
C&O 355
Lecture 23

N. Harvey

http://www.math.uwaterloo.ca/~harvey/

Topics

• Weight-Splitting Method

• Shortest Paths

• Primal-Dual Interpretation

• Local-Ratio Method

• Max Cut

k

Weight-Splitting Method
• Let C ½ Rn be set of feasible solutions to some

optimization problem.
• Let w2Rn be a “weight vector”.

• x is “optimal under w” if x optimizes min { wT y : y2C }

• Lemma: Suppose w = w1 + w2. Suppose that
x is optimal under w1, and x is optimal under w2.
Then x is optimal under w.

Hassin ‘82Frank ‘81

http://www.math.tau.ac.il/~hassin/
http://www.math.tau.ac.il/~hassin/
http://www.math.tau.ac.il/~hassin/
http://www.cs.elte.hu/~frank/

Weight-Splitting Method
• Appears in this paper:

András Frank

http://www.math.tau.ac.il/~hassin/
http://www.cs.elte.hu/~frank/
http://www.cs.elte.hu/~frank/
http://www.cs.elte.hu/~frank/
http://www.cs.elte.hu/~frank/
http://www.cs.elte.hu/~frank/

Weight-Splitting Method
• Scroll down a bit…

András Frank

Weight-Splitting Method was discovered in
U. Waterloo C&O Department!

http://www.math.tau.ac.il/~hassin/
http://www.cs.elte.hu/~frank/
http://www.cs.elte.hu/~frank/
http://www.cs.elte.hu/~frank/
http://www.cs.elte.hu/~frank/
http://www.cs.elte.hu/~frank/

ShortestPath(G, S, t, w)
Input: Digraph G = (V,A), source vertices SµV,
destination vertex t2V, and integer lengths w(a),
such that w(a)>0, unless both endpoints of a are in S.
Output: A shortest path from some s2S to t.

• If t2S, return the empty path p=()

• Set w1(a)=1 for all a2±+(S), and w1(a)=0 otherwise

• Set w2 = w - w1.

• Set S’ = S [{ u : 9s2S with w2((s,u)) = 0 }

• Set p’ = (v1,v2,,t) = ShortestPath(G, S’, t, w2)
• If v12S, then set p=p’

• Else, set p=(s,v1,v2,,t) where s2S and w2((s,v1))=0

• Return path p

To find shortest s-t path, run ShortestPath(G, {s}, t, w)

• Claim: Algorithm returns a shortest path from S to t.

• Proof: By induction on number of recursive calls.

• If t2S, then the empty path is trivially shortest.

• Otherwise, p’ is a shortest path from S’ to t under w2.

• So p is a shortest path from S to t under w2.
(Note: lengthw2(p)=lengthw2(p’), because if we added an arc, it has w2-length 0.)

• Note: p cannot re-enter S, otherwise a subpath of p would
be a shorter S-t path. So p uses exactly one arc of ±+(S).

Correctness of Algorithm

s

s'

S

t
Path p

This is a shorter S-t path

• Claim: Algorithm returns a shortest path from S to t.

• Proof: By induction on number of recursive calls.

• If t2S, then the empty path is trivially shortest.

• Otherwise, p’ is a shortest path from S’ to t under w2.

• So p is a shortest path from S to t under w2.
(Note: lengthw2(p)=lengthw2(p’), because if we added an arc, it has w2-length 0.)

• Note: p cannot re-enter S, otherwise a subpath of p would
be a shorter S-t path. So p uses exactly one arc of ±+(S).

• So lengthw1(p)=1. But any S-t path has length at least 1
under w1. So p is a shortest path from S to t under w1.

•) p is a shortest S-t path under arc-lengths w,
by the Weight-Splitting Lemma. ¥

Correctness of Algorithm

Another IP & LP for Shortest Paths
• Make variable xa for each arc a 2 A

• The IP is:

• Corresponding LP & its dual:
Make variable yC for each S-t cut C

Theorem: The Weight-Splitting Algorithm finds optimal
primal and dual solutions to these LPs.

ShortestPath(G, S, t, w)
Output: A shortest path p from S to t, and
an optimal solution y for dual LP with weights w

• If t2S
– Return (p=(), y=0)

• Set w1(a)=1 for all a2±+(S), and w1(a)=0 otherwise
• Set w2 = w - w1

• Set S’ = S [{ u : 9s2S with w2((s,u)) = 0 }
• Set (p’,y’) = ShortestPath(G,S’,t,w2) where p’=(v1,v2,…,t)
• If v12S

– Set p=p’
• Else

– Set p=(s,v1,v2,,t) where s2S and w2((s,v1))=0
• Set yC = 1 if C=±+(S), otherwise yC = y’C
• Return (p,y)

• Claim: y is feasible for dual LP with weights w.

