C\&O 355: Lecture 17 Notes

Nicholas Harvey
http://www.math.uwaterloo.ca/~harvey/

1 Faces of Polyhedra

Definition 1.1. An affine space $A \subseteq \mathbb{R}^{n}$ is any set of the form

$$
A=\{\mathbf{x}+\mathbf{z}: \mathbf{x} \in L\}
$$

where $L \subseteq \mathbb{R}^{n}$ is a linear subspace and $\mathbf{z} \in \mathbb{R}^{n}$ is any vector. The dimension of A, denoted $\operatorname{dim} A$, is simply the dimension of the corresponding linear subspace L.

Definition 1.2. Let $C \subseteq \mathbb{R}^{n}$ be any set. The dimension of C, denoted $\operatorname{dim} C$, is

$$
\min \{\operatorname{dim} A: C \subseteq A\},
$$

where the minimum is taken over all affine spaces A.
Strictly speaking, if $C=\emptyset$ then $\operatorname{dim} C$ is not defined. We will adopt the convention that $\operatorname{dim} C=-1$.
Definition 1.3. Let $C \subseteq \mathbb{R}^{n}$ be any convex set. An inequality $\mathbf{a}^{\top} \mathbf{x} \leq b$ is called a valid inequality if $\mathbf{a}^{\top} \mathbf{x} \leq b$ holds for every point $\mathbf{x} \in C$.
Definition 1.4. Let $P \subseteq \mathbb{R}^{n}$ be a polyhedron. A face of P is any set F of the form

$$
\begin{equation*}
F=P \cap\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{a}^{\top} \mathbf{x}=b\right\} \tag{1.1}
\end{equation*}
$$

where $\mathbf{a}^{\top} \mathbf{x} \leq b$ is a valid inequality for P.
Notice that any face of a polyhedron is itself a polyhedron.
As an example, if we take $\mathbf{a}=\mathbf{0}$ and $b=0$ then this shows that P is itself a face. On the other hand, if we take $\mathbf{a}=\mathbf{0}$ and $b=1$ then this shows that \emptyset is a face.
Definition 1.5. Let P be a polyhedron and let $F \subseteq P$ be a face. Then F is called a d dimensional face or a d-face if $\operatorname{dim} F=d$.

Note that if F consists of a single point \mathbf{v} (i.e., $F=\{\mathbf{v}\}$) then F is a 0 -face. In this case, \mathbf{v} is the unique maximizer of a over P, where \mathbf{a} is the vector in Eq. (1.1), and thus \mathbf{v} is a vertex of P. Recalling our earlier results, we see that for polyhedra, vertices, extreme points, basic feasible solutions, and 1-faces are the same concept.

Definition 1.6. If $\operatorname{dim} P=d$ and $F \subset P$ is a ($d-1$)-face then F is called a facet.
Definition 1.7. A 1-face of a polyhedron is called an edge.

Fact 1.8. Let P be a polytope with $\operatorname{dim} P=d$ and let F be a face of P. Then F is itself a polytope and so it too has faces. The faces of F are precisely the faces of P that are contained in F. Now assume that F is a facet. The facets of F are precisely the $(d-2)$-faces of P that are contained in F. Furthermore, each facet of F can be obtained as the intersection of F and another facet of P.

In much the same way that vertices are equivalent to basic feasible solutions, we can give another characterization of edges.
Fact 1.9. Let $P=\left\{\mathbf{x}: \mathbf{a}_{i}^{\top} \mathbf{x} \leq b_{i} \forall i\right\}$ be a polyhedron in \mathbb{R}^{n}. Let \mathbf{x} and \mathbf{y} be two distinct basic feasible solutions. Recall our notation

$$
\mathcal{I}_{\mathbf{x}}=\left\{i: \mathbf{a}_{i}^{\top} \mathbf{x} \leq b_{i}\right\} .
$$

Suppose that

$$
\operatorname{rank}\left\{\mathbf{a}_{i}: i \in \mathcal{I}_{\mathbf{x}} \cap \mathcal{I}_{\mathbf{y}}\right\}=n-1
$$

