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Topics

• Semi-Definite Programs (SDP)

• Solving SDPs by the Ellipsoid Method

• Finding vectors with constrained distances



LP is great, but…

• Some problems cannot be handled by LPs

• Example: Find vectors v1,…,v10 2 R10 s.t.

– All vectors have unit length: kvik = 1 8i

– Distance between vectors is: kvi-vjk2 [1/3, 5/3] 8ij

– Sum-of-squared distances is maximized

• Not obvious how to solve it.

• Not obvious that LP can help.

• This problem is child’s play with SDPs



How can we make LPs more general?

• An (equational form) LP looks like:

• In English:

– Find a non-negative vector x

– Subject to some linear constraints on its entries

– While maximizing a linear function of its entries

• What object is “more general” than vectors?

• How about matrices?



Generalizing LPs: Attempt #1

• How about this?

• In English:

– Find a “non-negative matrix” X

– Subject to some linear constraints on its entries

– While maximizing a linear function of its entries

• Does this make sense? Not quite…

– What is a “non-negative matrix”?

– Objective function cTX is not a scalar

– AX is not a vector



What is a “non-negative matrix”?

• Let’s define “non-negative matrix” by 
“symmetric, positive semi-definite matrix”.

– So our “variables” are the entries of an nxn
symmetric matrix.

– The constraint “X¸0” is replaced by “X is PSD”

• Note: The constraint “X is PSD” is quite weird.
We’ll get back to this issue.



Vectorizing the Matrix
• A dxd matrix can be viewed as a vector in Rd2.

(Just write down the entries in some order.)

• A dxd symmetric matrix can be viewed as a 
vector in Rd(d+1)/2.

• Our notation: X is a dxd symmetric matrix,
and x is the corresponding vector.
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Semi-Definite Programs

• Where
– x2Rn is a vector

– A is a mxn matrix, c2Rn and b2Rm

– X is a dxd symmetric matrix, where n = d(d+1)/2,
and x is vector corresponding to X.

• In English:

– Find a symmetric, positive semidefinite matrix X

– Subject to some linear constraints on its entries

– While maximizing a linear function of its entries

This constraint looks 
suspiciously non-linear



Review of Eigenvalues
• A complex dxd matrix M is diagonalizable if M = U D U-1,

where D and U have size dxd, and D is diagonal.
(This expression for M is called a “spectral decomposition”)

• The diagonal entries of D are called the eigenvalues of M,
and the columns of U are corresponding eigenvectors.

• An eigenvector of M is any vector y s.t. My =¸y, for some ¸2C.

• Fact: Every real symmetric matrix M is diagonalizable.
In fact, we can write M = U D UT, where D and U are real dxd
matrices, D is diagonal, and UT = U-1. (U is “orthogonal”)

• Fact: For real symmetric matrices, it is easy to compute the 
matrices U and D. (“Cholesky Factorization”, very similar to Gaussian Elim.)

• Summary: Real symmetric matrices have real eigenvalues
and eigenvectors and they’re easily computed.

http://en.wikipedia.org/wiki/Cholesky_decomposition
http://en.wikipedia.org/wiki/Cholesky_decomposition
http://en.wikipedia.org/wiki/Cholesky_decomposition


Positive Semidefinite Matrices (again)
• Assume M is a symmetric, d x d matrix

• Definition 1: M is PSD iff 9V s.t. M = VTV.

• Definition 2: M is PSD iff yTMy ¸ 0 8y2Rd.

• Definition 3: M is PSD iff all eigenvalues are ¸ 0.

• Claim: Definition 3  ) Definition 1.

• Proof: Since M symmetric, M = U D UT where D is 
diagonal and its diagonal entries are the eigenvalues.

Let W be diagonal matrix W=D1/2, i.e.,

Then M = UT W W U = UT WT W U = (WU)T (WU) = VT V, 
where V = WU. ¤



Positive Semidefinite Matrices (again)
• Assume M is symmetric

• Definition 1: M is PSD iff 9V s.t. M = VTV.

• Definition 2: M is PSD iff yTMy ¸ 0 8y2Rd.

• Definition 3: M is PSD iff all eigenvalues are ¸ 0.

• Notation: Let M[S,T] denote submatrix of M with
row-set S and column-set T.

• Definition 4: M is PSD iff det( M[S,S] )¸0  8S.

• Definitions 1-3 are very useful. Definition 4 is less useful.



The PSD Constraint is Convex
• Claim: The set C = { x : X is PSD } is a convex set.

• Proof:

By Definition 2, X is PSD iff yTXy ¸ 0 8y2Rd.

Note: . For each fixed y, 
this is a linear inequality involving entries of X.

Each inequality defines a half-space, and is convex.

So 

So C is the intersection of an (infinite!) collection of 
convex sets, and hence is convex. (See Asst 4, Q1)

¥

Remark: This argument also shows that C is closed.



What does the PSD set look like?
• Consider 2x2 symmetric matrices.

• M = 

• Let C = { x : X is PSD }.

• By Definition 4, M is PSD iff det( M[S,S] )¸0  8S.

• So C = { (®,¯,°) : ®¸0, °¸0, ®°-¯2¸0 }.

® ¯

¯ °

Image from Jon Dattorro “Convex Optimization & Euclidean Distance Geometry”

Note: Definitely not a 
polyhedral set!

http://meboo.convexoptimization.com/


Semi-Definite Programs

• Where

– x2Rn is a vector

– A is a mxn matrix, c2Rn and b2Rm

– X is a dxd symmetric matrix, where n = d(d+1)/2,
and x is vector corresponding to X.

