C&O 355: Lecture 17 Notes

Nicholas Harvey http://www.math.uwaterloo.ca/~harvey/

1 Faces of Polyhedra

Definition 1.1. An *affine space* $A \subseteq \mathbb{R}^n$ is any set of the form

$$A = \{ \mathbf{x} + \mathbf{z} : \mathbf{x} \in L \},\$$

where $L \subseteq \mathbb{R}^n$ is a linear subspace and $\mathbf{z} \in \mathbb{R}^n$ is any vector. The *dimension* of A, denoted dim A, is simply the dimension of the corresponding linear subspace L.

Definition 1.2. Let $C \subseteq \mathbb{R}^n$ be any set. The *dimension* of C, denoted dim C, is

$$\min\left\{ \dim A \, : \, C \subseteq A \right\},\,$$

where the minimum is taken over all affine spaces A.

Strictly speaking, if $C = \emptyset$ then dim C is not defined. We will adopt the convention that dim C = -1.

Definition 1.3. Let $C \subseteq \mathbb{R}^n$ be any convex set. An inequality $\mathbf{a}^\mathsf{T} \mathbf{x} \leq b$ is called a *valid inequality* if $\mathbf{a}^\mathsf{T} \mathbf{x} \leq b$ holds for every point $\mathbf{x} \in C$.

Definition 1.4. Let $P \subseteq \mathbb{R}^n$ be a polyhedron. A *face* of P is any set F of the form

$$F = P \cap \left\{ \mathbf{x} \in \mathbb{R}^n : \mathbf{a}^\mathsf{T} \mathbf{x} = b \right\},$$
(1.1)

where $\mathbf{a}^{\mathsf{T}}\mathbf{x} \leq b$ is a valid inequality for P.

Notice that any face of a polyhedron is itself a polyhedron.

As an example, if we take $\mathbf{a} = \mathbf{0}$ and b = 0 then this shows that P is itself a face. On the other hand, if we take $\mathbf{a} = \mathbf{0}$ and b = 1 then this shows that \emptyset is a face.

Definition 1.5. Let P be a polyhedron and let $F \subseteq P$ be a face. Then F is called a *d*-*dimensional face* or a *d*-*face* if dim F = d.

Note that if F consists of a single point \mathbf{v} (i.e., $F = {\mathbf{v}}$) then F is a 0-face. In this case, \mathbf{v} is the unique maximizer of \mathbf{a} over P, where \mathbf{a} is the vector in Eq. (1.1), and thus \mathbf{v} is a *vertex* of P. Recalling our earlier results, we see that for polyhedra, vertices, extreme points, basic feasible solutions, and 1-faces are the same concept.

Definition 1.6. If dim P = d and $F \subset P$ is a (d-1)-face then F is called a *facet*.

Definition 1.7. A 1-face of a polyhedron is called an *edge*.

Fact 1.8. Let P be a polytope with dim P = d and let F be a face of P. Then F is itself a polytope and so it too has faces. The faces of F are precisely the faces of P that are contained in F. Now assume that F is a facet. The facets of F are precisely the (d-2)-faces of P that are contained in F. Furthermore, each facet of F can be obtained as the intersection of F and another facet of P.

In much the same way that vertices are equivalent to basic feasible solutions, we can give another characterization of edges.

Fact 1.9. Let $P = \{ \mathbf{x} : \mathbf{a}_i^\mathsf{T} \mathbf{x} \leq b_i \ \forall i \}$ be a polyhedron in \mathbb{R}^n . Let \mathbf{x} and \mathbf{y} be two distinct basic feasible solutions. Recall our notation

$$\mathcal{I}_{\mathbf{x}} = \left\{ i : \mathbf{a}_i^\mathsf{T} \mathbf{x} \le b_i \right\}.$$

Suppose that

$$\operatorname{rank} \{ \mathbf{a}_i : i \in \mathcal{I}_{\mathbf{x}} \cap \mathcal{I}_{\mathbf{y}} \} = n - 1.$$

Then the line segment

$$L_{\mathbf{x},\mathbf{y}} = \{ \lambda \mathbf{x} + (1-\lambda)\mathbf{y} : \lambda \in [0,1] \}$$
(1.2)

is an edge of P. Moreover, if P is a polytope, then every edge arises in this way.

Definition 1.10. Let $P = \{ \mathbf{x} : \mathbf{a}_i^\mathsf{T} \mathbf{x} \leq b_i \ \forall i \}$ be a polyhedron in \mathbb{R}^n . An inequality $\mathbf{a}_i^\mathsf{T} \mathbf{x} \leq b_i$ is called *facet-defining* if the face

$$P \cap \left\{ \mathbf{x} \in \mathbb{R}^n : \mathbf{a}^\mathsf{T} \mathbf{x} = b \right\}$$

is a facet.