Then the line segment

$$
\begin{equation*}
L_{\mathbf{x}, \mathbf{y}}=\{\lambda \mathbf{x}+(1-\lambda) \mathbf{y}: \lambda \in[0,1]\} \tag{1.2}
\end{equation*}
$$

is an edge of P. Moreover, if P is a polytope, then every edge arises in this way.
Definition 1.10. Let $P=\left\{\mathbf{x}: \mathbf{a}_{i}^{\top} \mathbf{x} \leq b_{i} \forall i\right\}$ be a polyhedron in \mathbb{R}^{n}. An inequality $\mathbf{a}_{i}^{\top} \mathbf{x} \leq b_{i}$ is called facet-defining if the face

$$
P \cap\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{a}^{\top} \mathbf{x}=b\right\}
$$

is a facet.
Fact 1.11. Let $P=\left\{\mathbf{x}: \mathbf{a}_{i}^{\top} \mathbf{x} \leq b_{i} \forall i\right\}$ be a polyhedron in \mathbb{R}^{n}. Let

$$
\mathcal{I}=\left\{i: \text { the inequality " } \mathbf{a}_{i}^{\top} \mathbf{x} \leq b_{i} \text { " is facet-defining }\right\} .
$$

Then

$$
P=\left\{\mathbf{x}: \mathbf{a}_{i}^{\top} \mathbf{x} \leq b_{i} \forall i \in \mathcal{I}\right\}
$$

2 Polyhedra and Graphs

Recall from Assignment 2 that every polyhedron has finitely many vertices. Let us now restrict attention to polytopes. By Fact 1.9, every edge of a polytope can be described as the line segment $L_{\mathbf{x}, \mathbf{y}}$ connecting two particular vertices \mathbf{x} and \mathbf{y}. Thus the vertices and edges of polytopes naturally form a graph.

Definition 2.1. Let P be a polytope and let V be the set of its vertices. Define the graph $G(P)=(V, E)$, where

$$
E=\left\{\{u, v\}: L_{u, v} \text { is an edge of } P\right\}
$$

This graph is called the $\mathbf{1}$-skeleton of P.
One may also define $G(P)$ for unbounded polyhedra, but it is slightly messier because not all edges are as in Eq. (1.2); some edges shoot off to infinity. Actually, below we will use $G(P)$ for unbounded polyhedra without rigorously defining it.

For any finite graph $G=(V, E)$, the distance between two vertices $u, v \in V$, denoted dist (u, v), is defined to be the minimum number of edges in any path from u to v. The diameter of G is

$$
\operatorname{diam} G=\max _{u, v \in V} \operatorname{dist}(u, v)
$$

Alternatively, $\operatorname{diam} G$ is the smallest number p such that any two vertices can be connected by a path with p edges.

Let P be a polytope with m facets and $\operatorname{dim} P=n$. We are interested in the quantity $\operatorname{diam} G(P)$. In particular, how large can it be? Define

$$
\Delta(n, m)=\max _{P} \operatorname{diam} G(P),
$$

where the maximum is taken over all n-dimensional polytopes with m facets.
As an example, it is easy to see that $\Delta(2, m)$ is precisely $\lfloor m / 2\rfloor$.
The following notorious conjecture dates back to 1957 .
Conjecture 2.2 (The Hirsch Conjecture). $\Delta(n, m) \leq m-n$.
The following theorem gives (nearly) the best-known progress towards proving the Hirsch conjecture.
Theorem 2.3 (Kalai $1991 \&$ Kalai-Kleitman 1992). $\Delta(n, m) \leq n^{4 \ln m}$.
Before proving this theorem, we must introduce some notation. Consider any n-dimensional polytope P. Let V denote the collection of vertices of P. Let F denote the collection of facets of P.

- For any $v \in V$, let $F(v)$ denote the collection of facets which contain the point v.
- For any two vertices $v, w \in V$, let $\operatorname{dist}(v, w)$ denote the length of the shortest path from v to w in $G(P)$.
- For any vertex v and integer $t \geq 0$, let $B(v, t)=\{w \in V: \operatorname{dist}(v, w) \leq t\}$. This can be thought of as the ball of radius t around vertex v in $G(P)$.
- For any vertex v and integer $t \geq 0$, let $F(v, t)=\bigcup_{w \in B(v, t)} F(w)$. This is the set of all facets that can be "touched" by walking from v at most t steps between the vertices of P.

