C\&O 355
 Lecture 20

N. Harvey

Topics

- Vertex Covers
- Konig's Theorem
- Hall's Theorem
- Minimum s-t Cuts

Maximum Bipartite Matching

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a bipartite graph.
- We're interested in maximum size matchings.
- How do I know M has maximum size? Is there a 5-edge matching?
- Is there a certificate that a matching has maximum size?

Blue edges are a maximum-size matching M

Vertex covers

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph.
- A set $C \subseteq V$ is called a vertex cover if every edge $\mathrm{e} \in \mathrm{E}$ has at least one endpoint in C .
- Claim: If M is a matching and C is a vertex cover then $|M| \leq|C|$.
- Proof: Every edge in M has at least one endpoint in C.

Since M is a matching, its edges have distinct endpoints. So C must contain at least $|M|$ vertices.

Blue edges are a maximum-size matching M

Red vertices form a vertex cover C

Vertex covers

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph.
- A set $C \subseteq V$ is called a vertex cover if every edge $\mathrm{e} \in \mathrm{E}$ has at least one endpoint in C .
- Claim: If M is a matching and C is a vertex cover then $|M| \leq|C|$.
- Proof: Every edge in M has at least one endpoint in C. Since M is a matching, its edges have distinct endpoints. So C must contain at least $|M|$ vertices.
- Suppose we find a matching M and vertex cover C s.t. $|M|=|C|$.
- Then M must be a maximum cardinality matching: every other matching M^{\prime} satisfies $\left|M^{\prime}\right| \leq|C|=|M|$.
- And C must be a minimum cardinality vertex cover: every other vertex cover C^{\prime} satisfies $\left|C^{\prime}\right| \geq|M|=|C|$.
- Then M certifies optimality of C and vice-versa.

Vertex covers \& matchings

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph.
- A set $C \subseteq V$ is called a vertex cover if every edge $\mathrm{e} \in \mathrm{E}$ has at least one endpoint in C .
- Claim: If M is a matching and C is a vertex cover then $|M| \leq|C|$.
- Suppose we find a matching M and vertex cover C s.t. $|M|=|C|$.
- Then M certifies optimality of C and vice-versa.
- Do such M and C always exist?
- No...

> Maximum size of a matching $=1$
> Minimum size of a vertex cover $=2$

Vertex covers \& matchings

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph.
- A set $\mathrm{C} \subseteq \mathrm{V}$ is called a vertex cover if every edge $\mathrm{e} \in \mathrm{E}$ has at least one endpoint in C .
- Claim: If M is a matching and C is a vertex cover then $|M| \leq|C|$.
- Suppose we find a matching M and vertex cover C s.t. $|M|=|C|$.
- Then M certifies optimality of C and vice-versa.
- Do such M and C always exist?
- No... unless G is bipartite!
- Theorem (Konig's Theorem): If G is bipartite then there exists a matching M and a vertex cover C s.t. $|\mathrm{M}|=|\mathrm{C}|$.

Earlier Example

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a bipartite graph.
- We're interested in maximum size matchings.
- How do I know M has maximum size? Is there a 5-edge matching?
- Is there a certificate that a matching has maximum size?

Blue edges are a maximum-size matching M

Red vertices form a vertex cover C

- Since $|M|=|C|=4$, both M and C are optimal!

LPs for Bipartite Matching

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a bipartite graph.
- Recall our IP and LP formulations for maximum-size matching.

$$
\begin{array}{llll}
& \begin{array}{lll}
\max & \sum_{e \in E} x_{e} & \\
\text { (IP) } & & \\
\text { s.t. } & \sum_{e \text { incident to } v} x_{e} & \leq 1 \\
& x_{e} & \in\{0,1\}
\end{array} \quad \forall v \in V \\
& & & \\
\text { max } & \sum_{e \in E} x_{e} & & \\
\text { (LP) } & \sum_{e \text { incident to } v} x_{e} & \leq 1 & \forall v \in V \\
\text { s.t. } & \geq 0 & \forall e \in E
\end{array}
$$

