C&O 355
Lecture 23

N. Harvey

http://www.math.uwaterloo.ca/~harvey/

Topics

Weight-Splitting Method
Shortest Paths
Primal-Dual Interpretation
Local-Ratio Method

Max Cut

Weight-Splitting Method
Let C C IR" be set of feasible solutions to some

optimization problem.
Let weR" be a “weight vector”.

X is “optimal under w” if x optimizes min {w'y : yeC}

Lemma: Suppose w = w, + w,. Suppose that
X is optimal under w,, and x is optimal under w,.
Then x is optimal under w.

http://www.math.tau.ac.il/~hassin/
http://www.math.tau.ac.il/~hassin/
http://www.math.tau.ac.il/~hassin/
http://www.cs.elte.hu/~frank/

Weight-Splitting Method
e Appears in this paper:

JOURNAL OF ALGORITHMS 2, 328-336 (1981)

Andras Frank

A Weighted Matroid Intersection Algorithm
ANDRAS FRANK*

Research Institute for Telecommunication, Budapest, Hungary

Received November 5, 1980; revised May 10, 1981

Two matroids M, = (S, §,) and M, = (S, 9,), and a weight function s on
S (possibly negative or nonintegral) are given. For every nonnegatwe integer
k, find a k-element common independent set of maximum weight (if it
exists).

This problem was solved by J. Edmonds [3, 4] both theoretically and
algorithmically. Since then the question has been investigated by a number
of different authors; see, for example, [1, 6—10]. The purpose of this note is

http://www.math.tau.ac.il/~hassin/
http://www.cs.elte.hu/~frank/
http://www.cs.elte.hu/~frank/
http://www.cs.elte.hu/~frank/
http://www.cs.elte.hu/~frank/
http://www.cs.elte.hu/~frank/

Weight-Splitting Method

e Scroll down a bit...

The weight of a subset X of Sis s(X) = I(s(x):x € X). If Fis a fami
subsets of S we say that F € ¥ is s-maximal in Fif s(F) = s(X) for X

Before describing the algorithm we need some simple lemmas. The .oos
content of the Greedy Algorithm theorem [2] is:

LEMMA 1. For a given matroid M = (S, 9), let §* = {X: X € 9,[)(] = k}.
I € %% is s-maximal in $% if and only if

Andras Frank

(D) x &I I+ x&Yimply s(x)<s(y), for every y € C(I, x) and
(2) x &I, I+ x €9 imply s(x) <s(y), forevery y € I,

*This note was written while the author was visiting the University of Waterloo, J%
(April, 1980.

Weight-Splitting Method was discovered in
U. Waterloo C&O Department!

http://www.math.tau.ac.il/~hassin/
http://www.cs.elte.hu/~frank/
http://www.cs.elte.hu/~frank/
http://www.cs.elte.hu/~frank/
http://www.cs.elte.hu/~frank/
http://www.cs.elte.hu/~frank/

ShortestPath(G, S, t, w)
Input: Digraph G = (V,A), source vertices SCV,
destination vertex t€V, and integer lengths w(a),
such that w(a)>0, unless both endpoints of a are in S.
Output: A shortest path from some s€S to t.

e IfteS, return the empty path p=()

* Set w,(a)=1 for all acd*(S), and wi(a)=0 otherwise

* Setw,=w-w,.

* SetS'=SU{u:dseS withw,((s,u))=0}

* Setp’ =(v,V,,...,t) = ShortestPath(G, S, t, w,)

* If v,€S, then set p=p’

* Else, set p=(s,v,,v,,...,t) where s€S and w,((s,v,))=0
e Return path p

To find shortest s-t path, run ShortestPath(G, {s}, t, w)

Correctness of Algorithm

Claim: Algorithm returns a shortest path from S to t.
Proof: By induction on number of recursive calls.

If t€S, then the empty path is trivially shortest.
Otherwise, p’ is a shortest path from S’ to t under w,,.

So p is a shortest path from S to t under w,.
(Note: lengthy,(p)=lengthy,(p’), because if we added an arc, it has w,-length 0.)

Note: p cannot re-enter S, otherwise a subpath of p would
be a shorter S-t path. So p uses exactly one arc of 9*(S).

This is a shorter S-t path

Correctness of Algorithm

Claim: Algorithm returns a shortest path from S to t.
Proof: By induction on number of recursive calls.

If t€S, then the empty path is trivially shortest.
Otherwise, p’ is a shortest path from S’ to t under w,,.

So p is a shortest path from S to t under w,,.

(Note: lengthy,(p)=lengthy,(p’), because if we added an arc, it has w,-length 0.)

Note: p cannot re-enter S, otherwise a subpath of p would
be a shorter S-t path. So p uses exactly one arc of 9*(S).

So lengthy,,(p)=1. But any S-t path has length at least 1
under W1.|§o p is a shortest path from S to t under w;.

