C\&O 355
 Lecture 22

N. Harvey

Topics

- Integral Polyhedra
- Minimum s-t Cuts via Ellipsoid Method
- Weight-Splitting Method
- Shortest Paths

Minimum s-t Cuts

Theorem: Every optimal BFS of (LP) is optimal for (IP).

	(IP)		(LP)	
min	$\sum_{a \in A} c_{a} \cdot y_{a}$	min	$\sum_{a \in A} c_{a} \cdot y_{a}$	
s.t.	$\sum_{a \in p} y_{a} \geq 1$	$\forall p \in \mathcal{P}$	s.t.	$\sum_{a \in p} y_{a} \geq 1$

- So to solve (IP), we can just solve (LP) and return an optimal BFS.
- To solve (LP), the separation oracle is:

Check if $y_{a}<0$ for any $a \in A$. If so, the constraint " $y_{a} \geq 0$ " is violated. Check if $\operatorname{dist}_{y}(s, t)<1$. If so, let p be an $s-t$ path with length ${ }_{y}(p)<1$. Then the constraint for path p is violated.

- So to compute min s-t cuts, we just need an algorithm to compute shortest dipaths!

Shortest Paths in a Digraph

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{A})$ be a directed graph. Every arc a has a "length" $\mathrm{w}_{\mathrm{a}}>0$.
- Given two vertices s and t, find a path from s to t of minimum total length.

These edges form a shortest s-t path

Shortest Paths in a Digraph

- Let b be vector with $b_{s}=1, b_{t}=-1, b_{v}=0 \forall v \in V \backslash\{s, t\}$
- Consider the IP:

$$
\begin{array}{lll}
\min & \sum_{a \in A} w_{a} \cdot x_{a} & \\
\text { s.t. } & \sum_{a \in \delta^{+}(v)} x_{a}-\sum_{a \in \delta^{-}(v)} x_{a}=b_{v} & \forall v \in V \\
& x_{a} & \in\{0,1\} \quad \forall a \in A
\end{array}
$$

- And the LP relaxation:

$$
\begin{array}{lll}
\min & \sum_{a \in A} w_{a} \cdot x_{a} & \\
\text { s.t. } & \sum_{a \in \delta^{+}(v)} x_{a}-\sum_{a \in \delta^{-}(v)} x_{a}=b_{v} \quad \forall v \in V \\
& 0 \leq x_{a} \leq 1 & \forall a \in A
\end{array}
$$

Claim: Every optimal solution of (IP) is a shortest s-t path.
Theorem: Every optimal BFS of (LP) is optimal for (IP).

Our Min s-t Cut Algorithm

Minimum S-T Cut Problem
Solve by Ellipsoid Method
Separation oracle is...
Shortest Path Problem Solve by Ellipsoid Method!

- Inner LP
- Has |V| constraints, |A| variables.
- Our analysis in Lecture 12: roughly $O\left(|A|^{6}\right)$ iterations (actually, depends on \# bits to represent lengths w)
- Outer LP
- Has $|\mathcal{P}|$ constraints, $|A|$ variables
- Can show O(|A| $\left.{ }^{2}\left(\log ^{2}|A|+\log ^{2} c_{\max }\right)\right)$ iterations suffice
- Total
- Roughly $O\left(|A|^{8}\right)$ iterations, each taking roughly $O\left(|A|^{3}\right)$ time
- Total running time: roughly $\mathrm{O}\left(|\mathrm{A}|^{11}\right)$
- Best-known algorithm has running time: $\mathrm{O}\left(|\mathrm{A}|^{1.5}\right)$

Combinatorial Algorithms

- We've used the ellipsoid method to prove several problems are solvable in "polynomial time"
- LPs, Maximum Bipartite Matching, Max Weight Perfect Matching, Min s-t Cut, Shortest Paths
- Approximate solutions to SDPs and some Convex Programs
- In practice, no one uses the ellipsoid method.
- It should be viewed as a "proof of concept" that efficient algorithms exist
- For many combinatorial optimization problems, combinatorial algorithms exist and are much faster
- Next: a slick way to design combinatorial algorithms, based on weight splitting.

Weight-Splitting Method

- Let $C \subset \mathbb{R}^{n}$ be set of feasible solutions to some optimization problem.
- Let $w \in \mathbb{R}^{n}$ be a "weight vector".
- x is "optimal under w " if x optimizes $\min \left\{w^{\top} y: y \in C\right\}$
- Lemma: Suppose $\mathrm{w}=\mathrm{w}_{1}+\mathrm{w}_{2}$. Suppose that x is optimal under w_{1}, and x is optimal under w_{2}. Then x is optimal under w .
- Proof: Let z be optimal under w. Then:

$$
\mathrm{w}^{\top} \mathrm{x}=\mathrm{w}_{1}^{\top} \mathrm{x}+\mathrm{w}_{2}^{\top} \mathrm{x} \leq \mathrm{w}_{1}^{\top} \mathrm{z}+\mathrm{w}_{2}^{\top} \mathrm{z}=\mathrm{w}^{\top} \mathrm{z}
$$

So x is also optimal under w.

Frank

Hassin

Bar-Yehuda

Even

ShortestPath(G, S, t, w)
Input: Digraph $G=(V, A)$, source vertices $S \subseteq V$, destination vertex $t \in V$, and integer lengths w_{a}, such that $w_{a}>0$, unless both endpoints of a are in S. Output: A shortest path from some $s \in S$ to t.

- If $t \in S$, return the empty path $\mathrm{p}=()$
- Set $\mathrm{w}_{1}(\mathrm{a})=1$ for all $\mathrm{a} \in \delta^{+}(\mathrm{S})$, and $\mathrm{w}_{1}(\mathrm{a})=0$ otherwise
- Set $w_{2}=w-w_{1}$.
- Set $\mathrm{S}^{\prime}=\mathrm{S} \cup\left\{\mathrm{u}: \exists \mathrm{s} \in \mathrm{S}\right.$ with $\left.\left.\mathrm{w}_{2}(\mathrm{~s}, \mathrm{u})\right)=0\right\}$
- Set $p^{\prime}=\left(v_{1}, v_{2} \ldots, t\right)=\operatorname{ShortestPath}\left(G, S^{\prime}, t, w_{2}\right)$
- If $v_{1} \in S$, then set $p=p^{\prime}$
- Else, set $p=\left(s, v_{1}, v_{2}, \ldots, t\right)$ where $s \in S$ and $w_{2}\left(\left(s, v_{1}\right)\right)=0$
- Return path p

To find shortest s-t path, run ShortestPath(G, \{s\}, t, w)

Correctness of Algorithm

- Claim: Algorithm returns a shortest path from S to t.
- Proof: By induction on number of recursive calls.
- If $t \in S$, then the empty path is trivially shortest.
- Otherwise, p^{\prime} is a shortest path from S^{\prime} to t under w_{2}.
- So p is a shortest path from S to t under w_{2}. (Note: length ${ }_{w_{2}}(p)=$ length ${ }_{w_{2}}\left(p^{\prime}\right)$, because if we added an arc, it has w_{2}-length 0.)
- Note: p cannot re-enter S, otherwise a subpath of p would be a shorter S-t path. So p uses exactly one arc of $\delta^{+}(S)$.
- So length ${ }_{w_{1}}(p)=1$. But any $S-t$ path has length at least 1 under w_{1}. So p is a shortest path from S to t under w_{1}.
- By Weight-Splitting Lemma, p is a shortest S-t path under arc-lengths w.

