C&O 355 Lecture 16

N. Harvey

Topics

- Review of Fourier-Motzkin Elimination
- Linear Transformations of Polyhedra
- Convex Combinations
- Convex Hulls
- Polytopes & Convex Hulls

Fourier-Motzkin Elimination

Joseph Fourier

Given a polyhedron Q ⊆ ℝⁿ,
 we want to find the set Q' ⊆ ℝⁿ⁻¹ satisfying

 $(\mathbf{x}_{1},\ldots,\mathbf{x}_{n-1}) \in \mathbf{Q'} \quad \Leftrightarrow \quad \exists \mathbf{x}_{n} \text{ s.t. } (\mathbf{x}_{1},\ldots,\mathbf{x}_{n-1},\mathbf{x}_{n}) \in \mathbf{Q}$

- Q' is called the projection of Q onto first n-1 coordinates
- Fourier-Motzkin Elimination constructs Q' by generating (finitely many) constraints from the constraints of Q.
- **Corollary:** Q' is a polyhedron.

Elimination Example

• Project Q onto coordinates {x₁, x₂}...

- Project Q onto coordinates {x₁, x₂}...
- Fourier-Motzkin: Q' is a polyhedron.
- Of course, the ordering of coordinates is irrevelant.

Elimination Example

- Of course, the ordering of coordinates is irrevelant.
- Fourier-Motzkin: Q" is also a polyhedron.
- I can also apply Elimination twice...

• Fourier-Motzkin: Q''' is also a polyhedron.

Projecting a Polyhedron Onto Some of its Coordinates

• Lemma: Given a polyhedron $\mathbf{Q} \subseteq \mathbb{R}^n$.

Let $S=\{s_1,...,s_k\} \subseteq \{1,...,n\}$ be any subset of the coordinates. Let $Q_S = \{(x_{s1},...,x_{sk}) : x \in Q\} \subseteq \mathbb{R}^k$.

In other words, Q_S is projection of Q onto coordinates in S. Then Q_S is a polyhedron.

• Proof:

Direct from Fourier-Motzkin Elimination. Just eliminate all coordinates not in S.

Linear Transformations of Polyhedra

 Lemma: Let P = { x : Ax≤b } ⊆ ℝⁿ be a polyhedron. Let M be any matrix of size p_xn. Let Q = { Mx : x∈P } ⊆ ℝ^p. Then Q is a polyhedron.

Linear Transformations of Polyhedra

 Lemma: Let P = { x : Ax≤b } ⊆ ℝⁿ be a polyhedron. Let M be any matrix of size pxn. Let Q = { Mx : x∈P } ⊆ ℝ^p. Then Q is a polyhedron.

Geometrically obvious, but not easy to prove...

Linear Transformations of Polyhedra

Lemma: Let P = { x : Ax≤b } ⊆ ℝⁿ be a polyhedron.
 Let M be any matrix of size pxn.
 Let Q = { Mx : x∈P } ⊆ ℝ^p. Then Q is a polyhedron.

Geometrically obvious, but not easy to prove...

...unless you know Fourier-Motzkin Elimination!

• Proof:

Let P' = { (x,y) : Mx=y, Ax \leq b } $\subseteq \mathbb{R}^{n+p}$, where x $\in \mathbb{R}^{n}$, y $\in \mathbb{R}^{p}$.

P' is obviously a polyhedron.

Note that Q is projection of P' onto y-coordinates.

By previous lemma, Q is a polyhedron.

Convex Sets

- Let $S \subseteq \mathbb{R}^n$ be any set.
- Recall: S is convex if $\lambda x + (1 \lambda)y \in S \quad \forall x, y \in S \text{ and } \forall \lambda \in [0, 1]$
- **Proposition:** The intersection of any collection of convex sets is itself convex.
- Proof: Exercise.

Convex Combinations

- Let $S \subseteq \mathbb{R}^n$ be any set.
- **Definition:** A convex combination of points in S is any point $p = \sum_{i=1}^{k} \lambda_i s_i$ where k is finite and $s_i \in S \ \forall i, \ \lambda_i \geq 0 \ \forall i, \ \sum_{i=1}^{k} \lambda_i = 1$
- Theorem: (Carathéodory's Theorem) It suffices to take k≤n+1.
- **Proof:** This was Assignment 2, Problem 4.

