
C&O 355
Lecture 22

N. Harvey

http://www.math.uwaterloo.ca/~harvey/

Topics

• Integral Polyhedra

• Minimum s-t Cuts via Ellipsoid Method

• Weight-Splitting Method

• Shortest Paths

Minimum s-t Cuts

(LP)

Theorem: Every optimal BFS of (LP) is optimal for (IP).

(IP)

• So to solve (IP), we can just solve (LP) and return an optimal BFS.

• To solve (LP), the separation oracle is: (Lecture 12)

Check if ya<0 for any a2A. If so, the constraint “ya¸0” is violated.

Check if disty(s,t)<1. If so, let p be an s-t path with lengthy(p)<1.
Then the constraint for path p is violated.

• So to compute min s-t cuts, we just need an algorithm to
compute shortest dipaths!

(Lecture 21)

Shortest Paths in a Digraph
• Let G=(V,A) be a directed graph. Every arc a has a

“length” wa>0.

• Given two vertices s and t, find a path from s to t of
minimum total length.

3

1

8
7

1

5 1

2

2

2
3

2

4

1

2

s t

These edges form a shortest s-t path

Shortest Paths in a Digraph
• Let b be vector with bs=1, bt=-1, bv=0 8v2Vn{s,t}

• Consider the IP:

• And the LP relaxation:

Theorem: Every optimal BFS of (LP) is optimal for (IP).
(Assignment 5)

Claim: Every optimal solution of (IP) is a shortest s-t path.

Minimum S-T Cut Problem

Shortest Path Problem

Solve by Ellipsoid Method
Separation oracle is…

Solve by Ellipsoid Method!

Our Min s-t Cut Algorithm

• Inner LP
• Has |V| constraints, |A| variables.
• Our analysis in Lecture 12: roughly O(|A|6) iterations

(actually, depends on # bits to represent lengths w)
• Outer LP

• Has |P| constraints, |A| variables
• Can show O(|A|2 (log2 |A| + log2 cmax)) iterations suffice

• Total
• Roughly O(|A|8) iterations, each taking roughly O(|A|3) time
• Total running time: roughly O(|A|11)
• Best-known algorithm has running time: O(|A|1.5)

Combinatorial Algorithms
• We’ve used the ellipsoid method to prove several

problems are solvable in “polynomial time”

– LPs, Maximum Bipartite Matching, Max Weight Perfect
Matching, Min s-t Cut, Shortest Paths

– Approximate solutions to SDPs and some Convex Programs

• In practice, no one uses the ellipsoid method.

• It should be viewed as a “proof of concept” that
efficient algorithms exist

• For many combinatorial optimization problems,
combinatorial algorithms exist and are much faster

• Next: a slick way to design combinatorial algorithms,
based on weight splitting.

k

Weight-Splitting Method
• Let C ½ Rn be set of feasible solutions to some

optimization problem.
• Let w2Rn be a “weight vector”.

• x is “optimal under w” if x optimizes min { wT y : y2C }

• Lemma: Suppose w = w1 + w2. Suppose that
x is optimal under w1, and x is optimal under w2.
Then x is optimal under w.

• Proof: Let z be optimal under w. Then:

wT x = w1
T x + w2

T x · w1
T z + w2

T z = wT z
So x is also optimal under w. ¥

HassinFrank Bar-Yehuda Even

http://www.math.tau.ac.il/~hassin/
http://www.math.tau.ac.il/~hassin/
http://www.math.tau.ac.il/~hassin/
http://www.cs.elte.hu/~frank/
http://www.math.tau.ac.il/~hassin/
http://www.cs.technion.ac.il/~reuven/
http://www.cs.technion.ac.il/~reuven/
http://www.cs.technion.ac.il/~reuven/
http://www.math.tau.ac.il/~hassin/
http://www.wisdom.weizmann.ac.il/~oded/s_even.html

ShortestPath(G, S, t, w)
Input: Digraph G = (V,A), source vertices SµV,
destination vertex t2V, and integer lengths wa,
such that wa>0, unless both endpoints of a are in S.
Output: A shortest path from some s2S to t.

• If t2S, return the empty path p=()

• Set w1(a)=1 for all a2±+(S), and w1(a)=0 otherwise

• Set w2 = w - w1.

• Set S’ = S [{ u : 9s2S with w2((s,u)) = 0 }

• Set p’ = (v1,v2,t) = ShortestPath(G, S’, t, w2)
• If v12S, then set p=p’

• Else, set p=(s,v1,v2,,t) where s2S and w2((s,v1))=0

• Return path p

To find shortest s-t path, run ShortestPath(G, {s}, t, w)

w
1 3

2

2

1

s

t

S

w1

1 0

1
0

0

s

t

w20 3

1

2

1

s

t

S

w1

0 1

1

1

0

s

t

w2
0 2

0

1

1

s

t

S

w1

0 1

0

0

1

s
t

w2
0 1

0

1

0

s t

S

w
1 3

2

2

1

s

t

S

w1

1 0

1
0

0

s

t

w20 3

1

2

1

s

t

S

w1

0 1

1

1

0

s

t

w2
0 2

0

1

1

s

t

S

w1

0 1

0

0

1

s
t

w2
0 1

0

1

0

s t

S

• Claim: Algorithm returns a shortest path from S to t.

• Proof: By induction on number of recursive calls.

• If t2S, then the empty path is trivially shortest.

• Otherwise, p’ is a shortest path from S’ to t under w2.

• So p is a shortest path from S to t under w2.
(Note: lengthw2(p)=lengthw2(p’), because if we added an arc, it has w2-length 0.)

• Note: p cannot re-enter S, otherwise a subpath of p would
be a shorter S-t path. So p uses exactly one arc of ±+(S).

• So lengthw1(p)=1. But any S-t path has length at least 1
under w1. So p is a shortest path from S to t under w1.

• By Weight-Splitting Lemma, p is a shortest S-t path
under arc-lengths w. ¥

Correctness of Algorithm