- Theorem: Every BFS of (LP) is actually an (IP) solution.
- What is the dual of (LP)?

$$
\begin{array}{lll}
& \min & \sum_{v \in V} y_{v} \\
\\
\text { (LP-Dual) } & \\
\text { s.t. } & y_{u}+y_{v} \geq 1 \\
& y_{v} & \forall\{u, v\} \in E \\
& \geq v \in V
\end{array}
$$

Dual of Bipartite Matching LP

- What is the dual LP?

$$
\begin{array}{lll}
& \min & \sum_{v \in V} y_{v} \\
\\
\text { (LP-Dual) } & & \\
\text { s.t. } & y_{u}+y_{v} \geq 1 \\
& y_{v} & \forall\{u, v\} \in E \\
& & \forall v \in V
\end{array}
$$

- Note that any optimal solution must satisfy $\mathrm{y}_{\mathrm{v}} \leq 1 \forall \mathrm{v} \in \mathrm{V}$
- Suppose we impose integrality constraints:

$$
\begin{array}{llll}
\min & \sum_{v \in V} y_{v} & \\
\text { (IP-Dual) } & \forall\{u, v\} \in E \\
\text { s.t. } & y_{u}+y_{v} \geq 1 & \forall v \in V
\end{array}
$$

- Claim: If y is feasible for IP-dual then $C=\left\{v: y_{v}=1\right\}$ is a vertex cover. Furthermore, the objective value is $|\mathrm{C}|$.
- So IP-Dual is precisely the minimum vertex cover problem.
- Theorem: Every optimal BFS of (LP-Dual) is an (IP-Dual) solution.
- Let $G=(U \cup V, E)$ be a bipartite graph. Define A by

$$
A_{v, e}= \begin{cases}1 & \text { if vertex } v \text { is an endpoint of edge e } \\ 0 & \text { otherwise }\end{cases}
$$

- Lemma: A is TUM.
- Claim: If A is TUM then A^{\top} is TUM.
- Proof: Exercise on Assignment 5.
- Corollary: Every BFS of $P=\left\{x: A^{\top} y \geq \mathbf{1}, y \geq 0\right\}$ is integral.
- But LP-Dual is

\min	$\sum_{v \in V} y_{v}$				
s.t.	$y_{u}+y_{v} \geq 1$	$\forall\{u, v\} \in E$			
	$y_{v} \geq 0$	$\forall v \in V$	\quad	\min	$\sum_{v \in V} y_{v}$
:---	:---				
	s.t.				
$A^{\top} y \geq \mathbf{1}$					
	y				

- So our Corollary implies every BFS of LP-dual is integral
- Every optimal solution must have $\mathrm{y}_{\mathrm{v}} \leq 1 \forall \mathrm{v} \in \mathrm{V}$ \Rightarrow every optimal $B F S$ has $y_{v} \in\{0,1\} \forall v \in V$, and hence it is a feasible solution for IP-Dual.

Proof of Konig's Theorem

- Theorem (Konig's Theorem): If G is bipartite then there exists a matching M and a vertex cover C s.t. $|\mathrm{M}|=|\mathrm{C}|$.
- Proof:

Let x be an optimal BFS for (LP).
Let y be an optimal BFS for (LP-Dual).
Let $\mathrm{M}=\left\{\mathrm{e}: \mathrm{x}_{\mathrm{e}}=1\right\}$.
M is a matching with $|M|=$ objective value of x. (By earlier theorem) Let $C=\left\{v: y_{v}=1\right\}$.
C is a vertex cover with $|\mathrm{C}|=$ objective value of y . (By earlier theorem) By Strong LP Duality:
$|M|=L P$ optimal value $=L P-$ Dual optimal value $=|C|$.

