C\&O 355
 Lecture 16

N. Harvey

Topics

- Review of Fourier-Motzkin Elimination
- Linear Transformations of Polyhedra
- Convex Combinations
- Convex Hulls
- Polytopes \& Convex Hulls

Fourier-Motzkin Elimination

- Given a polyhedron $\mathrm{Q} \subseteq \mathbb{R}^{\mathrm{n}}$, we want to find the set $Q^{\prime} \subseteq \mathbb{R}^{n-1}$ satisfying

$$
\left(x_{1}, \ldots, x_{n-1}\right) \in Q^{\prime} \quad \Leftrightarrow \quad \exists x_{n} \text { s.t. }\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \in Q
$$

- Q^{\prime} is called the projection of Q onto first $\mathrm{n}-1$ coordinates
- Fourier-Motzkin Elimination constructs Q' by generating (finitely many) constraints from the constraints of Q .
- Corollary: Q^{\prime} is a polyhedron.

Elimination Example

- Project Q onto coordinates $\left\{x_{1}, x_{2}\right\} \ldots$

Elimination Example

- Project Q onto coordinates $\left\{x_{1}, x_{2}\right\}$...
- Fourier-Motzkin: Q^{\prime} is a polyhedron.
- Of course, the ordering of coordinates is irrevelant.

Elimination Example

- Of course, the ordering of coordinates is irrevelant.
- Fourier-Motzkin: $Q^{\prime \prime}$ is also a polyhedron.
- I can also apply Elimination twice...

Elimination Example

- Fourier-Motzkin: $Q^{\prime \prime \prime}$ is also a polyhedron.

Projecting a Polyhedron Onto Some of its Coordinates

- Lemma: Given a polyhedron $Q \subseteq \mathbb{R}^{n}$.

Let $\mathrm{S}=\left\{\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{k}}\right\} \subseteq\{1, \ldots, \mathrm{n}\}$ be any subset of the coordinates.
Let $Q_{s}=\left\{\left(x_{s 1}, \ldots, x_{s k}\right): x \in Q\right\} \subseteq \mathbb{R}^{k}$.
In other words, Q_{s} is projection of Q onto coordinates in S .
Then Q_{s} is a polyhedron.

- Proof:

Direct from Fourier-Motzkin Elimination. Just eliminate all coordinates not in S.

Linear Transformations of Polyhedra

- Lemma: Let $P=\{x: A x \leq b\} \subseteq \mathbb{R}^{n}$ be a polyhedron. Let M be any matrix of size $p x n$. Let $Q=\{M x: x \in P\} \subseteq \mathbb{R}^{p}$. Then Q is a polyhedron.

Let $\mathrm{M}=$| 1 | 0 | 0 |
| :--- | :--- | :--- |
| -1 | 1 | 0 |
| 0 | 0 | 1 |

Linear Transformations of Polyhedra

- Lemma: Let $P=\{x: A x \leq b\} \subseteq \mathbb{R}^{n}$ be a polyhedron. Let M be any matrix of size $p x n$. Let $Q=\{M x: x \in P\} \subseteq \mathbb{R}^{p}$. Then Q is a polyhedron. Geometrically obvious, but not easy to prove...

Let $M=$| 1 | 0 | 0 |
| :--- | :--- | :--- |
| -1 | 1 | 0 |
| 0 | 0 | 1 |

Linear Transformations of Polyhedra

- Lemma: Let $P=\{x: A x \leq b\} \subseteq \mathbb{R}^{n}$ be a polyhedron.

Let M be any matrix of size $p \times n$.
Let $Q=\{M x: x \in P\} \subseteq \mathbb{R}^{p}$. Then Q is a polyhedron.
Geometrically obvious, but not easy to prove...
...unless you know Fourier-Motzkin Elimination!

- Proof:

Let $P^{\prime}=\{(x, y): M x=y, A x \leq b\} \subseteq \mathbb{R}^{n+p}$, where $x \in \mathbb{R}^{n}, y \in \mathbb{R}^{p}$. P^{\prime} is obviously a polyhedron.

Note that Q is projection of P^{\prime} onto y -coordinates. By previous lemma, Q is a polyhedron.

Convex Sets

- Let $S \subseteq \mathbb{R}^{n}$ be any set.
- Recall: S is convex if
$\lambda x+(1-\lambda) y \in S \quad \forall x, y \in S$ and $\forall \lambda \in[0,1]$
- Proposition: The intersection of any collection of convex sets is itself convex.
- Proof: Exercise.

Convex Combinations

- Let $S \subseteq \mathbb{R}^{n}$ be any set.
- Definition: A convex combination of points in S is any point $p=\sum_{i=1}^{k} \lambda_{i} s_{i}$
where k is finite and $s_{i} \in S \forall i, \lambda_{i} \geq 0 \forall i, \quad \sum_{i=1}^{k} \lambda_{i}=1$
- Theorem: (Carathéodory's Theorem) It suffices to take $k \leq n+1$.
- Proof: This was Assignment 2, Problem 4.

