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1 Faces of Polyhedra

Definition 1.1. An affine space A C R™ is any set of the form
A= {x+z:x€L},

where L C R is a linear subspace and z € R" is any vector. The dimension of A, denoted
dim A, is simply the dimension of the corresponding linear subspace L.

Definition 1.2. Let C' C R" be any set. The dimension of C', denoted dim C, is
min{ dimA : C C A},

where the minimum is taken over all affine spaces A.
Strictly speaking, if C' = () then dim C is not defined. We will adopt the convention that
dimC = —1.

Definition 1.3. Let C C R" be any convex set. An inequality a'x < b is called a valid
inequality if a"x < b holds for every point x € C.

Definition 1.4. Let P C R" be a polyhedron. A face of P is any set F' of the form
F:PO{XGR”:aTx:b}, (1.1)

where a'x < b is a valid inequality for P.

Notice that any face of a polyhedron is itself a polyhedron.

As an example, if we take a = 0 and b = 0 then this shows that P is itself a face. On the
other hand, if we take a = 0 and b = 1 then this shows that ) is a face.
Definition 1.5. Let P be a polyhedron and let F C P be a face. Then F' is called a d-
dimensional face or a d-face if dim F' = d.

Note that if F' consists of a single point v (i.e., F' = {v}) then F'is a O-face. In this case, v
is the unique maximizer of a over P, where a is the vector in Eq. (1.1), and thus v is a vertez
of P. Recalling our earlier results, we see that for polyhedra, vertices, extreme points, basic
feasible solutions, and 1-faces are the same concept.

Definition 1.6. If dim P =d and F C P is a (d — 1)-face then F is called a facet.

Definition 1.7. A 1-face of a polyhedron is called an edge.



Fact 1.8. Let P be a polytope with dim P = d and let F' be a face of P. Then F' is itself a
polytope and so it too has faces. The faces of F' are precisely the faces of P that are contained
in F'. Now assume that F is a facet. The facets of I are precisely the (d — 2)-faces of P that
are contained in F. Furthermore, each facet of F' can be obtained as the intersection of F' and
another facet of P.

In much the same way that vertices are equivalent to basic feasible solutions, we can give
another characterization of edges.

Fact 1.9. Let P = { X : a;rx <b; Vi } be a polyhedron in R". Let x and y be two distinct
basic feasible solutions. Recall our notation

Ty = {z : a;rxgbi}.
Suppose that
rank{a; : 1€y NZy } = n—1.

Then the line segment
Lyy = {Xx+(1-XNy:Xe€[0,1]} (1.2)

is an edge of P. Moreover, if P is a polytope, then every edge arises in this way.

Definition 1.10. Let P = { X : aiTX <b; Vi } be a polyhedron in R™. An inequality aiTX <
is called facet-defining if the face

Pﬂ{xeanaTx:b}

is a facet.

Fact 1.11. Let P ={x : a]x <b; Vi } be a polyhedron in R™. Let
I = { ¢ : the inequality “a; x < b;” is facet-defining } .

Then
P = {x:aiTxgbiViEI}.

2 Polyhedra and Graphs

Recall from Assignment 2 that every polyhedron has finitely many vertices. Let us now restrict
attention to polytopes. By Fact 1.9, every edge of a polytope can be described as the line segment
Ly y connecting two particular vertices x and y. Thus the vertices and edges of polytopes
naturally form a graph.

Definition 2.1. Let P be a polytope and let V' be the set of its vertices. Define the graph
G(P) = (V,E), where
E = {{u,v} : Ly, is an edge of P }.

This graph is called the 1-skeleton of P.

One may also define G(P) for unbounded polyhedra, but it is slightly messier because not
all edges are as in Eq. (1.2); some edges shoot off to infinity. Actually, below we will use G(P)
for unbounded polyhedra without rigorously defining it.



For any finite graph G = (V, E), the distance between two vertices u,v € V, denoted
dist(u, v), is defined to be the minimum number of edges in any path from u to v. The diameter
of G is

diam G = max dist(u,v).
u,veV

Alternatively, diam G is the smallest number p such that any two vertices can be connected by
a path with p edges.

Let P be a polytope with m facets and dim P = n. We are interested in the quantity
diam G(P). In particular, how large can it be? Define

A(n,m) = max diam G(P),

where the maximum is taken over all n-dimensional polytopes with m facets.
As an example, it is easy to see that A(2,m) is precisely |m/2].

The following notorious conjecture dates back to 1957.

Conjecture 2.2 (The Hirsch Conjecture). A(n,m) < m — n.

The following theorem gives (nearly) the best-known progress towards proving the Hirsch
conjecture.

Theorem 2.3 (Kalai 1991 & Kalai-Kleitman 1992). A(n,m) < ntin™,

Before proving this theorem, we must introduce some notation. Consider any n-dimensional
polytope P. Let V denote the collection of vertices of P. Let I’ denote the collection of facets
of P.

For any v € V, let F(v) denote the collection of facets which contain the point v.
For any two vertices v,w € V, let dist(v,w) denote the length of the shortest path from
v to w in G(P).

e For any vertex v and integer ¢t > 0, let B(v,t) = { w € V : dist(v,w) <t }. This can be
thought of as the ball of radius ¢ around vertex v in G(P).

e For any vertex v and integer ¢ > 0, let F'(v,t) = Uyep(py F'(w). This is the set of all
facets that can be “touched” by walking from v at most t steps between the vertices of
P.

