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Maximum Bipartite Matching
Let G=(V, E) be a bipartite graph.
We’re interested in maximum size matchings.
How do | know M has maximum size? Is there a 5-edge matching?
Is there a certificate that a matching has maximum size?

Blue edges are a
maximum-size
matching M



Vertex covers
Let G=(V, E) be a graph.
A set CCV is called a vertex cover if
every edge ecE has at least one endpoint in C.
Claim: If M is a matching and C is a vertex cover then |M | <|C].
Proof: Every edge in M has at least one endpoint in C.
Since M is a matching, its edges have distinct endpoints.

So C must contain at least | M| vertices. []
Blue edges are a Red vertices form a
maximume-size vertex cover C

matching M



Vertex covers
Let G=(V, E) be a graph.
A set CCV is called a vertex cover if
every edge ecE has at least one endpoint in C.
Claim: If M is a matching and C is a vertex cover then |M | <|C].
Proof: Every edge in M has at least one endpoint in C.

Since M is a matching, its edges have distinct endpoints.
So C must contain at least | M| vertices. []

Suppose we find a matching M and vertex cover Cs.t. |M|=]|C]|.

Then M must be a maximum cardinality matching:
every other matching M’ satisfies |[M’'| < |C| = |M].

And C must be a minimum cardinality vertex cover:
every other vertex cover C’ satisfies |C’'| > |M]| = |C]|.

Then M certifies optimality of C and vice-versa.



Vertex covers & matchings
Let G=(V, E) be a graph.

A set CCV is called a vertex cover if
every edge ecE has at least one endpoint in C.

Claim: If M is a matching and C is a vertex cover then |M | <|C].

Suppose we find a matching M and vertex cover Cs.t. |M|=]|C]|.

Then M certifies optimality of C and vice-versa.

Do such M and C always exist?
No...

Maximum size of a matching =1

Minimum size of a vertex cover = 2




Vertex covers & matchings
Let G=(V, E) be a graph.

A set CCV is called a vertex cover if
every edge ecE has at least one endpoint in C.

Claim: If M is a matching and C is a vertex cover then |M| <|C].

Suppose we find a matching M and vertex cover Cs.t. |M|=]|C]|.

Then M certifies optimality of C and vice-versa.

Do such M and C always exist?
No... unless G is bipartite!

Theorem (Konig’s Theorem): If G is bipartite then there exists a
matching M and a vertex cover Cs.t. |M|=|C].




Earlier Example
* Let G=(V, E) be a bipartite graph.
* We're interested in maximum size matchings.
* How do | know M has maximum size? Is there a 5-edge matching?
* Isthere a certificate that a matching has maximum size?

Blue edges are a
maximum-size
matching M

Red vertices form a
vertex cover C

e Since |[M|=]|C|=4, both M and C are optimall!



LPs for Bipartite Matching
Let G=(V, E) be a bipartite graph.
Recall our IP and LP formulations for maximum-size matching.

max ZGEE T

P} s, D e incident to v Te <1 VweV
Te € {0,1} Ve e E
max ) ..p Te
LP) .t D e incident to v Te <1 VoeV
Te >0 Ve e |

Theorem: Every BFS of (LP) is actually an (IP) solution.
What is the dual of (LP)?

min Z’UEV Yo
(LP-Dual) s.t. Yu + Yy =1 V{’LL, U} S

Yo > () YveV



Dual of Bipartite Matching LP

What is the dual LP?

min Z’UEV Yo
(LP-Dual) ¢ ¢ Yu + Yo >1 V{iu,v} € K

Yo >0 VveV
Note that any optimal solution must satisfy y, <1 VveV
Suppose we impose integrality constraints:
min Zvev Yo
st. yuty, 21 V{iu,v} € K
n e {0,1} Yo eV

Claim: If y is feasible for IP-dual then C={v :y =1 }is a vertex
cover. Furthermore, the objective value is |C]|.

(IP-Dual)

So IP-Dual is precisely the minimum vertex cover problem.

Theorem: Every optimal BFS of (LP-Dual) is an (IP-Dual) solution.




Let G=(UUV, E) be a bipartite graph. Define A by
B { 1 if vertex v is an endpoint of edge e

v,e — .
’ 0O otherwise

Lemma: Ais TUM.

Claim: If Ais TUM then AT is TUM.

Proof: Exercise on Assignment 5.

Corollary: Every BFS of P={x: ATy>1, y>0 }is integral.
But LP-Dual is

min ey v min ey
st. Yuty, >1 V{iu,v} € E st. Ay >1

Yo >0 YveV J > ()

So our Corollary implies every BFS of LP-dual is integral
Every optimal solution must have y <1 VveV

= every optimal BFS has y,€{0,1} VveV, and hence itis a
feasible solution for IP-Dual. H



Proof of Konig’s Theorem

 Theorem (Konig’s Theorem): If G is bipartite then there exists a
matching M and a vertex cover Cs.t. |M|=|C].

* Proof:
Let x be an optimal BFS for (LP).
Let y be an optimal BFS for (LP-Dual).
letM={e:x=1}
M is a matching with | M| = objective value of x.
letC={v:y, =1}
Cis a vertex cover with |C| = objective value of y.

By Strong LP Duality:
|M| = LP optimal value = LP-Dual optimal value = | C]|. |



Hall’'s Theorem
Let G=(UUV, E) be a bipartite graph.
Notation: For SCU, I'(S) ={ v : Ju € S s.t. (u,v) € E }

Theorem: There exists a matching covering all vertices in U
< | I1S)|=[S] VSCU.
Proof: =: This is the easy direction.

If | 1(S)|<|S| then there can be no matching covering S.

