C\&O 355
 Lecture 23

N. Harvey

Topics

- Weight-Splitting Method
- Shortest Paths
- Primal-Dual Interpretation
- Local-Ratio Method
- Max Cut

Weight-Splitting Method

- Let $C \subset \mathbb{R}^{n}$ be set of feasible solutions to some optimization problem.
- Let $w \in \mathbb{R}^{n}$ be a "weight vector".
- x is "optimal under w " if x optimizes $\min \left\{w^{\top} y: y \in C\right\}$
- Lemma: Suppose $\mathrm{w}=\mathrm{w}_{1}+\mathrm{w}_{2}$. Suppose that x is optimal under w_{1}, and x is optimal under w_{2}. Then x is optimal under w .

Frank ' 81

Hassin ' 82

Weight-Splitting Method

- Appears in this paper:

JOURNAL OF ALGORITHMS 2, 328-336 (1981)

A Weighted Matroid Intersection Algorithm

András Frank*
Research Institute for Telecommunication, Budapest, Hungary
Received November 5, 1980; revised May 10, 1981

Two matroids $M_{1}=\left(S, \Im_{1}\right)$ and $M_{2}=\left(S, g_{2}\right)$, and a weight function s on S (possibly negative or nonintegral) are given. For every nonnegative integer k, find a k-element common independent set of maximum weight (if it exists).

This problem was solved by J. Edmonds [3, 4] both theoretically and algorithmically. Since then the question has been investigated by a number of different authors; see, for example, [1, 6-10]. The purpose of this note is

Weight-Splitting Method

- Scroll down a bit...

The weight of a subset X of S is $\mathbf{s}(X)=\Sigma(\bar{s}(x): \bar{x} \in X)$. If \mathscr{F} is a fami subsets of S we say that $F \in \mathscr{F}$ is \mathbf{s}-maximal in \mathscr{F} if $\mathbf{s}(F) \geq \mathbf{s}(X)$ for X
Before describing the algorithm we need some simple lemmas. The content of the Greedy Algorithm theorem [2] is:

Lemma 1. For a given matroid $M=(S, \mathscr{G})$, let $\mathscr{G}^{k}=\{X: X \in \mathscr{G},|X|=k\}$. $I \in G^{k}$ is s-maximal in \mathscr{G}^{k} if and only if
(1) $x \notin I, I+x \notin \mathscr{G}$ imply $\mathbf{s}(x) \leq \mathbf{s}(y)$, for every $y \in C(I, x)$ and
(2) $x \notin I, I+x \in \mathscr{G}$ imply $\mathbf{s}(x) \leq \mathbf{s}(y)$, for every $y \in I$,
*This note was written while the author was visiting the University of Waterloo, JanuaryApril, 1980.

Weight-Splitting Method was discovered in U. Waterloo C\&O Department!

ShortestPath(G, S, t, w)
Input: Digraph $G=(V, A)$, source vertices $S \subseteq V$, destination vertex $t \in V$, and integer lengths $w(a)$, such that $w(a)>0$, unless both endpoints of a are in S. Output: A shortest path from some $s \in S$ to t.

- If $t \in S$, return the empty path $\mathrm{p}=()$
- Set $w_{1}(a)=1$ for all $a \in \delta^{+}(S)$, and $w^{1}(a)=0$ otherwise
- Set $w_{2}=w-w_{1}$.
- Set $S^{\prime}=S \cup\left\{u: \exists s \in S\right.$ with $\left.w_{2}((s, u))=0\right\}$
- Set $p^{\prime}=\left(v_{1}, v_{2}, \ldots, t\right)=\operatorname{ShortestPath}\left(G, S^{\prime}, t, w_{2}\right)$
- If $v_{1} \in S$, then set $p=p^{\prime}$
- Else, set $p=\left(s, v_{1}, v_{2}, \ldots, t\right)$ where $s \in S$ and $w_{2}\left(\left(s, v_{1}\right)\right)=0$
- Return path p

To find shortest s-t path, run ShortestPath(G, \{s\}, t, w)