—|p is a shortest S-t path under arc-lengths w,
by the Weight-Splitting Lemma. H

Another IP & LP for Shortest Paths

* Make variable x, for each arca € A
e ThelPis: min) w(a)-

acA
s.t. Z r, >1 YV S-t cuts C
acC

La c {O, 1} Va € A

* Corresponding LP & its dual:
Make variable y. for each S-t cut C

min Z w(a) - x4 max Z e,
acA S-t cut C

s.t. Z T, >1 vV S-t cuts C s.t. Z yo < w(a)
acC C:acC
Ta >0 Va € A Yo >0

Theorem: The Weight-Splitting Algorithm finds optimal
primal and dual solutions to these LPs.

ShortestPath(G, S, t, w)
Output: A shortest path p from Sto t, and
an optimal solution y for dual LP with weights w

e IfteS
— Return (p=(), y=0)
* Set w,(a)=1 for all aco*(S), and w,(a)=0 otherwise
* Setw,=w-w,
* SetS'=SU{u:dseS withw,((s,u))=0}
* Set (p’y’) = ShortestPath(G,S’,t,w,) where p’=(v,,v,,...,t)
* Ifv,eS
— Set p=p’
* Else
— Set p=(s,v,,V,,...,t) where seS and w,((s,v,))=0
* Sety.=1if C=0*(S), otherwise y. =y,
* Return (p,y)

Proof of Theorem

Claim: vy is feasible for dual LP with weights w.

Proof:

By induction, y’ feasible for dual LP with weights w?

SO 2 c.accYe < wy(a) VaeA

The only difference betweeny and y’ is y4,) =1

SO: 2c.accYe = 2c.aec Y * [Lifaed*(S)]
<w,(a) + [1ifaco*(S)] = w(a)

Clearly y is non-negative

So vy is feasible for dual LP with weights w.

Let x be characteristic vector of path p,
i.e., x,=1 if acP, otherwise x,=0

Note: x is feasible for primal, since p is an S-t path,
and its objective value is w'x = length,,(p)

Claim: x is optimal for primal and y is optimal for dual.
Proof: Both x and y are feasible.

We already argued that:
length,,,(p)=length,,,(p’) and length,,(p)=1

= length,(p) =length,,,(p’) +1

So primal objective at x = dual objective at .

How to solve combinatorial IPs?
e Two common approaches

1. Design combinatorial algorithm that directly solves IP

Y A Often such algorithms have a nice LP interpretation
=== Eg: Weight-splitting algorithm for shortest paths

2. Relax IP to an LP; prove that they give same solution;
solve LP by the ellipsoid method

- Need to show special structure of the LP’s extreme points

Y Sometimes we can analyze the extreme points combinatorially
; Eg: Perfect matching (in bip. graphs), Min s-t Cut, Max Flow
*% Sometimes we can use algebraic structure of the constraints.

Eg: Maximum matching, Vertex cover in bipartite graphs
(using TUM matrices)

Many optimization problems are
hard to solve exactly

P

LP: max {c'x : xcP }
Maximum Bipartite Matching,
Maximum Flow,

Min s-t Cut, Shortest Path...

Since these are
hard to solve exactly,
let’s instead aim for an
approximate solution

Approximation Algorithms

* Algorithms for optimization problems that give
provably near-optimal solutions.

e Catch-22: How can you know a solution is
near-optimal if you don’t know the optimum?

 Mathematical Programming to the rescue!
Our techniques for analyzing exact solutions can
often be modified to analyze approximate solutions.
— Eg: Approximate Weight-Splitting
— Eg: Relax IP to a (non-integral!) LP

Local-Ratio Method

Let C C R" be set of feasible solutions to an optimization problem.
Let weR" be a “weight vector”.

X is “r-approximate under w” if w'x >r-max{w'y:yeC}

Lemma: Suppose w = w,; + w,. Suppose that x is r-approximate
under both w, and w,. Then x is r-approximate under w.

Proof:
Let z be optimal under w. Let z, be optimal under w,, i€{1,2}.
Then:
wix=w,"x+w,"x>rw,;"z, +rw,"z,
>r(wz+w,’z)=r-wlz
So x is also r-approximate under w. H

Bar-Yehuda

http://www.math.tau.ac.il/~hassin/
http://www.cs.technion.ac.il/~reuven/
http://www.cs.technion.ac.il/~reuven/
http://www.cs.technion.ac.il/~reuven/
http://www.math.tau.ac.il/~hassin/
http://www.wisdom.weizmann.ac.il/~oded/s_even.html

Our Puzzle

* Original Statement:

There are n students in a classroom. Every two students are either
enemies or friends. The teacher wants to divide the students into two
groups to work on a project while he leaves the classroom. Unfortunately,
putting two enemies in the same group will likely to lead to bloodshed. So
the teacher would like to partition the students into two groups in a way
that maximizes the number of enemies that belong to different groups.

