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Topics

• Review of Fourier-Motzkin Elimination

• Linear Transformations of Polyhedra

• Convex Combinations

• Convex Hulls

• Polytopes & Convex Hulls



Fourier-Motzkin Elimination

Joseph Fourier Theodore Motzkin

• Given a polyhedron Q µ Rn,
we want to find the set Q’ µ Rn-1 satisfying

(x1,,xn-1)2Q’ , 9xn s.t. (x1,,xn-1,xn)2Q

• Q’ is called the projection of Q onto first n-1 coordinates

• Fourier-Motzkin Elimination constructs Q’ by generating
(finitely many) constraints from the constraints of Q.

• Corollary: Q’ is a polyhedron.

http://www.gap-system.org/~history/Biographies/Fourier.html
http://www.gap-system.org/~history/Biographies/Motzkin.html
http://www.gap-system.org/~history/Biographies/Motzkin.html


Elimination Example
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• Project Q onto coordinates {x1, x2}...
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Elimination Example
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Q’

• Project Q onto coordinates {x1, x2}...

• Fourier-Motzkin: Q’ is a polyhedron.

• Of course, the ordering of coordinates is irrevelant.



Elimination Example
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Q’’

• Of course, the ordering of coordinates is irrevelant.

• Fourier-Motzkin: Q’’ is also a polyhedron.

• I can also apply Elimination twice…



Elimination Example
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• Fourier-Motzkin: Q’’’ is also a polyhedron.



Projecting a Polyhedron
Onto Some of its Coordinates

• Lemma: Given a polyhedron Q µ Rn.

Let S={s1,…,sk}µ{1,…,n} be any subset of the coordinates.
Let QS = { (xs1,,xsk) : x2Q } µ Rk.

In other words, QS is projection of Q onto coordinates in S.

Then QS is a polyhedron.

• Proof:
Direct from Fourier-Motzkin Elimination.
Just eliminate all coordinates not in S. ¥



Linear Transformations of Polyhedra
• Lemma: Let P = { x : Ax·b } µ Rn be a polyhedron.

Let M be any matrix of size pxn.
Let Q = { Mx : x2P } µ Rp. Then Q is a polyhedron.
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1 0 0

-1 1 0

0 0 1
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Linear Transformations of Polyhedra
• Lemma: Let P = { x : Ax·b } µ Rn be a polyhedron.

Let M be any matrix of size pxn.
Let Q = { Mx : x2P } µ Rp. Then Q is a polyhedron.

Geometrically obvious, but not easy to prove…
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Linear Transformations of Polyhedra
• Lemma: Let P = { x : Ax·b } µ Rn be a polyhedron.

Let M be any matrix of size pxn.
Let Q = { Mx : x2P } µ Rp. Then Q is a polyhedron.

Geometrically obvious, but not easy to prove…

…unless you know Fourier-Motzkin Elimination!

• Proof:

Let P’ = { (x,y) : Mx=y, Ax·b } µ Rn+p, where x2Rn, y2Rp.

P’ is obviously a polyhedron.

Note that Q is projection of P’ onto y-coordinates.

By previous lemma, Q is a polyhedron. ¥



Convex Sets
• Let SµRn be any set.

• Recall: S is convex if

• Proposition: The intersection of any collection 
of convex sets is itself convex.

• Proof: Exercise.



Convex Combinations

• Let SµRn be any set.

• Definition: A convex combination of points in 
S is any point 
where k is finite and 

• Theorem: (Carathéodory’s Theorem)
It suffices to take k·n+1.

• Proof: This was Assignment 2, Problem 4.



Convex Combinations
• Theorem: Let SµRn be a convex set.

Let comb(S) = { p : p is a convex comb. of points in S }.
Then comb(S) = S.

• Proof:  S µ comb(S) is trivial.



Convex Combinations
• Theorem: Let SµRn be a convex set.

Let comb(S) = { p : p is a convex comb. of points in S }.
Then comb(S) = S.

• Proof: We’ll show comb(S) µ S.

Consider                           .. Need to show p2S.

By induction on k. Trivial if k=1 or if ¸k=1.

So assume k>1 and ¸k<1.

Note: 

Note                               so p’ is a convex combination of
at most k-1 points in S. By induction, p’2S.

But                                           , so p2S since S is convex.   ¥

Call this point p’



• Let SµRn be any set.

• Definition: The convex hull of S, denoted conv(S),
is the intersection of all convex sets containing S.

Convex Hulls



• Let SµRn be any set.

• Definition: The convex hull of S, denoted conv(S),
is the intersection of all convex sets containing S.

Convex Hulls



• Let SµRn be any set.

• Definition: The convex hull of S, denoted conv(S),
is the intersection of all convex sets containing S.

• Claim: conv(S) is itself convex.

• Proof:

Follows from our earlier proposition

“Intersection of convex sets is convex”. ¥

Convex Hulls



Convex Hulls
• Let SµRn be any set.

