C&O 355
Lecture 22

N. Harvey

http://www.math.uwaterloo.ca/~harvey/

Topics

Integral Polyhedra

Minimum s-t Cuts via Ellipsoid Method
Weight-Splitting Method

Shortest Paths

Minimum s-t Cuts

Theorem: Every optimal BFS of (LP) is optimal for (IP).

(IP) (LP)
min Z Ca * Ya min Z Ca " Ya
acA a€A
s.t. Zya > 1 Vp e P s.t. Zya > 1 Vp e P
acp acp
Ya € {0,1} VaeA Ya >0 VacA

* So to solve (IP), we can just solve (LP) and return an optimal BFS.
* To solve (LP), the separation oracle is:
Check if y,<0 for any acA. If so, the constraint “y,>0" is violated.

Check if dist,(s,t)<1. If so, let p be an s-t path with length,(p)<1.
Then the constraint for path p is violated.

* So to compute min s-t cuts, we just need an algorithm to
compute shortest dipaths!

Shortest Paths in a Digraph

Let G=(V,A) be a directed graph. Every arc a has a
“length” w_>0.

Given two vertices s and t, find a path from s to t of
minimum total length.

These edges form a shortest s-t path

Shortest Paths in a Digraph
* Let b be vector with b.=1, b,=-1, b =0 YveV\{s,t}
* Consider the IP:

min Z Wy * Tq
acA

s.t. Z Ty — Z T, = b, YveV
acs+(v) acs—(v)
Tq e {0,1} Va € A

e And the LP relaxation:

min E Wy * Ty

acA

s.t. Z Ty — Z T, = by YveV
acdt (v) acd (v)
0<z,<1 Va € A

Claim: Every optimal solution of (IP) is a shortest s-t path.

Theorem: Every optimal BFS of (LP) is optimal for (IP).

Our Min s-t Cut Algorithm

[Minimum S-T Cut Problem]

Solve by Ellipsoid Method
Separation oracle is...

Shortest Path Problem] Solve by Ellipsoid Method!

* |InnerLP
 Has |V| constraints, |A| variables.

e Qur analysis in Lecture 12: roughly O(|A|®) iterations
(actually, depends on # bits to represent lengths w)

* Quter LP
 Has |P| constraints, |A| variables
 Canshow O(|A|? (log? |A| + log? c
* Total
* Roughly O(|A]|?8) iterations, each taking roughly O(|A|3) time
e Total running time: roughly O(|A|*!)
e Best-known algorithm has running time: O(|A|1-)

)) iterations suffice

max

Combinatorial Algorithms

We’ve used the ellipsoid method to prove several
problems are solvable in “polynomial time”

— LPs, Maximum Bipartite Matching, Max Weight Perfect
Matching, Min s-t Cut, Shortest Paths

— Approximate solutions to SDPs and some Convex Programs
In practice, no one uses the ellipsoid method.

It should be viewed as a “proof of concept” that
efficient algorithms exist

For many combinatorial optimization problems,
combinatorial algorithms exist and are much faster

Next: a slick way to design combinatorial algorithms,
based on weight splitting.

Weight-Splitting Method
Let C C IR" be set of feasible solutions to some

optimization problem.
Let weR" be a “weight vector”.

X is “optimal under w” if x optimizes min {w'y : yeC}

Lemma: Suppose w = w, + w,. Suppose that
X is optimal under w,, and x is optimal under w,.
Then x is optimal under w.

Proof: Let z be optimal under w. Then:
wix=w," x+w,'x<w,Tz+w,"z=w'z
So x is also optimal under w.

Hassin Bar-Yehuda

http://www.math.tau.ac.il/~hassin/
http://www.math.tau.ac.il/~hassin/
http://www.math.tau.ac.il/~hassin/
http://www.cs.elte.hu/~frank/
http://www.math.tau.ac.il/~hassin/
http://www.cs.technion.ac.il/~reuven/
http://www.cs.technion.ac.il/~reuven/
http://www.cs.technion.ac.il/~reuven/
http://www.math.tau.ac.il/~hassin/
http://www.wisdom.weizmann.ac.il/~oded/s_even.html

ShortestPath(G, S, t, w)
Input: Digraph G = (V,A), source vertices SCV,
destination vertex t€V, and integer lengths w,,
such that w_>0, unless both endpoints of a are in S.
Output: A shortest path from some s€S to t.

e IfteS, return the empty path p=()

* Set w,(a)=1 for all aco*(S), and w,(a)=0 otherwise

* Setw,=w-w,.

* SetS'=SU{u:dseS withw,((s,u))=0}

* Setp’ =(v,,V,...,t) = ShortestPath(G, S, t, w,)

* If v,€S, then set p=p’

* Else, set p=(s,v,,v,,...,t) where s€S and w,((s,v,))=0
e Return path p

To find shortest s-t path, run ShortestPath(G, {s}, t, w)

Correctness of Algorithm

Claim: Algorithm returns a shortest path from S to t.
Proof: By induction on number of recursive calls.

If teS, then the empty path is trivially shortest.
Otherwise, p’ is a shortest path from S’ to t under w,,.

So p is a shortest path from S to t under w,,.
(Note: lengthy,(p)=lengthy,(p’), because if we added an arc, it has w,-length 0.)

Note: p cannot re-enter S, otherwise a subpath of p would
be a shorter S-t path. So p uses exactly one arc of 0*(S).

So lengthy,(p)=1. But any S-t path has length at least 1
under w,. So p is a shortest path from S to t under w,.

By Weight-Splitting Lemma, p is a shortest S-t path
under arc-lengths w. H