U V
©

I1S)




Theorem: There exists a matching covering all vertices in U
< [L1S)| =S| VSCU.

Proof: <=: Suppose | I{(S)|>|S| VSCU.
Claim: Every vertex cover C has |C|>|U].

Then Konig’s Theorem implies there is a matching of size >|U|;
this matching obviously covers all of U.

Proof of Claim:

Suppose C is a vertex cover with |[CNU|=k and |CNV|<|U]-k.
Consider the set S = U\C.

Then |I1S)| > |S| = |U|-k> |CNV].

So there must be a vertex vin I1S) \ (CNV).

There is an edge {s,v} with sES.

But s¢C and vgC, so {s,v} is not covered by C.
This contradicts C being a vertex cover. H



Minimum s-t Cuts
* Let G=(V,A) be a digraph. Fix two vertices s,teV.

* Ans-t cutisaset FCAs.t. no s-t dipath in G\F = (V,A\F)

These edges are a minimum s-t cut



Minimum s-t Cuts
* Let G=(V,A) be a digraph. Fix two vertices s,teV.
* Ans-tcutisaset FCAs.t. nos-t dipath in G\F = (V,A\F)
* Make variable y, VacA. Let P be set of all s-t dipaths.

(IP) st > ya >1 VpeP

Ya € {0,1} Va € A

min 1
Z - Delbert Ray Fulkerson
acA
(LP) <+ Z v > 1 Vp e P This proves half of the famous
acp max-flow min-cut theorem,

Y > () Va € A due to [Ford & Fulkerson, 1956].

Theorem: (Fulkerson 1970)
There is an optimal solution to (LP) that is feasible for (IP)




Theorem: There is an optimal solution to (LP) that is feasible for (IP)

(LP) (LP-Dual)
min %ya :Iengthy(p) max peszp
S.t. > 1 Vp eP s.t. Z r, <1 Va € A
p:aEp
Ya >0 Va € A Tp >0 Vp € P

* We can think of y, as the “length” of arc a
* Notation: length,(p) = total length of path p
dist,(u,v) = shortest-path distance from u to v
Forany UCV: §T(U) = {(u,v) €A :ueclUvgU}
0~ (U) = {(v,uyeA:uelUvgU}




Theorem: Let y be optimal for (LP).
Let U ={u :dist,(s,u)<1 }. Then ¢*(U) is also optimal for (LP).

Note:

* scU, since dist,(s,s) = 0.

* tegU, since length,(p)>1 for every s-t path p = dist,(s,t)>1
Claim 1: For every path peP, |p N d*(U)| > 1.

Proof: Every path p&P starts at s€U and ends at tg U.
So some arc of p must be in *(U). []




Theorem: Let y be optimal for (LP).
Let U = { u : dist,(s,u)<1 }. Then ¢*(U) is also optimal for (LP).

Claim 1: For every path peP, |[p N d*(U)| > 1.
Let x be optimal for (LP-Dual).
Claim 2: For every (u,v) € 0*(U), we have y,,>0 and > =1

. . . p:(u,v)€Ep
Proof: 1 <dist,(s,v) < glstés,uj) + Y(uv)-
f <1 This implies y(,)> 0

sincevgU  triangle inequality




Theorem: Let y be optimal for (LP).
Let U = { u : dist,(s,u)<1 }. Then ¢*(U) is also optimal for (LP).

Claim 1: For every path peP, |[p N d*(U)| > 1.

Let x be optimal for (LP-Dual).
Claim 2: For every (u,v) € 0*(U), we have y,,,>0 and > =1
Proof: 1 < dist,(s,v) < dist,(s,u) + Y- pelwe)er

Since y(,,)>0, complementary slackness implies > z,=1. [
p:(u,v)Ep




Claim 1: For every path peP, |[p N d*(U)| > 1.
Claim 2: For every (u,v) € 0*(U), we have y, ,>0 and >, =1

p:(u,v)€Ep

Claim 3: Every path p&€P with x,>0 has [p N 0*(U)| = 1.

Proof: Consider a path ps.t. [pNnd*(U)|>2.

Let (w,u) be any arc in p that re-enters U, i.e., (w,u) € pno(U).
length,(p) > Sllstés,wj) + Yiwu) +8I|sty(u,tj) > 1

~
> 1 >0




Claim 1: For every path peP, |[p N d*(U)| > 1.

Claim 2: For every (u,v) € 0*(U), we have y, ,>0 and >, =1
p:(u,v)€p

Claim 3: Every path p&€P with x,>0 has [p N 0*(U)| = 1.

Proof: Consider a path ps.t. [pNnd*(U)|>2.

Let (w,u) be any arc in p that re-enters U, i.e., (w,u) € pno(U).
length,(p) > dist,(s,w) + yu,y) + dist,(u,t) > 1

So pth constraint of (LP) is not tight.

So complementary slackness implies that x,=0. []




e Claim 1: For every path peP, |p N d*(U)| > 1.

* Claim 2: For every (u,v) € 0*(U), we have y, >0 and > m=1
p:(u,v)Ep
 Claim 3: Every path peP with x,>0 has |p N 0*(U)| = 1.
Define the vector z by z, ,=1 if (u,v)€0*(U) and z, ;=0 otherwise.
Note that z is feasible for (LP) and (IP). (by Claim 1)
The LP objective value at z is:

by Claim 2
2 ww = ) =3 > m
(u,v)EA (u,w)ed+(U) (u,0w)edT(U) p:(u,v)€Ep
=D, D wm= ) wpnitU)
by Claim 3 P (uw)Epnd+(U) p
S Z rp = Optimal value of (LP-Dual)
p

So z is optimal for (LP). N