Hall's Theorem

- Let $G=(U \cup V, E)$ be a bipartite graph.
- Notation: For $\mathrm{S} \subseteq \mathrm{U}, \Gamma(S)=\{v: \exists u \in S$ s.t. $(u, v) \in E\}$
- Theorem: There exists a matching covering all vertices in U $\Leftrightarrow|\Gamma(\mathrm{S})| \geq|\mathrm{S}| \forall \mathrm{S} \subseteq \mathrm{U}$.
- Proof: \Rightarrow : This is the easy direction.

If $|\Gamma(\mathrm{S})|<|\mathrm{S}|$ then there can be no matching covering S .

- Theorem: There exists a matching covering all vertices in U $\Leftrightarrow|\Gamma(\mathrm{S})| \geq|\mathrm{S}| \forall \mathrm{S} \subseteq \mathrm{U}$.
- Proof: \Leftarrow : Suppose $|\Gamma(\mathrm{S})| \geq|\mathrm{S}| \forall \mathrm{S} \subseteq \mathrm{U}$.
- Claim: Every vertex cover C has $|\mathrm{C}| \geq|\mathrm{U}|$.
- Then Konig's Theorem implies there is a matching of size $\geq|U|$; this matching obviously covers all of U.
- Proof of Claim:

Suppose C is a vertex cover with $|\mathrm{C} \cap \mathrm{U}|=\mathrm{k}$ and $|\mathrm{C} \cap \mathrm{V}|<|\mathrm{U}|-\mathrm{k}$.
Consider the set $S=U \backslash C$.
Then $|\Gamma(\mathrm{S})| \geq|\mathrm{S}|=|\mathrm{U}|-\mathrm{k}>|\mathrm{C} \cap \mathrm{V}|$.
So there must be a vertex v in $\Gamma \mathrm{S}) \backslash(\mathrm{C} \cap \mathrm{V})$.
There is an edge $\{s, v\}$ with $s \in S$.
But $s \notin C$ and $v \notin C$, so $\{s, v\}$ is not covered by C.
This contradicts C being a vertex cover.

Minimum s-t Cuts

- Let $G=(V, A)$ be a digraph. Fix two vertices $s, t \in V$.
- An s-t cut is a set $F \subseteq A$ s.t. no s-t dipath in $G \backslash F=(V, A \backslash F)$

These edges are a minimum s-t cut

Minimum s-t Cuts

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{A})$ be a digraph. Fix two vertices $\mathrm{s}, \mathrm{t} \in \mathrm{V}$.
- An s-t cut is a set $F \subseteq A$ s.t. no s-t dipath in $G \backslash F=(V, A \backslash F)$
- Make variable $\mathrm{y}_{\mathrm{a}} \forall \mathrm{a} \in \mathrm{A}$. Let \mathcal{P} be set of all s -t dipaths.

(IP)	$\min \quad \sum y_{a}$		
	$\text { s.t. } \quad \sum_{a \in p}^{a \in A} y_{a}$	≥ 1	$\forall p \in \mathcal{P}$
	y_{a}	$\in\{0,1\}$	$\forall a \in A$
(LP)	$\min \sum_{a \in A} y_{a}$		
	s.t. $\sum_{a \in p} y_{a}$	≥ 1	$\forall p \in \mathcal{P}$
	y_{a}	≥ 0	$\forall a \in A$

This proves half of the famous max-flow min-cut theorem, due to [Ford \& Fulkerson, 1956].

Theorem: (Fulkerson 1970)
There is an optimal solution to (LP) that is feasible for (IP)

Theorem: There is an optimal solution to (LP) that is feasible for (IP)
(Fulkerson's Proof is much more general and sophisticated than ours.)

- We can think of y_{a} as the "length" of arc a
- Notation: length $(p)=$ total length of path p $\operatorname{dist}_{y}(u, v)=$ shortest-path distance from u to v
For any U \subseteq V: $\delta^{+}(U)=\{(u, v) \in A: u \in U, v \notin U\}$

$$
\delta^{-}(U)=\{(v, u) \in A: u \in U, v \notin U\}
$$

- Theorem: Let y be optimal for (LP).