Correctness of Algorithm

- Claim: Algorithm returns a shortest path from S to t.
- Proof: By induction on number of recursive calls.
- If $t \in S$, then the empty path is trivially shortest.
- Otherwise, p^{\prime} is a shortest path from S^{\prime} to t under w_{2}.
- So p is a shortest path from S to t under w_{2}. (Note: length ${ }_{w_{2}}(p)=$ length $w_{w_{2}}\left(p^{\prime}\right)$, because if we added an arc, it has w_{2}-length 0.)
- Note: p cannot re-enter S, otherwise a subpath of p would be a shorter S-t path. So p uses exactly one arc of $\delta^{+}(\mathrm{S})$.

This is a shorter S-t path

Correctness of Algorithm

- Claim: Algorithm returns a shortest path from S to t .
- Proof: By induction on number of recursive calls.
- If $t \in S$, then the empty path is trivially shortest.
- Otherwise, p^{\prime} is a shortest path from S^{\prime} to t under w_{2}.
- So p is a shortest path from S to t under w_{2}.
(Note: length $w_{2}(p)=$ length $w_{2}\left(p^{\prime}\right)$, because if we added an arc, it has w_{2}-length 0 .)
- Note: p cannot re-enter S, otherwise a subpath of p would be a shorter S-t path. So p uses exactly one arc of $\delta^{+}(\mathrm{S})$.
- So length ${ }_{w_{1}}(p)=1$. But any S-t path has length at least 1 under w_{1}. So p is a shortest path from S to t under w_{1}.
- $\Rightarrow p$ is a shortest S-t path under arc-lengths w, by the Weight-Splitting Lemma.

Another IP \& LP for Shortest Paths

- Make variable x_{a} for each arc $a \in A$
$\begin{aligned} & \text { - The IP is: } \quad \min \sum_{a \in A} w(a) \cdot x_{a} \\ & \text { s.t. } \sum_{a \in C} x_{a} \geq 1 \quad \forall S \text { - } t \text { cuts } C\end{aligned}$

$$
x_{a} \quad \in\{0,1\} \quad \forall a \in A
$$

- Corresponding LP \& its dual:

Make variable y_{C} for each S-t cut C

\min	$\sum_{a \in A} w(a) \cdot x_{a}$		\max	$\sum_{S-t \text { cut } C} y_{C}$
s.t.	$\sum_{a \in C} x_{a} \geq 1$	$\forall S$-t cuts C	s.t.	$\sum_{C: a \in C} y_{C} \leq w(a)$

Theorem: The Weight-Splitting Algorithm finds optimal primal and dual solutions to these LPs.

ShortestPath(G, S, t, w)
Output: A shortest path p from S to t, and an optimal solution y for dual LP with weights w

- If $t \in S$
- Return ($\mathrm{p}=($), $\mathrm{y}=0$)
- Set $w_{1}(a)=1$ for all $a \in \delta^{+}(S)$, and $w_{1}(a)=0$ otherwise
- Set $w_{2}=w-w_{1}$
- Set $S^{\prime}=S \cup\left\{u: \exists s \in S\right.$ with $\left.w_{2}((s, u))=0\right\}$
- Set $\left(p^{\prime}, y^{\prime}\right)=\operatorname{ShortestPath}\left(G, S^{\prime}, t, w_{2}\right)$ where $p^{\prime}=\left(v_{1}, v_{2}, \ldots, t\right)$
- If $v_{1} \in S$
- Set $\mathrm{p}=\mathrm{p}^{\prime}$
- Else
- Set $p=\left(s, v_{1}, v_{2}, \ldots, t\right)$ where $s \in S$ and $w_{2}\left(\left(s, v_{1}\right)\right)=0$
- Set $y_{C}=1$ if $\mathrm{C}=\delta^{+}(\mathrm{S})$, otherwise $\mathrm{y}_{\mathrm{C}}=\mathrm{y}^{\prime}{ }_{C}$
- Return (p, y)

