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Topics

e Semi-Definite Programs (SDP)
* Solving SDPs by the Ellipsoid Method
* Finding vectors with constrained distances



LP is great, but...

Some problems cannot be handled by LPs

Example: Find vectors v,...,v;, € R1%s.t.

— All vectors have unit length: ||v.|| =1 Vi

— Distance between vectors is: ||v-vj|| € [1/3, 5/3] Vi#]
— Sum-of-squared distances is maximized

Not obvious how to solve it.
Not obvious that LP can help.

This problem is child’s play with SDPs




How can we make LPs more general?

* An (equational form) LP looks like:

max c'x
st. Ax =0b
T >0

* |n English:
— Find a non-negative vector x

— Subject to some linear constraints on its entries

— While maximizing a linear function of its entries
 What object is “more general” than vectors?
* How about matrices?



Generalizing LPs: Attempt #1

e How about this? max ¢'X

st. AX =0b
X >0

* |n English:
— Find a “non-negative matrix” X
— Subject to some linear constraints on its entries
— While maximizing a linear function of its entries
* Does this make sense? Not quite...
— What is a “non-negative matrix”?

— Objective function c'X is not a scalar
— AX Is not a vector



What is a “non-negative matrix”?

* Let’s define “non-negative matrix” by
“symmetric, positive semi-definite matrix”.

— So our “variables” are the entries of an nxn
symmetric matrix.

— The constraint “X>0" is replaced by “X is PSD”

* Note: The constraint “X is PSD” is quite weird.
We'll get back to this issue.



Vectorizing the Matrix

. . . 2
e A dxd matrix can be viewed as a vector in R,

(Just write down the entries in some order.)
1

3 4 3
4

* A dxd symmetric matrix can be viewed as a
vector in Rd(d+1)/2,
1

1 2
X = jl> X =|2
2 il

4

* Our notation: X is a dxd symmetric matrix,
and x is the corresponding vector.



Semi-Definite Programs

max CT X

s.t. Ax=0b>
This constraint looks
suspiciously non-linear
e Where

— xeR" is a vector
— Ais a mxn matrix, ccR" and b&R™

— X is a dxd symmetric matrix, where n = d(d+1)/2,
and x is vector corresponding to X.

* |n English:
— Find a symmetric, positive semidefinite matrix X
— Subject to some linear constraints on its entries
— While maximizing a linear function of its entries



Review of Eigenvalues

A complex dxd matrix M is diagonalizable if M = UD U,
where D and U have size dxd, and D is diagonal.
(This expression for M is called a “spectral decomposition”)

The diagonal entries of D are called the eigenvalues of M,
and the columns of U are corresponding eigenvectors.

An eigenvector of M is any vector y s.t. My = Ay, for some AeC.

Fact: Every real symmetric matrix M is diagonalizable.
In fact, we can write M = UDUT where D and U are real dxd
matrices, D is diagonal, and UT = UL,

Fact: For real symmetric matrices, it is easy to compute the
matrices U and D. (“Cholesky Factorization”, very similar to Gaussian Elim.)

Summary: Real symmetric matrices have real eigenvalues
and eigenvectors and they’re easily computed.


http://en.wikipedia.org/wiki/Cholesky_decomposition
http://en.wikipedia.org/wiki/Cholesky_decomposition
http://en.wikipedia.org/wiki/Cholesky_decomposition

Positive Semidefinite Matrices (again)

Assume M is a symmetric, d x d matrix
Definition 1: M is PSD iff 3V s.t. M = V'V.
Definition 2: M is PSD iff yTMy > 0 VycR¢,
Definition 3: M is PSD iff all eigenvalues are > 0.

Claim: Definition 3 = Definition 1.

Proof: Since M symmetric, M = UDUT where D is
diagonal and its diagonal entries are the eigenvalues.

Let W be diagonal matrix W=D2, i.e., W, ; = \/D; ;
Then M = UTW W U = UTWTWU = (WU)T(WU) = VTV,

where V = WU.




Positive Semidefinite Matrices (again)

Assume M is symmetric

Definition 1: M is PSD iff 3V s.t. M = V'V.
Definition 2: M is PSD iff yTMy > 0 VycR¢,
Definition 3: M is PSD iff all eigenvalues are > 0.

Notation: Let M[S,T] denote submatrix of M with
row-set S and column-set T.

Definition 4: M is PSD iff det( M([S,S] )>0 VS.

Definitions 1-3 are very useful. Definition 4 is less useful.



The PSD Constraint is Convex

 Claim: ThesetC={x:Xis PSD }is a convex set.

