
C&O 355: Lecture 17 Notes

Nicholas Harvey
http://www.math.uwaterloo.ca/~harvey/

1 Faces of Polyhedra

Definition 1.1. An affine space A ⊆ Rn is any set of the form

A = { x + z : x ∈ L } ,

where L ⊆ Rn is a linear subspace and z ∈ Rn is any vector. The dimension of A, denoted
dimA, is simply the dimension of the corresponding linear subspace L.

Definition 1.2. Let C ⊆ Rn be any set. The dimension of C, denoted dimC, is

min { dimA : C ⊆ A } ,

where the minimum is taken over all affine spaces A.

Strictly speaking, if C = ∅ then dimC is not defined. We will adopt the convention that
dimC = −1.

Definition 1.3. Let C ⊆ Rn be any convex set. An inequality aTx ≤ b is called a valid
inequality if aTx ≤ b holds for every point x ∈ C.

Definition 1.4. Let P ⊆ Rn be a polyhedron. A face of P is any set F of the form

F = P ∩
{

x ∈ Rn : aTx = b
}
, (1.1)

where aTx ≤ b is a valid inequality for P .

Notice that any face of a polyhedron is itself a polyhedron.

As an example, if we take a = 0 and b = 0 then this shows that P is itself a face. On the
other hand, if we take a = 0 and b = 1 then this shows that ∅ is a face.

Definition 1.5. Let P be a polyhedron and let F ⊆ P be a face. Then F is called a d-
dimensional face or a d-face if dimF = d.

Note that if F consists of a single point v (i.e., F = {v}) then F is a 0-face. In this case, v
is the unique maximizer of a over P , where a is the vector in Eq. (1.1), and thus v is a vertex
of P . Recalling our earlier results, we see that for polyhedra, vertices, extreme points, basic
feasible solutions, and 1-faces are the same concept.

Definition 1.6. If dimP = d and F ⊂ P is a (d− 1)-face then F is called a facet.

Definition 1.7. A 1-face of a polyhedron is called an edge.
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Fact 1.8. Let P be a polytope with dimP = d and let F be a face of P . Then F is itself a
polytope and so it too has faces. The faces of F are precisely the faces of P that are contained
in F . Now assume that F is a facet. The facets of F are precisely the (d − 2)-faces of P that
are contained in F . Furthermore, each facet of F can be obtained as the intersection of F and
another facet of P .

In much the same way that vertices are equivalent to basic feasible solutions, we can give
another characterization of edges.

Fact 1.9. Let P =
{

x : aT
i x ≤ bi ∀i

}
be a polyhedron in Rn. Let x and y be two distinct

basic feasible solutions. Recall our notation

Ix =
{
i : aT

i x ≤ bi
}
.

Suppose that
rank { ai : i ∈ Ix ∩ Iy } = n− 1.

Then the line segment
Lx,y = { λx + (1− λ)y : λ ∈ [0, 1] } (1.2)

is an edge of P . Moreover, if P is a polytope, then every edge arises in this way.

Definition 1.10. Let P =
{

x : aT
i x ≤ bi ∀i

}
be a polyhedron in Rn. An inequality aT

i x ≤ bi
is called facet-defining if the face

P ∩
{

x ∈ Rn : aTx = b
}

is a facet.

Fact 1.11. Let P =
{

x : aT
i x ≤ bi ∀i

}
be a polyhedron in Rn. Let

I =
{
i : the inequality “aT

i x ≤ bi” is facet-defining
}
.

Then
P =

{
x : aT

i x ≤ bi ∀i ∈ I
}
.

2 Polyhedra and Graphs

Recall from Assignment 2 that every polyhedron has finitely many vertices. Let us now restrict
attention to polytopes. By Fact 1.9, every edge of a polytope can be described as the line segment
Lx,y connecting two particular vertices x and y. Thus the vertices and edges of polytopes
naturally form a graph.