3 Proof of Kalai-Kleitman

Consider any n-dimensional polytope P whose collection of facets is F and $|F|=m$. The distance between any two vertices x and y in $G(P)$ is denote $\operatorname{dist}_{P}(x, y)$, or simply $\operatorname{dist}(x, y)$. Fix any two vertices u and v of P. Define

$$
\begin{aligned}
k_{u} & =\max \{t:|F(u, t)| \leq m / 2\} \\
k_{v} & =\max \{t:|F(v, t)| \leq m / 2\}
\end{aligned}
$$

By the pigeonhole principle, $F\left(u, k_{u}+1\right) \cap F\left(v, k_{v}+1\right)$ is non-empty. So there exists a facet f and two vertices $u^{\prime}, v^{\prime} \in f$ such that

$$
\begin{align*}
\operatorname{dist}\left(u, u^{\prime}\right) & \leq k_{u}+1 \tag{3.1}\\
\operatorname{dist}\left(v, v^{\prime}\right) & \leq k_{v}+1
\end{align*}
$$

Claim 3.1. $\operatorname{dist}\left(u^{\prime}, v^{\prime}\right) \leq \Delta(n-1, m-1)$.
Proof. By definition, f is an $(n-1)$-dimensional polytope. By Fact 1.8, each facet of f is the intersection of f with some other facet of P. So f has at most $m-1$ facets. Since every vertex (or edge) of f is also a vertex (or edge) of P, any path in $G(f)$ is also a path in $G(P)$. Thus $\operatorname{dist}_{P}\left(u^{\prime}, v^{\prime}\right) \leq \operatorname{dist}_{f}\left(u^{\prime}, v^{\prime}\right) \leq \Delta(n-1, m-1)$.

Claim 3.2. $k_{v} \leq \Delta(n,\lfloor m / 2\rfloor)$.
We prove Claim 3.2 below; this is the heart of the theorem. Claim 3.1 and Claim 3.2 lead to the following recursion.

$$
\begin{aligned}
\operatorname{dist}_{P}(u, v) & \leq \operatorname{dist}_{P}\left(u, u^{\prime}\right)+\operatorname{dist}_{P}\left(u^{\prime}, v^{\prime}\right)+\operatorname{dist}_{P}\left(v^{\prime}, v\right) \\
& \leq\left(k_{u}+1\right)+\Delta(n-1, m-1)+\left(k_{v}+1\right) \\
& \leq \Delta(n-1, m-1)+2 \Delta(n,\lfloor m / 2\rfloor)+2
\end{aligned}
$$

Since u and v are arbitrary, we have

$$
\begin{equation*}
\Delta(n, m) \leq \Delta(n-1, m-1)+2 \Delta(n,\lfloor m / 2\rfloor)+2 . \tag{3.2}
\end{equation*}
$$

The theorem follows by analyzing this recurrence, which we do below.
Proof (of Claim 3.2). Consider any vertex w with $_{\operatorname{dist}}^{P}$ ($\left.v, w\right) \leq k_{v}$. We will obtain a recursive bound on this distance by defining a new polyhedron with fewer facets. Let Q be the polyhedron obtained by deleting all facets in $F \backslash F\left(v, k_{v}\right)$. In other words, let Q be the polyhedron defined by the intersection of all half-spaces induced by the facets in $F\left(v, k_{v}\right)$. By choice of k_{v}, Q has at most $\lfloor m / 2\rfloor$ facets.

The key step of the proof is to prove that

$$
\begin{equation*}
\operatorname{dist}_{Q}(v, w) \geq \operatorname{dist}_{P}(v, w) \tag{3.3}
\end{equation*}
$$

Once this is proven, we have $\operatorname{dist}_{P}(v, w) \leq \operatorname{dist}_{Q}(v, w) \leq \Delta(n,\lfloor m / 2\rfloor)$, by induction, which is the desired inequality.