* Proof:
By Definition 2, X is PSD iff y™Xy > 0 VycR¢,
Note: v/ Xy = Zle ijl X iyiy; . For each fixed y,
this is a linear inequality involving entries of X.
Each inequality defines a half-space, and is convex.
SoC={uz: yT Xy >0 Vy € R" }

So Cis the intersection of an (infinite!) collection of
convex sets, and hence is convex. (See Asst 4, Q1)

Remark: This argument also shows that Cis closed.



What does the PSD set look like?

Consider 2x2 symmetric matrices.

B
M= |
B
Let C={x:Xis PSD }.

By Definition 4, M is PSD iff det( M[S,S] )>0 VS.

SoC={(a,57) : >0, v>0, ary-3>0 }.

Note: Definitely not a
polyhedral set!
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Image from Jon Dattorro “Convex Optimization & Euclidean Distance Geometry”



http://meboo.convexoptimization.com/

Semi-Definite Programs

max CT.CU

s.t. Ax =0

_ iy This constraintleeks—
@ % %; suspiciously non-linear

y' Xy >0 Vy € R* } Definition 2

e Where
— XER" is a vector

— Ais a mxn matrix, c€R" and b&R™

— X is a dxd symmetric matrix, where n = d(d+1)/2,
and x is vector corresponding to X.

* Replace suspicious constraint with Definition 2
* This is a convex program with infinitely many constraints!



History of SDPs
* Implicitly appear in this paper:

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-25, NO. 1, JANUARY 1979

We met him
in Lecture 12

On the Shannon Capacity)of a Graph

Abstract—It is proved that the Shannon zero-error capacity of the
pentagon is V5 . The method is then generalized to obtain upper bounds
on the capacity of an arbitrary graph. A well-characterized, and in a sense
easily computable, function is introduced which bounds the capacity from
above and equals the capacity in a large number of cases. Several results
are obtained on the capacity of special graphs; for example, the Petersen
graph has capacity four and a self-complementary graph with » points and
with a vertex-transitive automorphism group has capacity V.

I. INTRODUCTION

ET THERE BE a graph G, whose vertices are letters
in an alphabet and in which adjacency means that
the letters can be confused. Then the maximum number
of one-letter messages which can be sent without danger
of confuston is clearly a(G), the maximum number of
independent points in the graph G. Denote by a(G*) the

LASZLO LOVASZ

A general upper bound on ©(G) was also given in [6]
(this bound was discussed in detail by Rosenfeld [5]). We
assign nonnegative weights w(x) to the vertices x of G
such that

> wix)<1

xeC _
for every complete subgraph C in G; such an assignment
is called a fractional vertex packing. The maximum of
3 .w(x), taken over all fractional vertex packings, is de-
noted by a*(G). It follows easily from the duality theorem
of linear programming that a*(G) can be defined dually
as follows: we assign nonnegative weights g(C) to the
cliques C of G such that

2 9(0)>1

Cax



History of SDPs

Scroll down a bit...

This number was introduced by Shannon [6) and is called
the Shannon capacity of the graph G. The previous consid-
eration shows that ©(G)>a(G) and that, in general,
equality does not hold.

The determination of the Shannon capacity is a very
difficult problem even for very simple small graphs.
Shannon proved that a(G)=6#(G) for those graphs which
can be covered by a{G) cliques (the best known such
graphs are the so-called perfect graphs; see [1]). However,
even for the simplest graph not covered by this result—
the pentagon—the Shannon capacity was prekusly un-
known.

Manuscript received Febru i revi 1

The author is with the Department of Combmatoncs Umvers:t ol
Waterloo, Waterloo, ON, Canada,fon leave from the Bolyal Institute,
Jozsel Attla University, H-6720 Szeged, Aradi vértanuk t. 1, Hungary.

II. THE CAPACITY OF THE PENTAGON

Let G be a finite undirected graph without loops. We
say that two vertices of G are adjacent if they are either
connected by an edge or are equal.

The set of points of the graph G is denoted by V(G).
The complementary graph of G is defined as the graph G
with ¥(G)= ¥(G) and in which two points are connected
by an edge iff they are not connected in G. A k-coloration
of G is a partition of V() into & sets independent in G.
Note that this corresponds to a covering of the points of
the complementary graph by k cliques. The least k for
which G admits a k-coloration is called its chromatic
number.

A permutation of V(G) is an automorphism if it pre-
serves adjacency of the points. The automorphisms of G

0018-9448 /79 /0100-0001$00.75 ©1979 IEEE

SDPs were discovered in U. Waterloo C&O Department!



Solving Semi-Definite Programs

max CT X

s.t. Az =0
y' Xy >0 Yy € R?
* There are infinitely many constraints!

e But having many constraints doesn’t scare us:
we know the Ellipsoid Method.

* To solve the SDP, we:

— Replace objective function by constraint c'x > ¢,
and binary search to find (nearly) optimal alpha.