Let $U=\left\{u\right.$: $\left.\operatorname{dist}_{y}(s, u)<1\right\}$. Then $\delta^{+}(U)$ is also optimal for (LP).

- Note:
- $s \in U$, since $\operatorname{dist}_{y}(s, s)=0$.
- $t \notin U$, since length $(p) \geq 1$ for every s-t path $p \Rightarrow \operatorname{dist}_{y}(s, t) \geq 1$
- Claim 1: For every path $\mathrm{p} \in \mathcal{P},\left|\mathrm{p} \cap \delta^{+}(\mathrm{U})\right| \geq 1$.
- Proof: Every path $p \in \mathcal{P}$ starts at $s \in U$ and ends at $t \notin U$. So some arc of p must be in $\delta^{+}(\mathrm{U})$.

- Theorem: Let y be optimal for (LP).

Let $\mathrm{U}=\left\{\mathrm{u}: \operatorname{dist}_{y}(\mathrm{~s}, \mathrm{u})<1\right\}$. Then $\delta^{+}(\mathrm{U})$ is also optimal for (LP).

- Claim 1: For every path $p \in \mathcal{P},\left|p \cap \delta^{+}(U)\right| \geq 1$.
- Let x be optimal for (LP-Dual).
- Claim 2: For every $(\mathbf{u}, \mathbf{v}) \in \delta^{+}(\mathrm{U})$, we have $\mathbf{y}_{(\mathrm{u}, \mathrm{v})}>0$ and $\sum x_{p}=1$.
- Proof: $1 \underset{\uparrow}{\varsigma} \operatorname{dist}_{\mathrm{y}}(\mathrm{s}, \mathrm{v}) \underset{\uparrow}{<} \underbrace{\operatorname{dist}_{\mathrm{y}}(\mathrm{s}, \mathrm{u})}_{<1}+\mathrm{y}_{(\mathrm{u}, \mathrm{v})}$ This implies $\mathrm{y}_{(\mathrm{u}, \mathrm{v})}>0 \quad p:(u, v) \in p$

since $v \notin \mathrm{U}$ triangle inequality

- Theorem: Let y be optimal for (LP). Let $\mathrm{U}=\left\{\mathrm{u}: \operatorname{dist}_{y}(\mathrm{~s}, \mathrm{u})<1\right\}$. Then $\delta^{+}(\mathrm{U})$ is also optimal for (LP).
- Claim 1: For every path $p \in \mathcal{P},\left|p \cap \delta^{+}(U)\right| \geq 1$.
- Let x be optimal for (LP-Dual).
- Claim 2: For every $(\mathbf{u}, \mathrm{v}) \in \delta^{+}(\mathrm{U})$, we have $\mathrm{y}_{(\mathrm{u}, \mathrm{v})}>0$ and $\sum x_{p}=1$.
- Proof: $1 \leq \operatorname{dist}_{y}(\mathrm{~s}, \mathrm{v}) \leq \operatorname{dist}_{y}(\mathrm{~s}, \mathrm{u})+\mathrm{y}_{(\mathrm{u}, \mathrm{v})}$.

$$
p:(u, v) \in p
$$

Since $\mathrm{y}_{(u, v)}>0$, complementary slackness implies $\sum_{i, u) \in p} x_{p}=1 . \square$

