C&O 355 Lecture 22

N. Harvey

Topics

- Integral Polyhedra
- Minimum s-t Cuts via Ellipsoid Method
- Weight-Splitting Method
- Shortest Paths

Minimum s-t Cuts

- So to solve (IP), we can just solve (LP) and return an optimal BFS.
- To solve (LP), the separation oracle is: (Lecture 12) Check if $y_a < 0$ for any $a \in A$. If so, the constraint " $y_a \ge 0$ " is violated. Check if dist_y(s,t)<1. If so, let p be an s-t path with length_y(p)<1. Then the constraint for path p is violated.
- So to compute min s-t cuts, we just need an algorithm to compute shortest dipaths!

Shortest Paths in a Digraph

- Let G=(V,A) be a directed graph. Every arc a has a "length" w_a>0.
- Given two vertices s and t, find a path from s to t of minimum total length.

These edges form a **shortest s-t path**

Shortest Paths in a Digraph

- Let b be vector with $b_s=1$, $b_t=-1$, $b_v=0$ $\forall v \in V \setminus \{s,t\}$
- Consider the IP:

$$\begin{array}{ll} \min & \sum_{a \in A} w_a \cdot x_a \\ \text{s.t.} & \sum_{a \in \delta^+(v)} x_a - \sum_{a \in \delta^-(v)} x_a &= b_v \qquad \forall v \in V \\ & x_a & \in \{0,1\} \qquad \forall a \in A \end{array}$$

• And the LP relaxation:

$$\min \sum_{a \in A} w_a \cdot x_a$$
s.t.
$$\sum_{a \in \delta^+(v)} x_a - \sum_{a \in \delta^-(v)} x_a = b_v \qquad \forall v \in V$$

$$0 \le x_a \le 1 \qquad \forall a \in A$$

Claim: Every optimal solution of (IP) is a shortest s-t path.

(Assignment 5)

Theorem: Every optimal BFS of (LP) is optimal for (IP).

Our Min s-t Cut Algorithm

Minimum S-T Cut Problem

Solve by Ellipsoid Method Separation oracle is...

Shortest Path Problem

Solve by Ellipsoid Method!

- Inner LP
 - Has |V| constraints, |A| variables.
 - Our analysis in Lecture 12: roughly O(|A|⁶) iterations (actually, depends on # bits to represent lengths w)
- Outer LP
 - Has $|\mathcal{P}|$ constraints, |A| variables
 - Can show O(|A|² (log² |A| + log² c_{max})) iterations suffice
- Total
 - Roughly O(|A|⁸) iterations, each taking roughly O(|A|³) time
 - Total running time: roughly O(|A|¹¹)
 - Best-known algorithm has running time: O(|A|^{1.5})

Combinatorial Algorithms

- We've used the ellipsoid method to prove several problems are solvable in "polynomial time"
 - LPs, Maximum Bipartite Matching, Max Weight Perfect Matching, Min s-t Cut, Shortest Paths
 - Approximate solutions to SDPs and some Convex Programs
- In practice, no one uses the ellipsoid method.
- It should be viewed as a "proof of concept" that efficient algorithms exist
- For many combinatorial optimization problems, combinatorial algorithms exist and are much faster
- Next: a slick way to design combinatorial algorithms, based on weight splitting.

Weight-Splitting Method

- Let $C \subset \mathbb{R}^n$ be set of feasible solutions to some optimization problem.
- Let $w \in \mathbb{R}^n$ be a "weight vector".
- x is "optimal under w" if x optimizes min { $w^T y : y \in C$ }
- Lemma: Suppose w = w₁ + w₂. Suppose that x is optimal under w₁, and x is optimal under w₂. Then x is optimal under w.
- **Proof:** Let z be optimal under w. Then:

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} = \mathbf{w}_1^{\mathsf{T}}\mathbf{x} + \mathbf{w}_2^{\mathsf{T}}\mathbf{x} \le \mathbf{w}_1^{\mathsf{T}}\mathbf{z} + \mathbf{w}_2^{\mathsf{T}}\mathbf{z} = \mathbf{w}^{\mathsf{T}}\mathbf{z}$$

So x is also optimal under w.

<u>Frank</u>

<u>Hassin</u>

Bar-Yehuda

<u>Even</u>

ShortestPath(G, S, t, w) **Input:** Digraph G = (V,A), source vertices S \subseteq V, destination vertex t \in V, and integer lengths w_a, such that w_a>0, unless both endpoints of a are in S. **Output:** A shortest path from some s \in S to t.

- If t∈S, return the empty path p=()
- Set $w_1(a)=1$ for all $a \in \delta^+(S)$, and $w_1(a)=0$ otherwise

• Set
$$w_2 = w - w_1$$
.

- Set S' = S \cup { u : \exists s \in S with w₂((s,u)) = 0 }
- Set p' = (v₁, v₂...,t) = ShortestPath(G, S', t, w₂)
- If v₁∈S, then set p=p'
- Else, set $p=(s,v_1,v_2,...,t)$ where $s\in S$ and $w_2((s,v_1))=0$
- Return path p

To find shortest s-t path, run ShortestPath(G, {s}, t, w)

Correctness of Algorithm

- Claim: Algorithm returns a shortest path from S to t.
- **Proof:** By induction on number of recursive calls.
- If $t \in S$, then the empty path is trivially shortest.
- Otherwise, p' is a shortest path from S' to t under w₂.
- So p is a shortest path from S to t under w₂. (Note: length_{w2}(p)=length_{w2}(p'), because if we added an arc, it has w₂-length 0.)
- Note: p cannot re-enter S, otherwise a subpath of p would be a shorter S-t path. So p uses exactly one arc of $\delta^+(S)$.
- So length_{w1}(p)=1. But any S-t path has length at least 1 under w₁. So p is a shortest path from S to t under w₁.
- By Weight-Splitting Lemma, p is a shortest S-t path under arc-lengths w.