Proof of Theorem

- Claim: y is feasible for dual LP with weights w .
- Proof:
- By induction, y^{\prime} feasible for dual LP with weights w^{2}
- So $\sum_{c: a \in C} y^{\prime}{ }_{c} \leq w_{2}(a) \quad \forall a \in A$
- The only difference between y and y^{\prime} is $\mathrm{y}_{\delta+(\mathrm{S})}=1$
- So: $\sum_{\mathrm{C}: \mathrm{a} \in \mathrm{C}} \mathrm{y}_{\mathrm{C}}=\sum_{\mathrm{C}: \mathrm{a} \in \mathrm{C}} \mathrm{y}_{\mathrm{C}}^{\prime}+\left[1\right.$ if $\mathrm{a} \in \delta^{+}(\mathrm{S})$]

$$
\leq \mathrm{w}_{2}(\mathrm{a})+\left[1 \text { if } \mathrm{a} \in \delta^{+}(\mathrm{S})\right]=\mathrm{w}(\mathrm{a})
$$

- Clearly y is non-negative
- So y is feasible for dual LP with weights w.
- Let x be characteristic vector of path p, i.e., $x_{a}=1$ if $a \in P$, otherwise $x_{a}=0$
- Note: x is feasible for primal, since p is an S-t path, and its objective value is $w^{\top} x=\operatorname{length}_{w}(p)$
- Claim: x is optimal for primal and y is optimal for dual.
- Proof: Both x and y are feasible.
- We already argued that:
length $_{w_{2}}(p)=$ length $_{w_{2}}\left(p^{\prime}\right)$ and length ${ }_{w 1}(p)=1$
\Rightarrow length $_{w}(\mathrm{p})=$ length $_{\mathrm{w}_{2}}\left(\mathrm{p}^{\prime}\right)+1$

$$
\begin{aligned}
& =\Sigma_{C} \mathrm{y}_{\mathrm{C}}^{\prime}+1 \\
& =\Sigma_{C} \mathrm{y}_{\mathrm{C}}
\end{aligned}
$$

- So primal objective at $\mathrm{x}=$ dual objective at y . \square

How to solve combinatorial IPs?

- Two common approaches

1. Design combinatorial algorithm that directly solves IP Often such algorithms have a nice LP interpretation Eg: Weight-splitting algorithm for shortest paths
2. Relax IP to an LP; prove that they give same solution; solve LP by the ellipsoid method

- Need to show special structure of the LP's extreme points Sometimes we can analyze the extreme points combinatorially Eg: Perfect matching (in bip. graphs), Min s-t Cut, Max Flow Sometimes we can use algebraic structure of the constraints. Eg: Maximum matching, Vertex cover in bipartite graphs (using TUM matrices)

Many optimization problems are hard to solve exactly

Approximation Algorithms

- Algorithms for optimization problems that give provably near-optimal solutions.
- Catch-22: How can you know a solution is near-optimal if you don't know the optimum?
- Mathematical Programming to the rescue! Our techniques for analyzing exact solutions can often be modified to analyze approximate solutions.
- Eg: Approximate Weight-Splitting
- Eg: Relax IP to a (non-integral!) LP

Local-Ratio Method

(Approximate Weight-Splitting)

- Let $C \subset \mathbb{R}^{n}$ be set of feasible solutions to an optimization problem.
- Let $w \in \mathbb{R}^{n}$ be a "weight vector".
- x is " r-approximate under $w^{\prime \prime}$ if $w^{\top} x \geq r \cdot \max \left\{w^{\top} y: y \in C\right\}$
- Lemma: Suppose $\mathrm{w}=\mathrm{w}_{1}+\mathrm{w}_{2}$. Suppose that x is r -approximate under both w_{1} and w_{2}. Then x is r-approximate under w.
- Proof:
- Let z be optimal under w. Let z_{i} be optimal under $w_{i}, i \in\{1,2\}$.
- Then:

$$
\begin{aligned}
w^{\top} x=w_{1}^{\top} x+w_{2}^{\top} x & \geq r \cdot w_{1}^{\top} z_{1}+r \cdot w_{2}^{\top} z_{2} \\
& \geq r \cdot\left(w_{1}^{\top} z+w_{2}^{\top} z\right)=r \cdot w^{\top} z .
\end{aligned}
$$

So x is also r -approximate under w .