Fact 1.11. Let $P = \{ \mathbf{x} : \mathbf{a}_i^\mathsf{T} \mathbf{x} \leq b_i \ \forall i \}$ be a polyhedron in \mathbb{R}^n . Let

$$\mathcal{I} = \left\{ i : \text{the inequality } "\mathbf{a}_i^\mathsf{T} \mathbf{x} \le b_i" \text{ is facet-defining} \right\}.$$

Then

$$P = \left\{ \mathbf{x} : \mathbf{a}_i^\mathsf{T} \mathbf{x} \le b_i \; \forall i \in \mathcal{I} \right\}.$$

2 Polyhedra and Graphs

Recall from Assignment 2 that every polyhedron has finitely many vertices. Let us now restrict attention to polytopes. By Fact 1.9, every edge of a polytope can be described as the line segment $L_{\mathbf{x},\mathbf{y}}$ connecting two particular vertices \mathbf{x} and \mathbf{y} . Thus the vertices and edges of polytopes naturally form a *graph*.

Definition 2.1. Let P be a polytope and let V be the set of its vertices. Define the graph G(P) = (V, E), where

 $E = \{ \{u, v\} : L_{u,v} \text{ is an edge of } P \}.$

This graph is called the *1-skeleton* of *P*.

One may also define G(P) for unbounded polyhedra, but it is slightly messier because not all edges are as in Eq. (1.2); some edges shoot off to infinity. Actually, below we will use G(P)for unbounded polyhedra without rigorously defining it. For any finite graph G = (V, E), the **distance** between two vertices $u, v \in V$, denoted dist(u, v), is defined to be the minimum number of edges in any path from u to v. The **diameter** of G is

$$\operatorname{diam} G = \max_{u,v \in V} \operatorname{dist}(u,v).$$

Alternatively, diam G is the smallest number p such that any two vertices can be connected by a path with p edges.

Let P be a polytope with m facets and dim P = n. We are interested in the quantity diam G(P). In particular, how large can it be? Define

$$\Delta(n,m) = \max_{P} \operatorname{diam} G(P),$$

where the maximum is taken over all n-dimensional polytopes with m facets.

As an example, it is easy to see that $\Delta(2, m)$ is precisely |m/2|.

The following notorious conjecture dates back to 1957.

Conjecture 2.2 (The Hirsch Conjecture). $\Delta(n,m) \leq m-n$.

The following theorem gives (nearly) the best-known progress towards proving the Hirsch conjecture.

Theorem 2.3 (Kalai 1991 & Kalai-Kleitman 1992). $\Delta(n,m) \leq n^{4 \ln m}$.

Before proving this theorem, we must introduce some notation. Consider any *n*-dimensional polytope P. Let V denote the collection of vertices of P. Let F denote the collection of facets of P.

- For any $v \in V$, let F(v) denote the collection of facets which contain the point v.
- For any two vertices $v, w \in V$, let dist(v, w) denote the length of the shortest path from v to w in G(P).
- For any vertex v and integer $t \ge 0$, let $B(v,t) = \{ w \in V : \operatorname{dist}(v,w) \le t \}$. This can be thought of as the ball of radius t around vertex v in G(P).
- For any vertex v and integer $t \ge 0$, let $F(v,t) = \bigcup_{w \in B(v,t)} F(w)$. This is the set of all facets that can be "touched" by walking from v at most t steps between the vertices of P.

3 Proof of Kalai-Kleitman

Consider any *n*-dimensional polytope P whose collection of facets is F and |F| = m. The distance between any two vertices x and y in G(P) is denote $\operatorname{dist}_P(x, y)$, or simply $\operatorname{dist}(x, y)$. Fix any two vertices u and v of P. Define

$$k_u = \max \{ t : |F(u,t)| \le m/2 \}$$

$$k_v = \max \{ t : |F(v,t)| \le m/2 \}$$

By the pigeonhole principle, $F(u, k_u + 1) \cap F(v, k_v + 1)$ is non-empty. So there exists a facet f and two vertices $u', v' \in f$ such that

$$dist(u, u') \leq k_u + 1$$

$$dist(v, v') \leq k_v + 1.$$
(3.1)

Claim 3.1. dist $(u', v') \le \Delta(n-1, m-1)$.

Proof. By definition, f is an (n-1)-dimensional polytope. By Fact 1.8, each facet of f is the intersection of f with some other facet of P. So f has at most m-1 facets. Since every vertex (or edge) of f is also a vertex (or edge) of P, any path in G(f) is also a path in G(P). Thus $\operatorname{dist}_{P}(u',v') \leq \operatorname{dist}_{f}(u',v') \leq \Delta(n-1,m-1)$.

Claim 3.2. $k_v \leq \Delta(n, \lfloor m/2 \rfloor)$.

We prove Claim 3.2 below; this is the heart of the theorem. Claim 3.1 and Claim 3.2 lead to the following recursion.

$$dist_{P}(u, v) \leq dist_{P}(u, u') + dist_{P}(u', v') + dist_{P}(v', v) \leq (k_{u} + 1) + \Delta(n - 1, m - 1) + (k_{v} + 1) \leq \Delta(n - 1, m - 1) + 2\Delta(n, |m/2|) + 2$$

Since u and v are arbitrary, we have

$$\Delta(n,m) \leq \Delta(n-1,m-1) + 2\Delta(n,\lfloor m/2 \rfloor) + 2.$$
(3.2)

The theorem follows by analyzing this recurrence, which we do below.