• Proof:

• By induction, y’ feasible for dual LP with weights w2

• So C : a2C y’C · w2(a) 8a2A

• The only difference between y and y’ is y±+(S) =1

• So: C : a2C yC = C : a2C y’C + [1 if a2±+(S)]

· w2(a) + [1 if a2±+(S)] = w(a)

• Clearly y is non-negative

• So y is feasible for dual LP with weights w. ¤

Proof of Theorem

• Let x be characteristic vector of path p,
i.e., xa=1 if a2P, otherwise xa=0

• Note: x is feasible for primal, since p is an S-t path,
and its objective value is wTx = lengthw(p)

• Claim: x is optimal for primal and y is optimal for dual.

• Proof: Both x and y are feasible.

• We already argued that:
lengthw2(p)=lengthw2(p’) and lengthw1(p)=1

) lengthw(p) = lengthw2(p’) + 1

= §C y’C + 1

= §C yC

• So primal objective at x = dual objective at y. ¤

How to solve combinatorial IPs?
• Two common approaches

1. Design combinatorial algorithm that directly solves IP

• Often such algorithms have a nice LP interpretation

• Eg: Weight-splitting algorithm for shortest paths

2. Relax IP to an LP; prove that they give same solution;
solve LP by the ellipsoid method

• Need to show special structure of the LP’s extreme points

• Sometimes we can analyze the extreme points combinatorially

• Eg: Perfect matching (in bip. graphs), Min s-t Cut, Max Flow

• Sometimes we can use algebraic structure of the constraints.

• Eg: Maximum matching, Vertex cover in bipartite graphs
(using TUM matrices)

Many optimization problems are
hard to solve exactly

P

NP

LP: max { cTx : x2P }
Maximum Bipartite Matching,
Maximum Flow,
Min s-t Cut, Shortest Path…

IP: max { cTx : x2P, x2{0,1}n }

Maximum cut in graph?

Largest clique in graph?

Smallest vertex cover in graph?

Since these are
hard to solve exactly,
let’s instead aim for an
approximate solution

Approximation Algorithms

• Algorithms for optimization problems that give
provably near-optimal solutions.

• Catch-22: How can you know a solution is
near-optimal if you don’t know the optimum?

• Mathematical Programming to the rescue!
Our techniques for analyzing exact solutions can
often be modified to analyze approximate solutions.

– Eg: Approximate Weight-Splitting

– Eg: Relax IP to a (non-integral!) LP

k

k

Local-Ratio Method

• Let C ½ Rn be set of feasible solutions to an optimization problem.

• Let w2Rn be a “weight vector”.

• x is “r-approximate under w” if wT x ¸ r ¢max { wT y : y2C }

• Lemma: Suppose w = w1 + w2. Suppose that x is r-approximate
under both w1 and w2. Then x is r-approximate under w.

• Proof:

• Let z be optimal under w. Let zi be optimal under wi, i2{1,2}.

• Then:

wT x = w1
T x + w2

T x ¸ r¢w1
T z1 + r¢w2

T z2

¸ r¢(w1
T z + w2

Tz) = r ¢ wT z.

So x is also r-approximate under w. ¥

Bar-Yehuda Even

(Approximate Weight-Splitting)

http://www.math.tau.ac.il/~hassin/
http://www.cs.technion.ac.il/~reuven/
http://www.cs.technion.ac.il/~reuven/
http://www.cs.technion.ac.il/~reuven/
http://www.math.tau.ac.il/~hassin/
http://www.wisdom.weizmann.ac.il/~oded/s_even.html

Our Puzzle
• Original Statement:

There are n students in a classroom. Every two students are either
enemies or friends. The teacher wants to divide the students into two
groups to work on a project while he leaves the classroom. Unfortunately,
putting two enemies in the same group will likely to lead to bloodshed. So
the teacher would like to partition the students into two groups in a way
that maximizes the number of enemies that belong to different groups.

• Restated in graph terminology:
Let G=(V,E) be a graph with n vertices.
There is an edge {u,v} if student u and v are enemies.

For U µ V, let ±(U) = { {u,v} : u2U, vU }
Find a set U µ V such that |±(U)| is maximized.

• This is the Max Cut Problem:
max{ |±(U)| : U µ V }

This is a computationally-hard
problem: there is no algorithm
to solve it exactly, unless P=NP

Puzzle Solution

• Input: |V| = 750, |E| = 3604 (# enemies)

• Solutions:
Who # Cut Edges Upper Bound on Optimum Ratio

Student X 1897 3604 52.6%

Me 2962 3207 92.3%

Student Y 2989 3125 95.6%

Every solution cuts
at most this many edges

An algorithm
based on
Semidefinite
Programming
(Lecture 24)

Simulated
Annealing

A Greedy
Algorithm

Can cut at
most all edges

For any odd-cycle of length k,
any cut cuts at most k-1 edges.