Convex Combinations

- Theorem: Let $S \subseteq \mathbb{R}^{n}$ be a convex set.

Let comb(S) = $\{p: p$ is a convex comb. of points in $S\}$. Then comb(S) = S.

- Proof: $\mathrm{S} \subseteq$ comb(S) is trivial.

Convex Combinations

- Theorem: Let $S \subseteq \mathbb{R}^{n}$ be a convex set.

Let comb(S) $=\{p: p$ is a convex comb. of points in $S\}$. Then comb(S) = S.

- Proof: We'll show comb(S) \subseteq S.

Consider $p=\sum_{i=1}^{k} \lambda_{i} s_{i}$. Need to show $\mathrm{p} \in \mathrm{S}$.
By induction on k. Trivial if $\mathrm{k}=1$ or if $\lambda_{k}=1$.
So assume $\mathrm{k}>1$ and $\lambda_{k}<1$.
Note: $p=\sum_{i=1}^{k} \lambda_{i} s_{i}=\left(1-\lambda_{k}\right)(\underbrace{\sum_{i=1}^{k-1} \frac{\lambda_{i}}{1-\lambda_{k}} s_{i}}_{\text {Call this point } \mathrm{p}^{\prime}})+\lambda_{k} s_{k}$
Note $\sum_{i=1}^{k-1} \frac{\lambda_{i}}{1-\lambda_{k}}=1$ so p^{\prime} is a convex combination of at most $\mathrm{k}-1$ points in S . By induction, $\mathrm{p}^{\prime} \in \mathrm{S}$.
But $p=\left(1-\lambda_{k}\right) p^{\prime}+\lambda_{k} s_{k}$, so $\mathbf{p} \in \mathbf{S}$ since \mathbf{S} is convex.

Convex Hulls

- Let $S \subseteq \mathbb{R}^{n}$ be any set.
- Definition: The convex hull of S, denoted conv(S), is the intersection of all convex sets containing S.

Convex Hulls

- Let $S \subseteq \mathbb{R}^{n}$ be any set.
- Definition: The convex hull of S, denoted conv(S), is the intersection of all convex sets containing S.

Convex Hulls

- Let $S \subseteq \mathbb{R}^{n}$ be any set.
- Definition: The convex hull of S, denoted conv(S), is the intersection of all convex sets containing S.
- Claim: conv(S) is itself convex.
- Proof:

Follows from our earlier proposition "Intersection of convex sets is convex".

Convex Hulls

- Let $S \subseteq \mathbb{R}^{n}$ be any set.
- Definition: The convex hull of S, denoted conv(S), is the intersection of all convex sets containing S.
- Let comb $(S)=\{p: p$ is a convex comb. of points in $S\}$.
- Theorem: $\operatorname{conv}(\mathrm{S})=c o m b(S)$.
- Proof: We'll show conv $(\mathrm{S}) \subseteq \operatorname{comb}(\mathrm{S})$.

Claim: comb(S) is convex.
Proof: Consider $p=\sum_{i=1}^{k} \lambda_{i} s_{i}$ and $q=\sum_{j=1}^{\ell} \mu_{j} t_{j}$, where $\lambda \geq 0, \mu \geq 0, \sum_{i} \lambda_{i}=1, \sum_{j} \mu_{j}=1, s_{i} \in S, t_{j} \in S$ So $\mathrm{p}, \mathrm{q} \in \operatorname{comb}(\mathrm{S})$. For $\alpha \in[0,1]$, consider

$$
\alpha p+(1-\alpha) q=\sum_{i=1}^{k} \alpha \lambda_{i} s_{i}+\sum_{j=1}^{\ell}(1-\alpha) \mu_{j} t_{j}
$$

Thus $\alpha \mathrm{p}+(1-\alpha) \mathrm{q} \in \operatorname{comb}(\mathrm{S})$.

Convex Hulls

- Let $S \subseteq \mathbb{R}^{n}$ be any set.
- Definition: The convex hull of S, denoted conv(S), is the intersection of all convex sets containing S.
- Let comb(S) = \{p:p is a convex comb. of points in $S\}$.
- Theorem: $\operatorname{conv}(\mathrm{S})=c o m b(S)$.
- Proof: We'll show conv $(S) \subseteq \operatorname{comb}(S)$.

Claim: comb(S) is convex.
Clearly comb(S) contains S.
But conv(S) is the intersection of all convex sets containing S, so conv(S) $\subseteq \operatorname{comb}(\mathrm{S})$.

Convex Hulls

- Let $S \subseteq \mathbb{R}^{n}$ be any set.
- Definition: The convex hull of S, denoted conv(S), is the intersection of all convex sets containing S.
- Let comb(S) = \{p:p is a convex comb. of points in $S\}$.
- Theorem: conv(S)=comb(S).
- Proof: Exercise: Show comb(S) $\subseteq c o n v(S)$.