Convex Combinations

- Theorem: Let S⊆Rⁿ be a convex set.
 Let comb(S) = { p : p is a convex comb. of points in S }.
 Then comb(S) = S.
- **Proof:** $S \subseteq comb(S)$ is trivial.

Convex Combinations

- Theorem: Let S⊆Rⁿ be a convex set.
 Let comb(S) = { p : p is a convex comb. of points in S }.
 Then comb(S) = S.
- **Proof:** We'll show comb(S) \subseteq S. Consider $p = \sum_{i=1}^{k} \lambda_i s_i$. Need to show $p \in$ S. By induction on k. Trivial if k=1 or if λ_k =1. So assume k>1 and λ_k <1. Note: $p = \sum_{i=1}^{k} \lambda_i s_i = (1 - \lambda_k) \left(\sum_{i=1}^{k-1} \frac{\lambda_i}{1 - \lambda_k} s_i \right) + \lambda_k s_k$

Call this point p'

Note $\sum_{i=1}^{k-1} \frac{\lambda_i}{1-\lambda_k} = 1$ so p' is a convex combination of at most k-1 points in S. By induction, p' \in S.

But $p = (1 - \lambda_k)p' + \lambda_k s_k$, so p \in S since S is convex.

- Let $S \subseteq \mathbb{R}^n$ be any set.
- **Definition:** The **convex hull** of S, denoted **conv(S)**, is the intersection of all convex sets containing S.

- Let $S \subseteq \mathbb{R}^n$ be any set.
- **Definition:** The **convex hull** of S, denoted **conv(S)**, is the intersection of all convex sets containing S.

- Let $S \subseteq \mathbb{R}^n$ be any set.
- **Definition:** The **convex hull** of S, denoted **conv(S)**, is the intersection of all convex sets containing S.
- **Claim:** conv(S) is itself convex.
- Proof:

Follows from our earlier proposition "Intersection of convex sets is convex".

- Let $S \subseteq \mathbb{R}^n$ be any set.
- **Definition:** The **convex hull** of S, denoted **conv(S)**, is the intersection of all convex sets containing S.
- Let comb(S) = { p : p is a convex comb. of points in S }.
- Theorem: conv(S)=comb(S).
- **Proof:** We'll show conv(S)⊆comb(S).

Claim: comb(S) is convex.

Proof: Consider $p = \sum_{i=1}^{k} \lambda_i s_i$ and $q = \sum_{j=1}^{\ell} \mu_j t_j$, where $\lambda \ge 0, \ \mu \ge 0, \ \sum_i \lambda_i = 1, \ \sum_j \mu_j = 1, \ s_i \in S, \ t_j \in S$

So p,q \in comb(S). For $\alpha \in$ [0,1], consider

$$\alpha p + (1 - \alpha)q = \sum_{i=1}^{k} \alpha \lambda_i s_i + \sum_{j=1}^{\ell} (1 - \alpha)\mu_j t_j$$

Thus αp + (1- α)q \in comb(S). [

- Let $S \subseteq \mathbb{R}^n$ be any set.
- **Definition:** The **convex hull** of S, denoted **conv(S)**, is the intersection of all convex sets containing S.
- Let comb(S) = { p : p is a convex comb. of points in S }.
- Theorem: conv(S)=comb(S).
- **Proof:** We'll show conv(S)⊆comb(S).

Claim: comb(S) is convex.

Clearly comb(S) contains S.

But conv(S) is the intersection of **all** convex sets containing S, so conv(S) \subseteq comb(S).

- Let $S \subseteq \mathbb{R}^n$ be any set.
- **Definition:** The **convex hull** of S, denoted **conv(S)**, is the intersection of all convex sets containing S.
- Let comb(S) = { p : p is a convex comb. of points in S }.
- Theorem: conv(S)=comb(S).
- **Proof:** Exercise: Show comb(S) \subseteq conv(S).

Convex Hulls of Finite Sets

 Theorem: Let S={s₁,...,s_k}⊂ℝⁿ be a finite set. Then conv(S) is a polyhedron.

Geometrically obvious, but not easy to prove...