Definition 2.1. Let P be a polytope and let V be the set of its vertices. Define the graph
G(P ) = (V,E), where

E = { {u, v} : Lu,v is an edge of P } .

This graph is called the 1-skeleton of P .

One may also define G(P ) for unbounded polyhedra, but it is slightly messier because not
all edges are as in Eq. (1.2); some edges shoot off to infinity. Actually, below we will use G(P )
for unbounded polyhedra without rigorously defining it.

2



For any finite graph G = (V,E), the distance between two vertices u, v ∈ V , denoted
dist(u, v), is defined to be the minimum number of edges in any path from u to v. The diameter
of G is

diamG = max
u,v∈V

dist(u, v).

Alternatively, diamG is the smallest number p such that any two vertices can be connected by
a path with p edges.

Let P be a polytope with m facets and dimP = n. We are interested in the quantity
diamG(P ). In particular, how large can it be? Define

∆(n,m) = max
P

diamG(P ),

where the maximum is taken over all n-dimensional polytopes with m facets.

As an example, it is easy to see that ∆(2,m) is precisely bm/2c.
The following notorious conjecture dates back to 1957.

Conjecture 2.2 (The Hirsch Conjecture). ∆(n,m) ≤ m− n.

The following theorem gives (nearly) the best-known progress towards proving the Hirsch
conjecture.

Theorem 2.3 (Kalai 1991 & Kalai-Kleitman 1992). ∆(n,m) ≤ n4 ln m.

Before proving this theorem, we must introduce some notation. Consider any n-dimensional
polytope P . Let V denote the collection of vertices of P . Let F denote the collection of facets
of P .

• For any v ∈ V , let F (v) denote the collection of facets which contain the point v.
• For any two vertices v, w ∈ V , let dist(v, w) denote the length of the shortest path from
v to w in G(P ).

• For any vertex v and integer t ≥ 0, let B(v, t) = { w ∈ V : dist(v, w) ≤ t }. This can be
thought of as the ball of radius t around vertex v in G(P ).

• For any vertex v and integer t ≥ 0, let F (v, t) =
⋃

w∈B(v,t) F (w). This is the set of all
facets that can be “touched” by walking from v at most t steps between the vertices of
P .

3 Proof of Kalai-Kleitman

Consider any n-dimensional polytope P whose collection of facets is F and |F | = m. The
distance between any two vertices x and y in G(P ) is denote distP (x, y), or simply dist(x, y).
Fix any two vertices u and v of P . Define

ku = max { t : |F (u, t)| ≤ m/2 }
kv = max { t : |F (v, t)| ≤ m/2 }

By the pigeonhole principle, F (u, ku + 1) ∩ F (v, kv + 1) is non-empty. So there exists a facet f
and two vertices u′, v′ ∈ f such that

dist(u, u′) ≤ ku + 1
dist(v, v′) ≤ kv + 1.

(3.1)
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Claim 3.1. dist(u′, v′) ≤ ∆(n− 1,m− 1).

Proof. By definition, f is an (n− 1)-dimensional polytope. By Fact 1.8, each facet of f is the
intersection of f with some other facet of P . So f has at most m− 1 facets. Since every vertex
(or edge) of f is also a vertex (or edge) of P , any path in G(f) is also a path in G(P ). Thus
distP (u′, v′) ≤ distf (u′, v′) ≤ ∆(n− 1,m− 1). �

Claim 3.2. kv ≤ ∆(n, bm/2c).
We prove Claim 3.2 below; this is the heart of the theorem. Claim 3.1 and Claim 3.2 lead

to the following recursion.

distP (u, v) ≤ distP (u, u′) + distP (u′, v′) + distP (v′, v)
≤ (ku + 1) + ∆(n− 1,m− 1) + (kv + 1)
≤ ∆(n− 1,m− 1) + 2∆(n, bm/2c) + 2

Since u and v are arbitrary, we have

∆(n,m) ≤ ∆(n− 1,m− 1) + 2∆(n, bm/2c) + 2. (3.2)

The theorem follows by analyzing this recurrence, which we do below.