• Replace suspicious constraint with Definition 2

• This is a convex program with infinitely many constraints!

This constraint looks 
suspiciously non-linear

Definition 2



History of SDPs
• Implicitly appear in this paper: We met him

in Lecture 12



History of SDPs
• Scroll down a bit…

SDPs were discovered in U. Waterloo C&O Department!



Solving Semi-Definite Programs

• There are infinitely many constraints!

• But having many constraints doesn’t scare us:
we know the Ellipsoid Method.

• To solve the SDP, we:

– Replace objective function by constraint cTx ¸ ®,
and binary search to find (nearly) optimal alpha.

– Need to design a separation oracle.



Separation Oracle for SDPs

• Easy to test if Az=b, and if cTz ¸ ®

– If not, either ai or -ai or c gives the desired vector a

• How can we test if yT Z y¸0  8y?

Is z2P?
If not, find a vector a  s.t.  aTx<aTz 8x2P

Separation Oracle

Solve:



Separation Oracle for SDPs

• How can we test if yT Z y¸0  8y?

• Key trick: Compute eigenvalues & eigenvectors!

If all eigenvalues ¸ 0, then Z is PSD and yT Z y¸0 8y.

If y is a non-zero eigenvector with eigenvalue ¸<0, then
Zy = ¸y   ) yTZy = yT¸y = ¸ yTy = ¸kyk2 < 0

Thus the constraint yT X y¸0 is violated by Z!

Is z2P?
If not, find a vector a  s.t.  aTx<aTz 8x2P

Separation Oracle

Solve:



Separation Oracle for SDPs

• Summary: SDPs can be solved (approximately) 
by the Ellipsoid Method, in polynomial time.
There are some issues relating to irrational numbers and the radii 
of balls containing and contained in feasible region.

• SDPs can be solved efficiently in practice 
(approximately), by Interior Point Methods.

Is z2P?
If not, find a vector a  s.t.  aTx<aTz 8x2P

Separation Oracle

Solve:



• Why does this example relate to SDPs?

• Key observation: PSD matrices correspond 
directly to vectors and their dot-products.

• Given vectors v1,…,vd in Rd, let V be the dxd
matrix whose ith column is vi.

• Let X = VTV. Then X is PSD and Xi,j = vi
Tvj 8i,j.

• Example: Find vectors v1,…,v10 2 R10 s.t.
– All vectors have unit length: kvik = 1 8i
– Distance between vectors is: kvi-vjk2 [1/3, 5/3] 8ij
– Sum-of-squared distances is maximized



• Key observation: PSD matrices correspond 
directly to vectors and their dot-products.

• Given vectors v1,…,vd in Rd, let V be the dxd
matrix whose ith column is vi.

• Let X = VTV. Then X is PSD and Xi,j = vi
Tvj 8i,j.

• Conversely, given a dxd PSD matrix X, find spectral 
decomposition X = UDUT, and let V = D1/2 U.

• To get vectors in Rd, let vi = ith column of V.

• Then X = VT V  ) Xi,j = vi
Tvj 8i,j.

• Example: Find vectors v1,…,v10 2 R10 s.t.
– All vectors have unit length: kvik = 1 8i
– Distance between vectors is: kvi-vjk2 [1/3, 5/3] 8ij
– Sum-of-squared distances is maximized



• Key observation: PSD matrices correspond directly to 
vectors and their dot-products:
If X PSD, it gives vectors { vi : i=1,…,d } where Xi,j = vi

Tvj.

• Also, distances and lengths relate to dot-products:

kuk2=uTu and  ku-vk2 = (u-v)T(u-v) = uTu-2vTu+vTv

• So our example is solved by the SDP:

max §i,j (Xi,i - 2Xi,j + Xj,j) (i.e., §i,j kvi-vjk
2)

s.t. Xi,i = 1 (i.e., kvik = 1)
Xi,i-2Xi,j+Xj,j2[1/9,25/9] (i.e., kvi-vjk2[1/3,5/3])
X is PSD

• Example: Find vectors v1,…,v10 2 R10 s.t.
– All vectors have unit length: kvik = 1 8i
– Distance between vectors is: kvi-vjk2 [1/3, 5/3] 8ij
– Sum-of-squared distances is maximized



• Our example is solved by the SDP:

max §i,j (Xi,i - 2Xi,j + Xj,j) (i.e., §i,j kvi-vjk
2)

s.t. Xi,i = 1 (i.e., kvik = 1)
Xi,i-2Xi,j+Xj,j2[1/9,25/9] (i.e., kvi-vjk2[1/3,5/3])
X is PSD

• Note objective function is a linear function of X’s entries

• Note constraints are all linear inequalities on X’s entries

• Example: Find vectors v1,…,v10 2 R10 s.t.
– All vectors have unit length: kvik = 1 8i
– Distance between vectors is: kvi-vjk2 [1/3, 5/3] 8ij
– Sum-of-squared distances is maximized



SDP Summary
• Matrices can be viewed as vectors.

• Can force a matrix to be PSD using infinitely 
many linear inequalities.

• Can test if a matrix is PSD using eigenvalues. 
This also gives a separation oracle.

• PSD matrices correspond to vectors and their 
dot products (and hence to their distances).

• So we can solve lots of optimization problems 
relating to vectors with certain distances.
– In applications of SDP, it is often not obvious why 

the problem relates to finding certain vectors…


