C\&O 355 Lecture 2

N. Harvey

http://www.math.uwaterloo.ca/~harvey/

Outline

- LP definition \& some equivalent forms
- Example in 2D
- Possible outcomes
- Examples
- Linear regression, bipartite matching, indep set
- Feasible Region, Convex Sets
- Corner solutions \& certificates
- Local-Search Algorithm

Linear Program

- General definition
- Parameters: $c, a_{1}, \ldots, a_{m} \in \mathbb{R}^{n}, b_{1}, \ldots, b_{m} \in \mathbb{R}$
- Variables: $x \in \mathbb{R}^{n}$

$$
\begin{array}{lll}
\min & c^{\top} x & \text { Objective function } \\
\text { s.t. } & a_{i}^{\top} x \quad \leq b_{i} \quad \forall i=1, \ldots, m \quad \text { Constraints }
\end{array}
$$

- Terminology
- Feasible point: any x satisfying constraints
- Optimal point: any feasible x that minimizes obj. func
- Optimal value: value of obj. func for any optimal point

Linear Program

- General definition
- Parameters: $c, a_{1}, \ldots, a_{m} \in \mathbb{R}^{n}, b_{1}, \ldots, b_{m} \in \mathbb{R}$
- Variables: $x \in \mathbb{R}^{n}$

$$
\begin{array}{ll}
\min & c^{\top} x \\
\text { s.t. } & a_{i}^{\top} x \quad \leq b_{i} \quad \forall i=1, \ldots, m
\end{array}
$$

- Matrix form

$$
\begin{array}{ll}
\min & c^{\top} x \\
\text { s.t. } & A x \leq b
\end{array}
$$

- Parameters: $c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$
- Variables: $x \in \mathbb{R}^{n}$

Simple LP Manipulations

- "max" instead of "min"

$$
\max c^{\top} x \equiv \min -c^{\top} x
$$

- " \geq " instead of " \leq "

$$
a^{\top} x \geq b \Leftrightarrow-a^{\top} x \leq-b
$$

- "=" instead of " \leq "
$a^{\top} x=b \quad \Leftrightarrow \quad a^{\top} x \leq b$ and $a^{\top} x \geq b$

2D Example

(Textbook, Ch 1)

Unique optimal solution exists

2D Example

2D Example

(Textbook, Ch 1)

No feasible solutions

2D Example

(Textbook, Ch 1)

Feasible solutions, but no optimal solution (Optimal value $=\infty$)

"Fundamental Theorem" of LP

- Theorem: For any LP, the outcome is either:
- Optimal solution (unique or infinitely many)
- Infeasible
- Unbounded (optimal value is ∞ or $-\infty$)
- Proof: Later in the course!

Example: Linear regression

- Given data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ in \mathbb{R}^{2}
- Find a line $y=a x+b$ that fits the points

Usual setup
$\min \sum_{i=1}^{n}\left(a x_{i}+b-y_{i}\right)^{2}$
Easy: differentiate, set to zero

Our setup
$\min \sum_{i=1}^{n}\left|a x_{i}+b-y_{i}\right|$

Not differentiable!

- Absolute value trick:

$$
|w| \equiv \begin{array}{ll}
\min & e \\
\text { s.t. } & e \geq w \\
& e \geq-w
\end{array}
$$

- Our setup can be written as an LP

$$
\begin{array}{lll}
\min & \sum_{i=1}^{n} e_{i} \\
\text { s.t. } & e_{i} \geq a x_{i}+b-y_{i} & \forall i \\
& e_{i} \geq-\left(a x_{i}+b-y_{i}\right) & \forall i
\end{array}
$$

Example: Bipartite Matching

- Given bipartite graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Find a maximum size matching
- A set $M \subseteq E$ s.t. every vertex has at most one incident edge in M
- Write an integer program
$\begin{array}{llll}\max & \sum_{e \in E} x_{e} & & \\ \text { s.t. } & \sum_{e \text { incident to } v} x_{e} \leq 1 & \forall v \in V \\ & x_{e} & \in\{0,1\} & \forall e \in E\end{array}$
- But we don't know how to solve IPs. Try an LP instead.

$$
\max \sum_{e \in E} x_{e}
$$

$$
\begin{array}{lll}
\text { s.t. } & \sum_{e \text { incident to } v} x_{e} \leq 1 & \forall v \in V \tag{LP}\\
& x_{e} & \geq 0
\end{array} \quad \forall e \in E
$$

- Theorem: (IP) and (LP) have the same solution!
- Proof: Later in the course!
- Corollary: Bipartite matching can be solved efficiently (it's in P).

Example: Independent Set

- Given graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Find a maximum size independent set
- A set $U \subseteq V$ s.t. $\{u, v\} \notin E$ for every distinct $u, v \in U$
- Write an integer program

$$
\max \sum_{v \in V} x_{v}
$$

(IP)

$$
\begin{array}{llll}
\text { s.t. } & x_{u}+x_{v} \leq 1 & \forall\{u, v\} \\
& x_{v} & \in\{0,1\} & \forall v \in V
\end{array}
$$

- But we don't know how to solve IPs. Try an LP instead. $\max \quad \sum_{v \in V} x_{v}$

$$
\begin{array}{lll}
\text { s.t. } & x_{u}+x_{v} & \leq 1 \tag{LP}\\
& x_{v} & \geq 0
\end{array}
$$

- Unfortunately (IP) and (LP) are extremely different.
- Fact: There are graphs for which $\mathrm{OPT}_{\mathrm{LP}} / \mathrm{OPT}_{\mathrm{IP}} \geq|\mathrm{V}| / 2$.