Proof (of Claim 3.2). Consider any vertex w with distP (v, w) ≤ kv. We will obtain a recursive
bound on this distance by defining a new polyhedron with fewer facets. Let Q be the polyhedron
obtained by deleting all facets in F \ F (v, kv). In other words, let Q be the polyhedron defined
by the intersection of all half-spaces induced by the facets in F (v, kv). By choice of kv, Q has
at most bm/2c facets.

The key step of the proof is to prove that

distQ(v, w) ≥ distP (v, w). (3.3)

Once this is proven, we have distP (v, w) ≤ distQ(v, w) ≤ ∆(n, bm/2c), by induction, which is
the desired inequality.

So suppose to the contrary that distQ(v, w) < distP (v, w). Consider any shortest path p from
v to w in G(Q). Then there must be some edge on path p that is not an edge of P (otherwise
path p would be a v-w path in G(P ) of length less that distP (v, w)). Let Lx,y be the first such
edge, i.e., the edge closest to v. Then x must be a vertex of P (since it is a face of the previous
edge). However y cannot be a vertex of P , otherwise Lx,y would be an edge of P . In fact, the
reason that y is not a vertex of P is that it is not even feasible. To see this, note that the tight
constraints of Q at y have dimension n, and these are a subset of P ’s constraints. So y has
enough tight constraints to be a vertex of P , so only reason it cannot be a vertex is that it is
infeasible.

The line segment Lx,y is feasible for P at x, but infeasible at y, so it must intersect one of
the facets of P that is not a facet of Q. Call this facet f and this intersection point z, so we
have f 6∈ F (v, kv). Then z is a vertex of P and f ∈ F (z). Furthermore, since the portion of
path p from v to x is a path in G(P ), we have

distP (v, z) ≤ distQ(v, y) ≤ distQ(v, w) < distP (v, w) ≤ kv.

Thus z ∈ B(v, kv) and f ∈ F (v, kv), which is a contradiction. Thus Eq. (3.3) holds. �

The final step is to analyze the recurrence in Eq. (3.2).
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Claim 3.3. ∆(n,m) ≤ exp(4 ln(n) ln(m)).

Proof. By induction on m, and also using our earlier observation ∆(2,m) ≤ bm/2c. We have:

∆(n,m) ≤ ∆(n− 1,m− 1) + 2∆(n, bm/2c) + 2
≤ ∆(n− 1,m) + 2∆(n, bm/2c) + 2

Let’s unroll the recurrence by expanding ∆(n− 1,m).

≤
(

∆(n− 2,m) + 2∆(n− 1, bm/2c) + 2
)

+ 2∆(n, bm/2c) + 2

Now repeatedly unrolling the recurrence until the dimension becomes 2, we have

≤ ∆(2,m) + 2
n∑

i=3

(
∆(i, bm/2c) + 1

)
≤ m+ 2

n∑
i=3

(
e ·∆(n, bm/2c)

)
≤ m+ e2(n− 2)∆(n, bm/2c)
≤ m+ e2(n− 2) exp(4 ln(n) ln(m/2))

One may check that m ≤ e2 exp(4 ln(n) ln(m/2)) holds for all n ≥ 2 and m ≥ 2.

≤ e2n exp(4 ln(n) ln(m/2))
≤ exp(4 ln(n) ln(m/2) + ln(n) + 2)

≤ exp
(

4 ln(n)
(

ln(m)− 1
)

+ ln(n) + 2
)

= exp
(
4 ln(n) ln(m)− 3 ln(n) + 2

)
≤ exp

(
4 ln(n) ln(m)

)
This completes the inductive proof. �

Claim 3.3 shows that

∆(n,m) ≤ exp(4 ln(n) ln(m)) = n4 ln m.

This proves Theorem 2.3.
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