- Claim 1: For every path $\mathrm{p} \in \mathcal{P},\left|\mathrm{p} \cap \delta^{+}(\mathrm{U})\right| \geq 1$.
- Claim 2: For every $(\mathrm{u}, \mathrm{v}) \in \delta^{+}(\mathrm{U})$, we have $\mathrm{y}_{(\mathrm{u}, \mathrm{v})}>0$ and $\sum_{p:(u, v) \in p} x_{p}=1$.
- Claim 3: Every path $\mathrm{p} \in \mathcal{P}$ with $\mathrm{x}_{\mathrm{p}}>0$ has $\left|\mathrm{p} \cap \delta^{+}(\mathrm{U})\right|=1$.
- Proof: Consider a path p s.t. $\left|p \cap \delta^{+}(U)\right| \geq 2$. (i.e., p leaves U at least twice) Let (w, u) be any arc in p that re-enters U , i.e., $(\mathrm{w}, \mathrm{u}) \in \mathrm{p} \cap \delta^{-(U)}$. length $_{y}(p) \geq \underbrace{\operatorname{dist}_{y}(s, w)}_{\geq 1}+y_{(w, u)}+\underbrace{\operatorname{dist}_{y}(u, t)}_{>0}>1$

- Claim 1: For every path $\mathrm{p} \in \mathcal{P},\left|\mathrm{p} \cap \delta^{+}(\mathrm{U})\right| \geq 1$.
- Claim 2: For every $(\mathrm{u}, \mathrm{v}) \in \delta^{+}(\mathrm{U})$, we have $\mathrm{y}_{(\mathrm{u}, \mathrm{v})}>0$ and $\sum_{p:(u, v) \in p} x_{p}=1$.
- Claim 3: Every path $\mathrm{p} \in \mathcal{P}$ with $\mathrm{x}_{\mathrm{p}}>0$ has $\left|\mathrm{p} \cap \delta^{+}(\mathrm{U})\right|=1$.
- Proof: Consider a path p s.t. $\left|p \cap \delta^{+}(U)\right| \geq 2$. (i.e., p leaves U at least twice) Let (w, u) be any arc in p that re-enters U , i.e., $(\mathrm{w}, \mathrm{u}) \in \mathrm{p} \cap \delta^{-(U)}$. length $_{y}(p) \geq \operatorname{dist}_{y}(\mathrm{~s}, \mathrm{w})+\mathrm{y}_{(\mathrm{w}, \mathrm{u})}+\operatorname{dist}_{\mathrm{y}}(\mathrm{u}, \mathrm{t})>1$ So $p^{\text {th }}$ constraint of (LP) is not tight. So complementary slackness implies that $x_{p}=0$.

- Claim 1: For every path $p \in \mathcal{P},\left|p \cap \delta^{+}(\mathrm{U})\right| \geq 1$.
- Claim 2: For every $(\mathrm{u}, \mathrm{v}) \in \delta^{+}(\mathrm{U})$, we have $\mathbf{y}_{(\mathrm{u}, \mathrm{v})}>0$ and $\sum_{p:(u, v) \in p} x_{p}=1$.
- Claim 3: Every path $\mathrm{p} \in \mathcal{P}$ with $\mathrm{x}_{\mathrm{p}}>0$ has $\left|\mathrm{p} \cap \delta^{+}(\mathrm{U})\right|=1$.

Define the vector z by $z_{(u, v)}=1$ if $(u, v) \in \delta^{+}(U)$ and $z_{(u, v)}=0$ otherwise. Note that z is feasible for (LP) and (IP). (by Claim 1)

$$
\begin{aligned}
& \text { The LP objective value at z is: } \\
& \qquad \begin{aligned}
& \sum_{(u, v) \in A} z_{(u, v)}=\sum_{(u, v) \in \delta^{+}(U)} 1=\sum_{(u, v) \in \delta^{+}(U)} \sum_{p:(u, v) \in p} x_{p} \\
&=\sum_{p} \sum_{(u, v) \in p \cap \delta^{+}(U)} x_{p}=\sum_{p} x_{p} \cdot\left|p \cap \delta^{+}(U)\right| \\
& \text { by Claim } 3
\end{aligned} \\
& \sum_{p} x_{p}=\text { Optimal value of (LP-Dual) }
\end{aligned}
$$

So z is optimal for (LP).