Bar-Yehuda

Even

Our Puzzle

- Original Statement:

There are n students in a classroom. Every two students are either enemies or friends. The teacher wants to divide the students into two groups to work on a project while he leaves the classroom. Unfortunately, putting two enemies in the same group will likely to lead to bloodshed. So the teacher would like to partition the students into two groups in a way that maximizes the number of enemies that belong to different groups.

- Restated in graph terminology:

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph with n vertices.
There is an edge $\{u, v\}$ if student u and v are enemies.
For $U \subseteq V$, let $\delta(U)=\{\{u, v\}: u \in U, v \notin U\}$
Find a set $U \subseteq V$ such that $|\delta(U)|$ is maximized.

- This is the Max Cut Problem:
$\max \{|\delta(\mathrm{U})|: \mathrm{U} \subseteq \mathrm{V}\}$

This is a computationally-hard problem: there is no algorithm to solve it exactly, unless $P=N P$

Puzzle Solution

- Input: $|\mathrm{V}|=750,|\mathrm{E}|=3604$ (\# enemies)

A Greedy Can cut at

- Solutions: Algorithm mostall edges

This bound is based on
greedily packing odd-cycles.

History of Max Cut

- Approximation Algorithms

Who	Ratio	Technique
Sahni-Gonzales 1976	50%	Greedy algorithm
Folklore	50%	Random Cut
Folklore	50%	Linear Programming
Goemans-Williamson 1995	87.8%	Semidefinite Programming
Trevisan 2009	53.1%	Spectral Graph Theory

- We will see two algorithms:
- Local-Ratio Method: Also achieves ratio 50\%
- Goemans-Williamson Algorithm (next Lecture)

Weighted Max Cut

- We can handle the weighted version of the problem
- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be complete graph with n vertices. For each $e \in E$, there is an integer weight $w(e) \geq 0$
- Notation:

For $\mathrm{U} \subseteq \mathrm{V}$, let $\delta(\mathrm{U})=\{\{\mathbf{u}, \mathrm{v}\}: \mathbf{u} \in \mathrm{U}, \mathrm{v} \notin \mathrm{U}\}$
Let $\delta(\mathrm{U})^{\top} \mathrm{w}$ denote $\Sigma_{\mathrm{e} \in \delta(\mathrm{U})} \mathrm{w}(\mathrm{e})$

- Objective:

Find a set $\mathrm{U} \subseteq \mathrm{V}$ such that $\delta(\mathrm{U})^{\top} \mathrm{w}$ is maximized

Sketch of Algorithm

MaxCut(G, w)
Input: Complete graph $G=(\mathrm{V}, \mathrm{E})$, edge weights w
Output: $\mathrm{X} \subset \mathrm{V}$ s.t. $\delta(\mathrm{X})^{\top} \mathrm{w} \geq(1 / 2) \cdot$ optimum

- If $|\mathrm{V}|=1$
- Return $X=\emptyset$
- Else
- Pick any $v \in V$
- Let $\mathrm{X}=\mathrm{MaxCut}(\mathrm{G} \backslash \mathrm{v}, \mathrm{w}$)
- Return either X or $\mathrm{X} \cup\{\mathrm{v}\}$, whichever is better
- Analysis Idea: Either X or $X \cup\{v\}$ cuts half the weight of edges incident on v. Since this holds for all v, we cut at least half the edges.