Convex Hulls of Finite Sets

- Theorem: Let S={s₁,...,s_k}⊂Rⁿ be a finite set. Then conv(S) is a polyhedron.
 Geometrically obvious, but not easy to prove... ...unless you know Fourier-Motzkin Elimination!
- Proof: Let M be the n_xk matrix where M_i = s_i.
 By our previous theorem,

 $\operatorname{conv}(S) = \{ y : \exists x \text{ s.t. } Mx = y, \sum_{i=1}^{k} x_i = 1, x \ge 0 \}$ But this is a projection of the polyhedron

$$\{ (x,y) : Mx = y, \sum_{i=1}^{k} x_i = 1, x \ge 0 \}$$

By our lemma on projections of polyhedra, conv(S) is also a polyhedron.

- Let $P \subset \mathbb{R}^n$ be a **polytope.** (i.e., a **bounded** polyhedron)
- Is P the convex hull of anything?
- Since P is convex, P = conv(P). Too obvious...
- Maybe P = conv(extreme points of P)?

- Theorem: Let P⊂ℝⁿ be a non-empty polytope.
 Then P = conv(extreme points of P).
- Proof: First we prove conv(extreme points of P) ⊆ P.
 We have:

conv(extreme points of P) \subseteq conv(P) \subseteq P.

Obvious

Our earlier theorem proved comb(P) \subseteq P

- Theorem: Let P⊂ℝⁿ be a non-empty polytope.
 Then P = conv(extreme points of P).
- Proof: Now we prove P ⊆ conv(extreme points of P). Let the extreme points be {v₁,...,v_k}. (Finitely many!) Suppose ∃b ∈ P \ conv(extreme points of P). Then the following system has no solution:

$$\sum_{i=1}^{k} v_i \lambda_i = b$$
$$\sum_{i=1}^{k} \lambda_i = 1$$
$$\lambda_i \ge 0 \ \forall i$$

By Farkas' lemma, $\exists u \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$ s.t.

 $u^{\mathsf{T}}v_i + \alpha \ge 0 \ \forall i$ and $u^{\mathsf{T}}b + \alpha < 0$ So $-u^{\mathsf{T}}b > -u^{\mathsf{T}}v_i$ for every extreme point v_i of P.

- Theorem: Let P⊂ℝⁿ be a non-empty polytope.
 Then P = conv(extreme points of P).
- **Proof:** Now we prove $P \subseteq \text{conv}(\text{ extreme points of } P)$. Let the extreme points be $\{v_1, ..., v_k\}$. (Finitely many!) Suppose $\exists b \in P \setminus \text{conv}(\text{ extreme points of } P)$. Then the following system has no solution:

By Farkas' lemma, $\exists u \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$ s.t.

 $u^{\mathsf{T}}v_i + \alpha \ge 0 \ \forall i$ and $u^{\mathsf{T}}b + \alpha < 0$ So $-u^{\mathsf{T}}b > -u^{\mathsf{T}}v_i$ for every extreme point v_i of P. Consider the LP max { $-u^{\mathsf{T}}x : x \in P$ }. It is not unbounded, since P is bounded. Its optimal value is **not attained at an extreme point**. This is a contradiction.

Generalizations

• Theorem:

Every polytope in \mathbb{R}^n is the convex hull of its extreme points.

- Theorem: [Minkowski 1911]
 Every compact, convex set in Rⁿ is the convex hull of its extreme points.
- Theorem: [Krein & Milman 1940] Every compact convex subset of a locally convex Hausdorff linear space is the closed convex hull of its extreme points.

UNDERGRAD RESEARCH ASSISTANTSHIPS (URAS) FOR SPRING 2010 WITH THE C&O DEPT.

- DURATION: 3-4 months during May August, 2010
- SALARY: Around \$2,500 per month
- ELIGIBILITY: Undergrads in Math or CS, with an A standing
- APPLICATION: To apply, address the following documents to Professor I.P. Goulden:
 - cover letter
 - resume
 - recent grade report
 - names and email addresses of two references
- BY EMAIL: send documents to <u>t3schmid@uwaterloo.ca</u>
- (No need to specify a particular area of interest, specialized background is not needed)

LAST DATE FOR APPLICATIONS: DECEMBER 14, 2009

http://www.math.uwaterloo.ca/CandO Dept/SummerResearch/Summer.shtml

All of this information can be accessed from our homepage