Feasible Region

- For any $a \in \mathbb{R}^{n}, b \in \mathbb{R}$, define

$$
\left.\begin{array}{rl}
H_{a, b} & =\left\{x \in \mathbb{R}^{n}: a^{\top} x=b\right\} \\
H_{a, b}^{+} & =\left\{x \in \mathbb{R}^{n}: a^{\top} x \geq b\right\} \\
H_{a, b}^{-} & =\left\{x \in \mathbb{R}^{n}: a^{\top} x \leq b\right\}
\end{array}\right\} \quad \text { Hyperplane }
$$

- So feasible region of is $P=\bigcap_{i=1}^{m} H_{a_{i}, b_{i}}^{-}$

| min $c^{\top} x$
 s.t. $a_{i}^{\top} x \leq b_{i}$$\quad \forall i=1, \ldots, m$ |
| :--- | :--- | :--- |

- Intersection of finitely many halfspaces is polyhedron
- A bounded polyhedron is a polytope, i.e., $P \subseteq\left\{x:-M \leq x_{i} \leq M \forall i\right\}$ for some M

Convex Sets

- $C \subseteq \mathbb{R}^{n}$ is convex if for every $x, y \in C$,
C contains line segment between x and y.
i.e., $\forall \alpha \in[0,1]$, we have $\underbrace{\alpha \mathrm{x}+(1-\alpha) \mathrm{y}} \in \mathrm{C}$.

Convex

Such a point is called a convex combination of x and y

- Claim 1: Any halfspace is convex.
- Claim 2: The intersection of any number of convex sets is convex.
- Corollary: Any polyhedron is convex.

Where are optimal solutions?

Where are optimal solutions?

Where are optimal solutions?

Lemma: For any objective function, a "corner point" is an optimal solution.
(Assuming an optimal solution exists and some corner point exists).
Proof: Later in the course!

Proving optimality

- Question: What is optimal point in direction $\mathrm{c}=(-7,14)$?
- Solution: Optimal point is $x=(9 / 7,16 / 7)$, optimal value is 23 .
- How can I be sure?
- Every feasible point satisfies $\mathrm{x}_{1}+6 \mathrm{x}_{2} \leq 15$
- Every feasible point satisfies $-x_{1}+x_{2} \leq 1 \Rightarrow-8 x_{1}+8 x_{2} \leq 8$
- Every feasible point satisfies their sum: $\underbrace{-7 x_{1}+14 x_{2}} \leq 23$

$$
\begin{array}{lll}
\max & -7 x_{1}+14 x_{2} \\
\text { s.t. } & -x_{1}+x_{2} & \leq 1 \\
& x_{1}+6 x_{2} & \leq 15 \\
& 4 x_{1}-x_{2} & \leq 10 \\
& x & \geq 0
\end{array}
$$

$+$

This is the objective function!

Proving optimality

- Question: What is optimal point in direction $c=(-7,14)$?
- Solution: Optimal point is $x=(9 / 7,16 / 7)$, optimal value is 23 .
- How can I be sure?
- Every feasible point satisfies $\mathrm{x}_{1}+6 \mathrm{x}_{2} \leq 15$
- Every feasible point satisfies $-x_{1}+x_{2} \leq 1 \Rightarrow-8 x_{1}+8 x_{2} \leq 8$
- Every feasible point satisfies their sum: $\underbrace{-7 x_{1}+14 x_{2}} \leq 23$

This is the objective function!

- Certificates
- To convince you that optimal value is $\geq k$, I can find x such that $c^{\top} x \geq k$.
- To convince you that optimal value is $\leq k$, I can find a linear combination of the constraints which proves that $c^{\top} x \leq k$.
- Theorem: Such certificates always exists.
- Proof: Later in the course!

Local-Search Algorithm

 (The "Simplex Method")- "The obvious idea of moving along edges from one vertex of a convex polygon to the next" [Dantzig, 1963]

> Algorithm
> Let x be any corner point For each neighbor y of x If $c^{\top} y>c^{\top} x$ then set $x=y$
> Halt

- In practice, very efficient
- Its analysis proves all the theorems mentioned earlier
- Every known variant of this algorithm takes exponential time
- Open problem: does some variant run in polynomial time?

Pitfalls and missing details

\quad Algorithm
Let x be any corner point
For each neighbor y of x
\quad If $c^{\top} y>c^{\top} x$ then set $x=y$
Halt

1. What is a corner point?
2. What if there are no corner points?
3. What are the "neighboring" corner points?
4. What if there are no neighboring corner points?
5. How can I find a starting corner point?
6. Does the algorithm terminate?
7. Does it produce the right answer?