• Definition: The convex hull of S, denoted conv(S),
is the intersection of all convex sets containing S.

• Let comb(S) = { p : p is a convex comb. of points in S }.

• Theorem: conv(S)=comb(S).

• Proof: We’ll show conv(S)µcomb(S).

Claim: comb(S) is convex.

Proof: Consider                              and                              , 
where 

So p,q2comb(S). For ®2[0,1], consider

Thus ®p + (1-®)q 2 comb(S). ¤



Convex Hulls
• Let SµRn be any set.

• Definition: The convex hull of S, denoted conv(S),
is the intersection of all convex sets containing S.

• Let comb(S) = { p : p is a convex comb. of points in S }.

• Theorem: conv(S)=comb(S).

• Proof: We’ll show conv(S)µcomb(S).

Claim: comb(S) is convex.

Clearly comb(S) contains S.

But conv(S) is the intersection of all convex sets 
containing S, so conv(S)µcomb(S). ¥



Convex Hulls
• Let SµRn be any set.

• Definition: The convex hull of S, denoted conv(S),
is the intersection of all convex sets containing S.

• Let comb(S) = { p : p is a convex comb. of points in S }.

• Theorem: conv(S)=comb(S).

• Proof: Exercise: Show comb(S)µconv(S).



Convex Hulls of Finite Sets
• Theorem: Let S={s1,…,sk}½R

n be a finite set.

Then conv(S) is a polyhedron.

Geometrically obvious, but not easy to prove…



Convex Hulls of Finite Sets
• Theorem: Let S={s1,…,sk}½R

n be a finite set.

Then conv(S) is a polyhedron.

Geometrically obvious, but not easy to prove…

…unless you know Fourier-Motzkin Elimination!

• Proof: Let M be the nxk matrix where Mi = si.

By our previous theorem,

But this is a projection of the polyhedron

By our lemma on projections of polyhedra,
conv(S) is also a polyhedron. ¥



Polytopes & Convex Hulls
• Let P½Rn be a polytope. (i.e., a bounded polyhedron)

• Is P the convex hull of anything?

• Since P is convex, P = conv(P).  Too obvious…

• Maybe P = conv( extreme points of P )?



Polytopes & Convex Hulls
• Theorem: Let P½Rn be a non-empty polytope.

Then P = conv( extreme points of P ).

• Proof: First we prove conv( extreme points of P ) µ P.

We have:
conv( extreme points of P ) µ conv( P ) µ P.

Our earlier theorem
proved comb(P) µ P

Obvious



Polytopes & Convex Hulls
• Theorem: Let P½Rn be a non-empty polytope.

Then P = conv( extreme points of P ).
• Proof: Now we prove P µ conv( extreme points of P ).

Let the extreme points be {v1,…,vk}. (Finitely many!)

Suppose 9b 2 P n conv( extreme points of P ).
Then the following system has no solution:

By Farkas’ lemma, 9u2Rn and ®2R s.t.
and

So -uTb > -uTvi for every extreme point vi of P.



Polytopes & Convex Hulls
• Theorem: Let P½Rn be a non-empty polytope.

Then P = conv( extreme points of P ).
• Proof: Now we prove P µ conv( extreme points of P ).

Let the extreme points be {v1,…,vk}. (Finitely many!)

Suppose 9b 2 P n conv( extreme points of P ).
Then the following system has no solution:

…
By Farkas’ lemma, 9u2Rn and ®2R s.t.

and
So -uTb > -uTvi for every extreme point vi of P.
Consider the LP max { -uTx : x2P }. 
It is not unbounded, since P is bounded.
Its optimal value is not attained at an extreme point.
This is a contradiction. ¥



Generalizations
• Theorem:

Every polytope in Rn is the convex hull
of its extreme points.

• Theorem: [Minkowski 1911]
Every compact, convex set in Rn is the convex 
hull of its extreme points.

• Theorem: [Krein & Milman 1940]
Every compact convex subset of a locally 
convex Hausdorff linear space is the closed 
convex hull of its extreme points.



UNDERGRAD RESEARCH ASSISTANTSHIPS (URAS) 

FOR SPRING 2010 WITH THE C&O DEPT.

DURATION: 3-4 months during May - August, 2010

SALARY: Around $2,500 per month

ELIGIBILITY: Undergrads in Math or CS, with an A standing

APPLICATION: To apply, address the following documents to Professor I.P. Goulden:

- cover letter

- resume

- recent grade report

- names and email addresses of two references

BY EMAIL:  send documents to t3schmid@uwaterloo.ca

(No need to specify a particular area of interest, specialized background is not needed)

LAST DATE FOR APPLICATIONS: DECEMBER 14, 2009

http://www.math.uwaterloo.ca/CandO_Dept/SummerResearch/Summer.shtml

All of this information can be accessed from our homepage

mailto:t3schmid@uwaterloo.ca
http://www.math.uwaterloo.ca/CandO_Dept/SummerResearch/Summer.shtml