So suppose to the contrary that $\operatorname{dist}_{Q}(v, w)<\operatorname{dist}_{P}(v, w)$. Consider any shortest path p from v to w in $G(Q)$. Then there must be some edge on path p that is not an edge of P (otherwise path p would be a $v-w$ path in $G(P)$ of length less that $\left.\operatorname{dist}_{P}(v, w)\right)$. Let $L_{\mathbf{x}, \mathbf{y}}$ be the first such edge, i.e., the edge closest to v. Then \mathbf{x} must be a vertex of P (since it is a face of the previous edge). However \mathbf{y} cannot be a vertex of P, otherwise $L_{\mathbf{x}, \mathbf{y}}$ would be an edge of P. In fact, the reason that \mathbf{y} is not a vertex of P is that it is not even feasible. To see this, note that the tight constraints of Q at \mathbf{y} have dimension n, and these are a subset of P 's constraints. So \mathbf{y} has enough tight constraints to be a vertex of P, so only reason it cannot be a vertex is that it is infeasible.

The line segment $L_{\mathbf{x}, \mathbf{y}}$ is feasible for P at \mathbf{x}, but infeasible at \mathbf{y}, so it must intersect one of the facets of P that is not a facet of Q. Call this facet f and this intersection point z, so we have $f \notin F\left(v, k_{v}\right)$. Then z is a vertex of P and $f \in F(z)$. Furthermore, since the portion of path p from v to x is a path in $G(P)$, we have

$$
\operatorname{dist}_{P}(v, z) \leq \operatorname{dist}_{Q}(v, y) \leq \operatorname{dist}_{Q}(v, w)<\operatorname{dist}_{P}(v, w) \leq k_{v}
$$

Thus $z \in B\left(v, k_{v}\right)$ and $f \in F\left(v, k_{v}\right)$, which is a contradiction. Thus Eq. (3.3) holds.
The final step is to analyze the recurrence in Eq. (3.2).

Claim 3.3. $\Delta(n, m) \leq \exp (4 \ln (n) \ln (m))$.
Proof. By induction on m, and also using our earlier observation $\Delta(2, m) \leq\lfloor m / 2\rfloor$. We have:

$$
\begin{aligned}
\Delta(n, m) & \leq \Delta(n-1, m-1)+2 \Delta(n,\lfloor m / 2\rfloor)+2 \\
& \leq \Delta(n-1, m)+2 \Delta(n,\lfloor m / 2\rfloor)+2
\end{aligned}
$$

Let's unroll the recurrence by expanding $\Delta(n-1, m)$.

$$
\leq(\Delta(n-2, m)+2 \Delta(n-1,\lfloor m / 2\rfloor)+2)+2 \Delta(n,\lfloor m / 2\rfloor)+2
$$

Now repeatedly unrolling the recurrence until the dimension becomes 2 , we have

$$
\begin{aligned}
& \leq \Delta(2, m)+2 \sum_{i=3}^{n}(\Delta(i,\lfloor m / 2\rfloor)+1) \\
& \leq m+2 \sum_{i=3}^{n}(e \cdot \Delta(n,\lfloor m / 2\rfloor)) \\
& \leq m+e^{2}(n-2) \Delta(n,\lfloor m / 2\rfloor) \\
& \leq m+e^{2}(n-2) \exp (4 \ln (n) \ln (m / 2))
\end{aligned}
$$

One may check that $m \leq e^{2} \exp (4 \ln (n) \ln (m / 2))$ holds for all $n \geq 2$ and $m \geq 2$.

$$
\begin{aligned}
& \leq e^{2} n \exp (4 \ln (n) \ln (m / 2)) \\
& \leq \exp (4 \ln (n) \ln (m / 2)+\ln (n)+2) \\
& \leq \exp (4 \ln (n)(\ln (m)-1)+\ln (n)+2) \\
& =\exp (4 \ln (n) \ln (m)-3 \ln (n)+2) \\
& \leq \exp (4 \ln (n) \ln (m))
\end{aligned}
$$

This completes the inductive proof.
Claim 3.3 shows that

$$
\Delta(n, m) \leq \exp (4 \ln (n) \ln (m))=n^{4 \ln m}
$$

This proves Theorem 2.3.