This bound is based on
greedily packing odd-cycles.

History of Max Cut

• Approximation Algorithms

• We will see two algorithms:

– Local-Ratio Method: Also achieves ratio 50%

– Goemans-Williamson Algorithm (next Lecture)

Who Ratio Technique

Sahni-Gonzales 1976 50% Greedy algorithm

Folklore 50% Random Cut

Folklore 50% Linear Programming

Goemans-Williamson 1995 87.8% Semidefinite Programming

Trevisan 2009 53.1% Spectral Graph Theory

Weighted Max Cut
• We can handle the weighted version of the problem

• Let G=(V,E) be complete graph with n vertices.
For each e2E, there is an integer weight w(e) ¸ 0

• Notation:
For U µ V, let ±(U) = { {u,v} : u2U, vU }
Let ±(U)T w denote §e2±(U) w(e)

• Objective:
Find a set U µ V such that ±(U)T w is maximized

MaxCut(G, w)
Input: Complete graph G = (V,E), edge weights w
Output: X½V s.t. ±(X)T w ¸ (1/2) ¢ optimum

• If |V|=1

– Return X = ;

• Else

– Pick any v2V

– Let X = MaxCut(G\v, w)

– Return either X or X[{v}, whichever is better

Sketch of Algorithm

• Analysis Idea: Either X or X[{v} cuts half the weight
of edges incident on v. Since this holds for all v, we
cut at least half the edges.

MaxCut(G, w)
Input: Complete graph G = (V,E), edge weights w
Output: X½V s.t. ±(X)T w ¸ (1/2) ¢ optimum

• If |V|=1

– Return X = ;

• Else

– Pick any v2V

– Set w1(e)=w(e) if e is incident on v, otherwise w1(e)=0

– Set w2 = w - w1

– Let G’= G\v

– Let X’ = MaxCut(G\v, w2)

– Return either X’ or X’[{v}, whichever is better

Local-Ratio Algorithm

• Claim: Algorithm returns X½V s.t. ±(X)T w ¸ ½ optimum

• Proof: By induction on |V|.

• If |V|=1, then any cut is optimal.

• By induction, X’ is ½-optimal for graph G’ with weights w2.

• The edges incident on v have w2-weight zero.
So both X’ and X’[{v} are ½-optimal for G with weights w2.

Correctness of Algorithm

v

G\vX’

v

G\vX’ X’[{v}X’

• Claim: Algorithm returns X½V s.t. ±(X)T w ¸ ½ optimum

• Proof: By induction on |V|.

• If |V|=1, then any cut is optimal.

• By induction, X’ is ½-optimal for graph G’ with weights w2.

• The edges incident on v have w2-weight zero.
So both X’ and X’[{v} are ½-optimal for G with weights w2.

• Any cut U has w1-weight at most §e2E w1(e)

• Every edge incident on v is cut by either X’ or X’[{v}

Correctness of Algorithm

v

G\vX’

v

G\vX’ X’[{v}X’

• Claim: Algorithm returns X½V s.t. ±(X)T w ¸ ½ optimum

• Proof: By induction on |V|.

• If |V|=1, then any cut is optimal.

• By induction, X’ is ½-optimal for graph G’ with weights w2.

• The edges incident on v have w2-weight zero.
So both X’ and X’[{v} are ½-optimal for G with weights w2.

• Any cut U has w1-weight at most §e2E w1(e)

• Every edge incident on v is cut by either X’ or X’[{v}
So ±(X’)T w1 + ±(X’[{v})T w1 = §e2E w1(e)¸ optimum under w1

• So either X’ or X’[{v} is ½-optimal under w1

• So the better of X’ or X’[{v} is ½-optimal under w1 and w2

) also ½-optimal under w. ¥

Correctness of Algorithm

What’s Next?
• Future C&O classes you could take

• If you’re unhappy that the ellipsoid method is too
slow, you can learn about practical methods in:

– C&O 466: Continuous Optimization

If you liked… You might like…

Max Flows, Min Cuts, Shortest Paths C&O 351 “Network Flows”
C&O 450 “Combinatorial Optimization”
C&O 453 “Network Design”

Integer Programs C&O 452 “Integer Programming”

Konig’s Theorem, Hall’s Theorem C&O 342 “Intro to Graph Theory”
C&O 442 “Graph Theory”
C&O 444 “Algebraic Graph Theory”

Convex Functions,
Subgradient Inequality,
KKT Theorem

C&O 367 “Nonlinear Optimization”
C&O 463 “Convex Optimization”
C&O 466 “Continuous Optimization”

Semidefinite Programs C&O 471 “Semidefinite Optimization”

