors v,,...,v4 in RY,

let V be the dxd matrix whose it" column is v..
Let X = V'V. Then X is PSD and X;; = v;'v; Vi,j.

o &: Given a dxd PSD matrix X, find spectral
decomposition X=UDUT, and let V = D2 U.
To get vectors in RY, let v, = it column of V.
Then X=V'V = X;;=v'v; Vi,j.

Vector Programs

* A Semidefinite Program:

max CT X

st. Ax =50
y' Xy >0 Yy € R?

* Equivalent definition as “vector program”

d d
T
max E E Ci,;U; U4

i=1 j=1
d d
S.t. E E a@$kvgvj = b Vk=1,....m
i=1 j=1
d
V1 eeey Vg e R

Integer Programs
* QOur usual Integer Program

d
There are no efficient, general-
ax Z Cili purpose algorithms for solving
1=1

r IPs, assuming P=NP.

S.t. Zai,kxi — bk Vk = 1, ceey 1T
1=1
T1,..., L4 € {O,l}

* Quadratic Integer Program

d d
Z Z Let’s make things even harder:
Hax Ci,jlity Quadratic Objective Function &

Quadratic Constraints!

d d
S.t. Z Zai,j,kaﬁ@-xj — bk Vk = 1, ceey 1T

i=1 j=1
Could also use {0,1} here.
L= d {-1,1} is more convenient.

1 =1 7=1

QIPs & Vector Programs

* Quadratic Integer Program

d d
max E E Cij LIy

i=1 j=1

IP L
(QIP) st Y) aijrri; = by vk=1,..,m
i=1 j=1
L1y eeey Ld S {_111}

* Vector Programs give a natural relaxation:

d d
T
max E E Ci,jU; Uy

i=1 j=1
d d
(VP) S.t. Z Z a,i,j,k'UinUj = by Vk=1,....m
i=1 j=1
vgvi =1 Vi=1,...,d
V1, .oy Vg e RY

 Why is this a relaxation? If we added constraint
v.€{(-1,0,...,0),(1,0,...,0) } Vi, then VP is equivalent to QIP

QIP for Max Cut

Let G=(V,E) be a graph with n vertices.
ForU CV, let §(U) = {{u,v}: ucU, veU }
Find a set U C V such that |9(U)| is maximized.

Make a variable x, foreachu € V
max Z (1 — zyxy)

(Q'P) {u,w}eFE
st. x, €{-1,1} YueV

Claim: Given feasible solution x, letU={u:x,=-1}.
Then |9(U)| = objective value at x.
0 ifx, =xy

. l _ —
Proof: Note that 3(1 — zuzu) 1 if z, #

So objective value = |{ {u,w} : x #x,, }| = |0(U)].

VP & SDP for Max Cut

* Make a variable x, foreachu €V

max E

(QlP) {u,w}eF~
st. x, €{-1,1} YueV

* Vector Program Relaxation
max Z 11— vjvw)
(VP) {u,w}€eE
T _
5.t Vytu =1 VueV This used to be d,

Vu S an\\v’u/E_L but now it’s n,
« Corresponding Semidefinite Program Peceusen=1Vi.

max Z %(1 — Xuw)
(SDP) {u,weFE
st Xyuw =1 VueV

y' Xy >0 VyeR"

(1 —xyxe)

b=

(QIP) QIP vs SDP (SDP)

max Z (1 — zymy) max Z 21— Xuw)
{u,w}eFE {u,w}eFE
st. x, €{-1,1} YueV st. Xyu =1 YVueV

y' Xy >0 VYyeR"

Cannot be solved efficiently,
Can be solved by Ellipsoid Method

unless P = NP

 How does solving the SDP help us solve the QIP?

 When we solved problems exactly (e.g. Matching,
Min Cut), we showed IP and LP are equivalent.

* This is no longer true: QIP & SDP are different.

Objective Value
C O O O
0

Local R\z;tio Alg QlP OE)Jtimum SDP OEtimum
(Gets 50% of Max Cut) (The Max Cut)

* How can the SDP Optimum be better than Max Cut?
The SDP optimum is not feasible for QIP —it’s not a cut!

Our Game Plan

Objective Value

o O

Local Ratio Alg Our Cut QIP O\rl)timum SDP O:timum
(The Max Cut) y
Y
Solve the SDP o

Extract Our Cut from SDP optimum
(This will be a genuine cut, feasible for QIP)

Prove that Our Cut is close to SDP Optimum,

: _Value(Our Cut) :
l.e. a = Value(SDP Opt) is as large as possible.

—> Our Cut is close to QIP Optimum,
i @ Value(Our Cut) > 4
" Value(QIP Opt) —

So Our Cut is within a factor o of the optimum

The Goemans-Williamson Algorithm

* Theorem: [Goemans, Williamson 1994]
There exists an algorithm to extract a cut from
the SDP optimum such that

Value(Cut)
— > [] o000
@ Value(SDP Opt) — 0.878

Michel Goemans David Williamson

http://www-math.mit.edu/~goemans/
http://www-math.mit.edu/~goemans/
http://www-math.mit.edu/~goemans/
http://www-math.mit.edu/~goemans/
http://www.orie.cornell.edu/orie/people/faculty/profile2.cfm?netid=dw36&CFID=75485992&CFTOKEN=27192722&jsessionid=c430decaa1474e594d3d

The Goemans-Williamson Algorithm

* Theorem: [Goemans, Williamson 1994]
There exists an algorithm to extract a cut from
the SDP optimum such that

Value(Cut)
— > [] o000
@ Value(SDP Opt) — 0.878

e Astonishingly, this seems to be optimal:

* Theorem: [Khot, Kindler, Mossel, O’'Donnell 2005]
No efficient algorithm can approximate Max Cut with
factor better than 0.878..., assuming a certain
conjecture in complexity theory.