Proof (of Claim 3.2). Consider any vertex w with $\operatorname{dist}_P(v, w) \leq k_v$. We will obtain a recursive bound on this distance by defining a new polyhedron with fewer facets. Let Q be the polyhedron obtained by deleting all facets in $F \setminus F(v, k_v)$. In other words, let Q be the polyhedron defined by the intersection of all half-spaces induced by the facets in $F(v, k_v)$. By choice of k_v , Q has at most $\lfloor m/2 \rfloor$ facets.

The key step of the proof is to prove that

$$\operatorname{dist}_Q(v, w) \ge \operatorname{dist}_P(v, w). \tag{3.3}$$

Once this is proven, we have $\operatorname{dist}_P(v, w) \leq \operatorname{dist}_Q(v, w) \leq \Delta(n, \lfloor m/2 \rfloor)$, by induction, which is the desired inequality.

So suppose to the contrary that $\operatorname{dist}_Q(v, w) < \operatorname{dist}_P(v, w)$. Consider any shortest path p from v to w in G(Q). Then there must be some edge on path p that is not an edge of P (otherwise path p would be a v-w path in G(P) of length less that $\operatorname{dist}_P(v, w)$). Let $L_{\mathbf{x},\mathbf{y}}$ be the first such edge, i.e., the edge closest to v. Then \mathbf{x} must be a vertex of P (since it is a face of the previous edge). However \mathbf{y} cannot be a vertex of P, otherwise $L_{\mathbf{x},\mathbf{y}}$ would be an edge of P. In fact, the reason that \mathbf{y} is not a vertex of P is that it is not even feasible. To see this, note that the tight constraints of Q at \mathbf{y} have dimension n, and these are a subset of P's constraints. So \mathbf{y} has enough tight constraints to be a vertex of P, so only reason it cannot be a vertex is that it is infeasible.

The line segment $L_{\mathbf{x},\mathbf{y}}$ is feasible for P at \mathbf{x} , but infeasible at \mathbf{y} , so it must intersect one of the facets of P that is not a facet of Q. Call this facet f and this intersection point z, so we have $f \notin F(v, k_v)$. Then z is a vertex of P and $f \in F(z)$. Furthermore, since the portion of path p from v to x is a path in G(P), we have

$$\operatorname{dist}_P(v, z) \leq \operatorname{dist}_Q(v, y) \leq \operatorname{dist}_Q(v, w) < \operatorname{dist}_P(v, w) \leq k_v.$$

Thus $z \in B(v, k_v)$ and $f \in F(v, k_v)$, which is a contradiction. Thus Eq. (3.3) holds.

The final step is to analyze the recurrence in Eq. (3.2).

Claim 3.3. $\Delta(n,m) \le \exp(4\ln(n)\ln(m)).$

Proof. By induction on m, and also using our earlier observation $\Delta(2,m) \leq \lfloor m/2 \rfloor$. We have:

$$\begin{array}{rcl} \Delta(n,m) &\leq & \Delta(n-1,m-1) + 2\Delta(n,\lfloor m/2 \rfloor) + 2 \\ &\leq & \Delta(n-1,m) + 2\Delta(n,\lfloor m/2 \rfloor) + 2 \end{array}$$

Let's unroll the recurrence by expanding $\Delta(n-1,m)$.

$$\leq \left(\Delta(n-2,m) + 2\Delta(n-1,\lfloor m/2 \rfloor) + 2\right) + 2\Delta(n,\lfloor m/2 \rfloor) + 2$$

Now repeatedly unrolling the recurrence until the dimension becomes 2, we have

$$\leq \Delta(2,m) + 2\sum_{i=3}^{n} \left(\Delta(i,\lfloor m/2 \rfloor) + 1\right)$$

$$\leq m + 2\sum_{i=3}^{n} \left(e \cdot \Delta(n,\lfloor m/2 \rfloor)\right)$$

$$\leq m + e^{2}(n-2)\Delta(n,\lfloor m/2 \rfloor)$$

$$\leq m + e^{2}(n-2)\exp(4\ln(n)\ln(m/2))$$

One may check that $m \le e^2 \exp(4\ln(n)\ln(m/2))$ holds for all $n \ge 2$ and $m \ge 2$.

$$\leq e^{2}n \exp(4\ln(n)\ln(m/2)) \leq \exp(4\ln(n)\ln(m/2) + \ln(n) + 2) \leq \exp(4\ln(n)(\ln(m) - 1) + \ln(n) + 2) = \exp(4\ln(n)\ln(m) - 3\ln(n) + 2) \leq \exp(4\ln(n)\ln(m))$$

This completes the inductive proof.

Claim 3.3 shows that

$$\Delta(n,m) \leq \exp(4\ln(n)\ln(m)) = n^{4\ln m}.$$

This proves Theorem 2.3.