Convex Hulls of Finite Sets

- Theorem: Let $\mathrm{S}=\left\{\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{k}}\right\} \subset \mathbb{R}^{\mathrm{n}}$ be a finite set.

Then $\operatorname{conv}(\mathrm{S})$ is a polyhedron.
Geometrically obvious, but not easy to prove...

Convex Hulls of Finite Sets

- Theorem: Let $S=\left\{s_{1}, \ldots, S_{k}\right\} \subset \mathbb{R}^{n}$ be a finite set.

Then $\operatorname{conv}(\mathrm{S})$ is a polyhedron.
Geometrically obvious, but not easy to prove... ...unless you know Fourier-Motzkin Elimination!

- Proof: Let M be the $n \times k$ matrix where $M_{i}=s_{i}$.

By our previous theorem,
$\operatorname{conv}(S)=\left\{y: \exists x\right.$ s.t. $\left.M x=y, \sum_{i=1}^{k} x_{i}=1, x \geq 0\right\}$
But this is a projection of the polyhedron

$$
\left\{(x, y): M x=y, \sum_{i=1}^{k} x_{i}=1, x \geq 0\right\}
$$

By our lemma on projections of polyhedra, $\operatorname{conv}(\mathrm{S})$ is also a polyhedron.

Polytopes \& Convex Hulls

- Let $P \subset \mathbb{R}^{n}$ be a polytope.
(i.e., a bounded polyhedron)
- Is P the convex hull of anything?
- Since P is convex, $P=\operatorname{conv}(P)$. Too obvious...
- Maybe $P=\operatorname{conv}($ extreme points of $P)$?

Polytopes \& Convex Hulls

- Theorem: Let $P \subset \mathbb{R}^{n}$ be a non-empty polytope. Then $P=\operatorname{conv}($ extreme points of $P)$.
- Proof: First we prove conv(extreme points of $P) \subseteq P$. We have:
$\operatorname{conv}($ extreme points of $P) \underset{\uparrow}{\subseteq} \operatorname{conv}(P) \underset{\uparrow}{\subseteq} P$.
Obvious
Our earlier theorem proved comb $(P) \subseteq P$

Polytopes \& Convex Hulls

- Theorem: Let $\mathrm{P} \subset \mathbb{R}^{\mathrm{n}}$ be a non-empty polytope.

Then $P=\operatorname{conv}($ extreme points of P).

- Proof: Now we prove $P \subseteq \operatorname{conv(~extreme~points~of~} P$).

Let the extreme points be $\left\{v_{1}, \ldots, v_{k}\right\}$.
(Finitely many!)
Suppose $\exists b \in P \backslash \operatorname{conv}$ (extreme points of P).
Then the following system has no solution:

$$
\begin{aligned}
\sum_{i=1}^{k} v_{i} \lambda_{i} & =b \\
\sum_{i=1}^{k} \lambda_{i} & =1 \\
\lambda_{i} & \geq 0 \forall i
\end{aligned}
$$

By Farkas' lemma, $\exists \mathbf{u} \in \mathbb{R}^{\mathrm{n}}$ and $\alpha \in \mathbb{R}$ s.t.

$$
u^{\top} v_{i}+\alpha \geq 0 \forall i \quad \text { and } \quad u^{\top} b+\alpha<0
$$

So $-u^{\top} b>-u^{\top} v_{i}$ for every extreme point v_{i} of P.

Polytopes \& Convex Hulls

- Theorem: Let $P \subset \mathbb{R}^{n}$ be a non-empty polytope.

Then $P=\operatorname{conv}($ extreme points of P).

- Proof: Now we prove $P \subseteq \operatorname{conv(~extreme~points~of~} P$).

Let the extreme points be $\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{k}\right\}$.
(Finitely many!)
Suppose $\exists b \in P \backslash \operatorname{conv}$ (extreme points of P).
Then the following system has no solution:

By Farkas' lemma, $\exists \mathbf{u} \in \mathbb{R}^{\mathrm{n}}$ and $\alpha \in \mathbb{R}$ s.t.

$$
u^{\top} v_{i}+\alpha \geq 0 \forall i \quad \text { and } \quad u^{\top} b+\alpha<0
$$

So $-u^{\top} b>-u^{\top} v_{i}$ for every extreme point v_{i} of P.
Consider the LP max $\left\{-u^{\top} x: x \in P\right\}$.
It is not unbounded, since P is bounded.
Its optimal value is not attained at an extreme point.
This is a contradiction.

Generalizations

- Theorem:

Every polytope in \mathbb{R}^{n} is the convex hull of its extreme points.

- Theorem: [Minkowski 1911]

Every compact, convex set in \mathbb{R}^{n} is the convex hull of its extreme points.

- Theorem: [Krein \& Milman 1940] Every compact convex subset of a locally convex Hausdorff linear space is the closed convex hull of its extreme points.

Undergrad Research Assistantships (URAs) for Spring 2010 with the C\&O Dept.