— Need to design a separation oracle.



Separation Oracle for SDPs

C T > a
Solve: < az-Tm =b; V1 >
KyTXy ZOVyGRdJ

s 76P? Separation Oracle
s zeP:

If not, find a vector a s.t. a'™x<a'z VxcP

e Easy to testif Az=b, and if c'z > «
— If not, either a, or -a, or c gives the desired vector a

* How can we testify'Zy>0 Vy?



Separation Oracle for SDPs

C T > a

Solve: < az-Tm =b; V1 >
T d

Ly Xy >0 VyeRY

s 76P? Separation Oracle
s zeP:

If not, find a vector a s.t. a'™x<a'z VxcP

e How can wetestify'Zy>0 Vy?
* Key trick: Compute eigenvalues & eigenvectors!
If all eigenvalues > 0, then Zis PSD and y'Zy >0 Vy.
If y is @ non-zero eigenvector with eigenvalue A<0, then
Zy=dy = Y'Zy=yy=Ayly=Aly|?<0
Thus the constraint y' Xy >0 is violated by Z!



Separation Oracle for SDPs

C T > a

Solve: < asz =b; V1 >
T d

Ly Xy >0 VyeRY

s 76P? Separation Oracle
ZEP*

If not, find a vector a s.t. a'™x<a'z VxcP

 Summary: SDPs can be solved (approximately)
by the Ellipsoid Method, in polynomial time.

* SDPs can be solved efficiently in practice
(approximately), by Interior Point Methods.



Example: Find vectors v,,...,v;, € R s t.

— All vectors have unit length: ||v,|| =1 Vi

— Distance between vectors is: ||v-vj|| € [1/3, 5/3] Vi#j
— Sum-of-squared distances is maximized

Why does this example relate to SDPs?

Key observation: PSD matrices correspond
directly to vectors and their dot-products.

Given vectors v,...,v4 in RY, let V be the dxd
matrix whose i*" column is v..

Let X = V'V. Then X is PSD and X;; = v;'v; Vi,j.




Example: Find vectors v,,...,v;, € R s t.

— All vectors have unit length: ||v,|| =1 Vi

— Distance between vectors is: ||v-vj|| € [1/3, 5/3] Vi#j
— Sum-of-squared distances is maximized

Key observation: PSD matrices correspond
directly to vectors and their dot-products.

Given vectors v,,...,v4 in RY, let V be the dxd
matrix whose it" column is v..

Let X = V'V. Then X is PSD and X;; = v;'v; Vi,j.

Conversely, given a dxd PSD matrix X, find spectral
decomposition X=UDUT, and let V = D2 U.

To get vectors in RY, let v, = it column of V.
Then X=V'V = Xi,j = ViTVj \Vll,J




Example: Find vectors v,,...,v;, € R s t.

— All vectors have unit length: ||v,|| =1 Vi
— Distance between vectors is: ||v-vj|| € [1/3, 5/3] Vi#j
— Sum-of-squared distances is maximized

Key observation: PSD matrices correspond directly to
vectors and their dot-products:
If X PSD, it gives vectors {v;:i=1,...,d } where X;; = vj'v,
Also, distances and lengths relate to dot-products:
|u]|?>=uu and ||u-v||? = (u-v)T(u-v) =uTu-2viu+v'v
So our example is solved by the SDP:
max Ei,j (Xi,i - inlj + Xj,j) (F-e-; Ei,j HVi'VjHZ)
s.t. X;;=1 (i.e., ||vi]| =1)
X;i-2X; +X,€[1/9,25/9] (i.e., Hvi-vj\|€[1/3,5/3])
X is PSD




Example: Find vectors v,,...,v;, € R s t.

— All vectors have unit length: ||v,|| =1 Vi

— Distance between vectors is: ||v-vj|| € [1/3, 5/3] Vi#j
— Sum-of-squared distances is maximized

Our example is solved by the SDP:

max X (X;; - 2X; + X ;) (i.e., 2 ||vivi]|?)

s.t. X;;=1 (i.e., ||vi]| =1)
Xi-2X; +X;;€[1/9,25/9] (i.e., Hvi-ijE[l/3,5/3])
X is PSD

Note objective function is a linear function of X’s entries

Note constraints are all linear inequalities on X’s entries




SDP Summary

Matrices can be viewed as vectors.

Can force a matrix to be PSD using infinitely
many linear inequalities.

Can test if a matrix is PSD using eigenvalues.
This also gives a separation oracle.

PSD matrices correspond to vectors and their
dot products (and hence to their distances).

So we can solve lots of optimization problems
relating to vectors with certain distances.

— In applications of SDP, it is often not obvious why
the problem relates to finding certain vectors...