The Goemans-Williamson Algorithm

* Solve the Max Cut Vector Program
max Z 11— vivy)

(VP) {u,w}eFE
st. vlv, =1 VueV

Uy c R"” YueV
* Pick a random hyperplane through origin

H={x:a'x=0}
* ReturnU={u:a'v, >0}

U={u w, x}

In other words,
1 ifa'v, >0
0 ifa'v, <0

Analysis of Algorithm

Objective Value

O O O O
Local Ratio Alg Our Cut QIP Optimum SDP Optimum

(The Max Cut)
Y

* OurCutisU={u:a'v,>0} &

 Need to prove o = value(Our Cut) s |5y
P @ Value(SDP Opt) > 1arse

e Butaisarandom vector, so U is a random set
— Need to do a probabilistic analysis

o O

\ J

* Focus on a particular edge {u,w}:
What is the probability it is cut by Our Cut?

arccos(v, vy,)

* Main Lemma: Pr[edge {u,w} cut] =
-

T
* Main Lemma: Pr[edge {u,w} cut] = arccos(vuvw)-

* Proof: Pr[edge {u,w} cut]
= Pr| exactly one of u,w is in U |
T : T
vu) 7 sign(a’ vy) |

red line lies between v,andv,,
* Since direction of red line is uniformly distributed,

26
Pr [red line lies between v, and v,, | = —
V, ' 27

5’«

Vi

= Pr | sign(a

Main Lemma: Pr[edge {u,w} cut] =

Proof: Pr[edge {u,w} cut]

= Pr| exactly one of u,w is in U |

= Pr | sign(a

T

v,) # sign(a

T

arccos(v, vy,)

Vu)

red line lies between v,andv,,
Since direction of red line is uniformly distributed,

Pr[red line lies between v, and v, |

So Pr|edge {u,w} cut]

Recall: v, v,
Since ||v,||=]||v

wl

|Vu||°

0

-
v, || - cos(6)

20

T om

=1, we have 6 = arccos(v, v,,) W

T
+ Main Lemma: Pr [edge {u, w} cut] = 200(Vutu)

-
» Claim: For all x€[-1,1], 2recos(®) _ oo] ;a:
. T
* Proof: By picture: _
ME / arccos(x)
0.878 (1-X) /2

* Can be formalized using calculus.

arccos(v, vy,)

* Main Lemma: Pr[edge {u,w} cut] =

-
e Claim: For all xg[-1,1], arccos(z) > 0.878. 1 ;g;

T
* So we can analyze # cut edges:

E[# cut edges] = Z Pr[edge {u,w} cut]
{u,w}eFE

B Z arccos(v, vy,)
wwyer "
>0.878 > 2(1—wv)
{uvw}eE
= 0.878 - (SDP optimal value)

. . _Value(Our Cut)
Recall: o = Value(SDP Opt) So E[v] > 0.878.

Objective Value

g Local Ratio Alg Our.Cut QIP O\Fl)timum SDP O;timum
N (The Mi); Cut) y
a > 0.878
* So we can analyze # cut edges:
E[# cut edges] = Z Pr[edge {u,w} cut]

{u,w}eFE

B Z arccos(v, vy,)
wwyer "
>0.878 > 2(1—wv)
{uvw}eE
= 0.878 - (SDP optimal value)

. . _Value(Our Cut)
Recall: o = Value(SDP Opt) So E[v] > 0.878.

Objective Value

O O O O O
0 Local Ratio Alg Our Cut QIP Optimum SDP Optimum
N (The Mi); Cut) y
a > 0.878

* So, in expectation, the algorithm gives a
0.878-approximation to the Max Cut. B

Matlab Example

Hyperplane H Green edges are cut
38 of them

Blue edges are not cut
8 of them

SDP Opt. Value =~ 39.56
= QIP Opt. Value < 39
o ~ 38/39.56 = 0.9604

-0.4

H cuts 38 edges
So Max Cut is either 38 or 39

-0.6

-0.8

1 I I I I 1y I I I j
1 -0.8 -0.6 -04 -0.2 0 0.2 04 0.6 0.8 1

* Random graph: 20 vertices, 46 edges.
* Embedded on unit-sphere in R?9, then
projected onto 2 random directions.

Puzzle
* My solution:

— Install SDPT3 (Matlab software for solving SDPs)
It has example code for solving Max Cut.

— Run this code:

load 'Data.txt'; A = Data; % Load adjacency matrix from file

h = size(A,1); % n = number of vertices in the graph

m = sum(sum(A))/2; % m = number of edges of the graph
[blk,Avec,C,b,x0,y0,z0,0bjval,R] = maxcut(A,1,1); % Run the SDP solver

X = R{1}; % X i1s the optimal solution to SDP

V = chol(X); % Columns of V are solution to Vector Program
a = randn(1,n); The vector a defines a random hyperplane

Xx =signC a *vVv)';
cut = m/2 - x'*A*x/4
sdpOopt = -objval
ratio = cut/sdpOpt

X 1s our integral solution

This counts how many edges are cut by X
This is the SDP optimal value

This compares cut to SDP optimum

R R R R R

Here we use the fact that product of Normal Distributions is spherically symmetric.

* Output: cut=2880, sdpOpt=3206.5, ratio=0.8982

http://www.math.nus.edu.sg/~mattohkc/sdpt3.html