Local-Ratio Algorithm

MaxCut(G, w)
Input: Complete graph $G=(\mathrm{V}, \mathrm{E})$, edge weights w
Output: $\mathrm{X} \subset \mathrm{V}$ s.t. $\delta(\mathrm{X})^{\top} \mathrm{w} \geq(1 / 2) \cdot$ optimum

- If $|\mathrm{V}|=1$
- Return $X=\emptyset$
- Else
- Pick any $v \in V$
- Set $w_{1}(e)=w(e)$ if e is incident on v, otherwise $w_{1}(e)=0$
- Set $w_{2}=w-w_{1}$
- Let $\mathrm{G}^{\prime}=\mathrm{G} \backslash \mathrm{v}$
- Let $\mathrm{X}^{\prime}=\mathbf{M a x C u t}\left(\mathrm{G} \backslash \mathrm{v}, \mathrm{w}_{2}\right.$)
- Return either X^{\prime} or $X^{\prime} \cup\{v\}$, whichever is better

Correctness of Algorithm

- Claim: Algorithm returns $\mathrm{X} \subset \mathrm{V}$ s.t. $\delta(\mathrm{X})^{\top} \mathrm{w} \geq 1 / 2$ optimum
- Proof: By induction on |V|.
- If $|\mathrm{V}|=1$, then any cut is optimal.
- By induction, X^{\prime} is $1 / 2$-optimal for graph G^{\prime} with weights w_{2}.
- The edges incident on v have w_{2}-weight zero. So both X^{\prime} and $X^{\prime} \cup\{v\}$ are $1 / 2$-optimal for G with weights w_{2}.

Correctness of Algorithm

- Claim: Algorithm returns $\mathrm{X} \subset \mathrm{V}$ s.t. $\delta(\mathrm{X})^{\top} \mathrm{w} \geq 1 / 2$ optimum
- Proof: By induction on |V|.
- If $|\mathrm{V}|=1$, then any cut is optimal.
- By induction, X^{\prime} is $1 / 2$-optimal for graph G^{\prime} with weights w_{2}.
- The edges incident on v have w_{2}-weight zero.

So both X^{\prime} and $X^{\prime} \cup\{v\}$ are $1 / 2$-optimal for G with weights w_{2}.

- Any cut U has w_{1}-weight at most $\Sigma_{\text {e } \in E} \mathrm{w}_{1}(\mathrm{e})$
- Every edge incident on v is cut by either X^{\prime} or $X^{\prime} \cup\{v\}$

Correctness of Algorithm

- Claim: Algorithm returns $\mathrm{X} \subset \mathrm{V}$ s.t. $\delta(\mathrm{X})^{\top} \mathrm{w} \geq 1 / 2$ optimum
- Proof: By induction on |V|.
- If $|V|=1$, then any cut is optimal.
- By induction, X^{\prime} is $1 / 2$-optimal for graph G^{\prime} with weights w_{2}.
- The edges incident on v have w_{2}-weight zero.

So both X^{\prime} and $X^{\prime} \cup\{v\}$ are $1 / 2$-optimal for G with weights W_{2}.

- Any cut U has w_{1}-weight at most $\Sigma_{\text {e } \in E} \mathrm{w}_{1}(\mathrm{e})$
- Every edge incident on v is cut by either X^{\prime} or $\mathrm{X}^{\prime} \cup\{\mathrm{v}\}$ So $\delta\left(\mathrm{X}^{\prime}\right)^{\top} \mathrm{w}_{1}+\delta\left(\mathrm{X}^{\prime} \cup\{\mathrm{V}\}\right)^{\top} \mathrm{w}_{1}=\Sigma_{\mathrm{e} \in \mathrm{E}} \mathrm{w}_{1}(\mathrm{e}) \geq$ optimum under w_{1}
- So either X^{\prime} or $X^{\prime} \cup\{v\}$ is $1 / 2$-optimal under w_{1}
- So the better of X^{\prime} or $X^{\prime} \cup\{v\}$ is $1 / 2$-optimal under w_{1} and w_{2} \Rightarrow also $1 / 2$-optimal under w .

What's Next?

- Future C\&O classes you could take

If you liked...	You might like...
Max Flows, Min Cuts, Shortest Paths	C\&O 351 "Network Flows"
	C\&O 450 "Combinatorial Optimization" C\&O 453
Integer Programs	C\&O 452 "Integer Programming"

- If you're unhappy that the ellipsoid method is too slow, you can learn about practical methods in:
- C\&O 466: Continuous Optimization