3 Proof of Kalai-Kleitman

Consider any n-dimensional polytope P whose collection of facets is F' and |F| = m. The
distance between any two vertices z and y in G(P) is denote distp(x,y), or simply dist(z,y).
Fix any two vertices u and v of P. Define

k, = max{t: |F(u,t)| <m/2}
k, = max{t : |F(v,t)| <m/2}

By the pigeonhole principle, F(u, k, + 1) N F(v, k, + 1) is non-empty. So there exists a facet f
and two vertices u’,v" € f such that

dist(u,u')
dist (v, v")

< ky+1 (3.1)
< ky+ 1. '



Claim 3.1. dist(v/,v) < A(n—1,m —1).

Proof. By definition, f is an (n — 1)-dimensional polytope. By Fact 1.8, each facet of f is the
intersection of f with some other facet of P. So f has at most m — 1 facets. Since every vertex
(or edge) of f is also a vertex (or edge) of P, any path in G(f) is also a path in G(P). Thus
distp(u/,v") < dists(v/,v") < A(n —1,m —1). [ |
Claim 3.2. k, < A(n,|m/2]).

We prove Claim 3.2 below; this is the heart of the theorem. Claim 3.1 and Claim 3.2 lead
to the following recursion.

distp(u,u") + distp(u’, ") + dist p(¢v/, v)

<
< (hut 1)+ A —1,m— 1)+ (ky + 1)
< A(n—1,m—1)+2A(n, |m/2]) +2

distp(u,v)

Since u and v are arbitrary, we have
A(n,m) < A(n—1,m—1)+2A(n,|m/2]) + 2. (3.2)

The theorem follows by analyzing this recurrence, which we do below.

Proof (of Claim 3.2). Consider any vertex w with distp(v,w) < k,. We will obtain a recursive
bound on this distance by defining a new polyhedron with fewer facets. Let ) be the polyhedron
obtained by deleting all facets in F'\ F'(v, k,). In other words, let @ be the polyhedron defined
by the intersection of all half-spaces induced by the facets in F'(v,k,). By choice of k,, @ has
at most |m/2] facets.

The key step of the proof is to prove that
distg(v,w) > distp(v,w). (3.3)

Once this is proven, we have distp(v, w) < distg(v, w) < A(n, |m/2]), by induction, which is
the desired inequality.

So suppose to the contrary that distg(v, w) < distp(v, w). Consider any shortest path p from
v to w in G(Q). Then there must be some edge on path p that is not an edge of P (otherwise
path p would be a v-w path in G(P) of length less that distp(v,w)). Let Ly, be the first such
edge, i.e., the edge closest to v. Then x must be a vertex of P (since it is a face of the previous
edge). However y cannot be a vertex of P, otherwise Ly y would be an edge of P. In fact, the
reason that y is not a vertex of P is that it is not even feasible. To see this, note that the tight
constraints of ) at y have dimension n, and these are a subset of P’s constraints. So y has
enough tight constraints to be a vertex of P, so only reason it cannot be a vertex is that it is
infeasible.

The line segment Ly y is feasible for P at x, but infeasible at y, so it must intersect one of
the facets of P that is not a facet of Q). Call this facet f and this intersection point z, so we
have f ¢ F(v,k,). Then z is a vertex of P and f € F(z). Furthermore, since the portion of
path p from v to z is a path in G(P), we have

distp(v,2z) < distg(v,y) < distg(v,w) < distp(v,w) < ky.

Thus z € B(v, k,) and f € F(v, k,), which is a contradiction. Thus Eq. (3.3) holds. [ |
The final step is to analyze the recurrence in Eq. (3.2).



Claim 3.3. A(n,m) < exp(4In(n)In(m)).

Proof. By induction on m, and also using our earlier observation A(2,m) < |m/2|. We have:

A(n,m) A(n —1,m—1)+2A(n, |m/2]) + 2

<
< A(n—1,m)+2A(n, |m/2]) + 2

Let’s unroll the recurrence by expanding A(n — 1, m).
< (A(n —2,m) +2A(n — 1, |m/2)) + 2) +2A(n, [m/2]) + 2

Now repeatedly unrolling the recurrence until the dimension becomes 2, we have

< A(2,m) +2Z i, [m/2]) +1)

IN

m—{—QZ n, [m/2)))

< m+e( —2)A(n, [m/2])
< m+ e%(n — 2) exp(41n(n) In(m/2))

One may check that m < e?exp(41n(n)In(m/2)) holds for all n > 2 and m > 2.
e*nexp(41n(n)In(m/2))
exp(41n(n)In(m/2) + In(n) + 2)
exp (4 In(n)(In(m) — 1) +In(n) + 2)
)In(m) — 31In(n) + 2)
) In(m))

This completes the inductive proof. |
Claim 3.3 shows that

IAIA

IA

exp (41n(n

IN

exp (41n(n

A(n,m) < exp(4In(n)ln(m)) = nthm,

This proves Theorem 2.3.