* Restated in graph terminology:
Let G=(V,E) be a graph with n vertices.
There is an edge {u,v} if student u and v are enemies.
ForU CV, let §(U)={{u,v}:ucU, vegU }
Find a set U C V such that |o(U)| is maximized.

e This is the Max Cut Problem: This is a computationally-hard

5 _ C problem: there is no algorithm
max{ [o{U)] : UE V] to solve it exactly, unless P=NP

Puzzle Solution
e Input: |V| =750, |E| =3604 (# enemies)

A Greedy Can cut at
° SOIUthnS: Algorithm most all edges

Cut Edges | Upper Bound on Optimum m

studentx (1897) 3604 52.6%

Me 2962 3207 92.3%
Student Y {2989 (3125) 95.6%
I\ J
N

An algorithm ery solution cuts
based on Simulated at mqst this many edges
Semidefinite Annealing
Programming For any odd-cycle of length k,
(Lecture 24) any cut cuts at most k-1 edges.

This bound is based on
greedily packing odd-cycles.

History of Max Cut

e Approximation Algorithms

o Rt Techique

Sahni-Gonzales 1976 50% Greedy algorithm
Folklore 50% Random Cut
Folklore 50% Linear Programming

Goemans-Williamson 1995 87.8% Semidefinite Programming

Trevisan 2009 53.1% Spectral Graph Theory

 We will see two algorithms:
— Local-Ratio Method: Also achieves ratio 50%
— Goemans-Williamson Algorithm (next Lecture)

Weighted Max Cut

We can handle the weighted version of the problem

Let G=(V,E) be complete graph with n vertices.
For each e€E, there is an integer weight w(e) > 0

Notation:
ForU CV, leto(U) ={{u,v}:ueU, veU}
Let 6(U)" w denote X s, w(e)

Objective:
Find a set U C V such that §(U)" w is maximized

Sketch of Algorithm

MaxCut(G, w)
Input: Complete graph G = (V,E), edge weights w
Output: XCV s.t. o(X)"w > (1/2) - optimum

e If|V]|=1

— Return X = ()
* Else

— Pick any veV

— Let X = MaxCut(G\v, w)
— Return either X or XU{v}, whichever is better

* Analysis Idea: Either X or XU{v} cuts half the weight
of edges incident on v. Since this holds for all v, we
cut at least half the edges.

Local-Ratio Algorithm

MaxCut(G, w)
Input: Complete graph G = (V,E), edge weights w
Output: XCV s.t. o(X)"w > (1/2) - optimum

e If|V]|=1

— Return X = ()
* Else

— Pick any veV

— Set w,(e)=w(e) if e is incident on v, otherwise w,(e)=0
— Setw, =w-w,

— Let G’'= G\v

— Let X’ = MaxCut(G\v, w,)

— Return either X’ or X’U{v}, whichever is better

Correctness of Algorithm

Claim: Algorithm returns XCV s.t. §(X)" w > % optimum
Proof: By induction on |V].

If |V|=1, then any cut is optimal.

By induction, X’ is %2-optimal for graph G’ with weights w,,.

The edges incident on v have w,-weight zero.
So both X’ and X'U{v} are Y:-optimal for G with weights w,.

Correctness of Algorithm

Claim: Algorithm returns XCV s.t. §(X)" w > % optimum
Proof: By induction on |V].

If |V|=1, then any cut is optimal.

By induction, X’ is %2-optimal for graph G’ with weights w,,.

The edges incident on v have w,-weight zero.
So both X’ and X'U{v} are Y:-optimal for G with weights w,.

Any cut U has w;-weight at most 2/ w,(e)
Every edge incident on v is cut by either X" or X' U{v}

Correctness of Algorithm

Claim: Algorithm returns XCV s.t. §(X)" w > % optimum
Proof: By induction on |V].

If |V|=1, then any cut is optimal.

By induction, X’ is %2-optimal for graph G’ with weights w,,.

The edges incident on v have w,-weight zero.
So both X’ and X'U{v} are Y:-optimal for G with weights w,.

Any cut U has w;-weight at most 2/ w,(e)

Every edge incident on v is cut by either X" or X" U{v}
So o(X')" wy + o(X'Ufvh) T w, = X wy(e) > optimum under w,

So either X" or X'U{v} is Y2-optimal under w,
So the better of X’ or X"U{v} is %2-optimal under w, and w,
= also %2-optimal under w. H

What’s Next?
e Future C&O classes you could take

If you liked... You might like...

Max Flows, Min Cuts, Shortest Paths C&O 351 “Network Flows”
C&0 450 “Combinatorial Optimization”
C&0 453 “Network Design”

Integer Programs C&O 452 “Integer Programming”

Konig’s Theorem, Hall’'s Theorem C&O 342 “Intro to Graph Theory”
C&0 442 “Graph Theory”
C&O 444 “Algebraic Graph Theory”

Convex Functions, C&O 367 “Nonlinear Optimization”
Subgradient Inequality, C&O 463 “Convex Optimization”

KKT Theorem C&0 466 “Continuous Optimization”
Semidefinite Programs C&0 471 “Semidefinite Optimization”

* If you're unhappy that the ellipsoid method is too
slow, you can learn about practical methods in:

— C&O0 466: Continuous Optimization

