C\&O 355
 Lecture 15

N. Harvey

Topics

- Subgradient Inequality
- Characterizations of Convex Functions
- Convex Minimization over a Polyhedron
- (Mini)-KKT Theorem
- Smallest Enclosing Ball Problem

Subgradient Inequality

- Prop: Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable.

Then f is convex iff

$$
f(y) \geq f(x)+f^{\prime}(x)(y-x) \quad \forall x, y \in \mathbb{R}
$$

- Proof:
\Leftarrow : See Notes Section 3.2.
\Rightarrow : Exercise for Assignment 4. \square

Convexity and Second Derivative

- Prop: Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is twice-differentiable. Then f is convex iff $f^{\prime \prime}(x) \geq 0 \forall x \in \mathbb{R}$.
- Proof: See Notes Section 3.2.

Subgradient Inequality in \mathbb{R}^{n}

- Prop: Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable.

Then f is convex iff

$$
f(y) \geq f(x)+\nabla f(x)^{\top}(y-x) \quad \forall x, y \in \mathbb{R}
$$

- Proof:
\Leftarrow : Exercise for Assignment 4.
\Rightarrow : See Notes Section 3.2. \square

Minimizing over a Convex Set

- Prop: Let $C \subseteq \mathbb{R}^{n}$ be a convex set.

Let $\mathrm{f}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}$ be convex and differentiable.
Then x minimizes f over C iff $\nabla f(x)^{\top}(z-x) \geq 0 \forall z \in C$.

- Proof: \Leftarrow direction

Direct from subgradient inequality.

Subgradient inequality
Our hypothesis

Minimizing over a Convex Set

- Prop: Let $C \subseteq \mathbb{R}^{n}$ be a convex set.

Let $f: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}$ be convex and differentiable.
Then x minimizes f over C iff $\nabla f(x)^{\top}(z-x) \geq 0 \forall z \in C$.

- Proof: \Rightarrow direction

Let x be a minimizer, let $z \in C$ and let $y=z-x$.
Recall that $\nabla f(x)^{\top} y=f^{\prime}(x ; y)=\lim _{t \rightarrow 0} \frac{f(x+t y)-f(x)}{t}$.
If limit is negative then we have $f(x+t y)<f(x)$ for some $t \in[0,1]$, contradicting that x is a minimizer. So the limit is non-negative, and $\nabla f(x)^{\top} y \geq 0$.

Positive Semidefinite Matrices (again)

- Assume M is symmetric
- Old definition: M is PSD if $\exists \mathrm{V}$ s.t. $\mathrm{M}=\mathrm{V}^{\top} \mathrm{V}$.
- New definition: M is PSD if $\mathrm{y}^{\top} \mathrm{My} \geq 0 \forall \mathrm{y} \in \mathbb{R}^{\mathrm{n}}$.
- Claim: Old \Rightarrow New.
- Proof: $y^{\top} M y=y^{\top} V^{\top} V y=\|V y\|^{2} \geq 0$.
- Claim: New \Rightarrow Old.
- Proof: Based on spectral decomposition of M.

Convexity and Hessian

- Prop: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{2}-function. Let $H(x)$ denote the Hessian of f at point x. Then f is convex iff $H(x)$ is PSD $\forall x \in \mathbb{R}^{n}$.
- Proof: \Rightarrow direction

Fix $y \in \mathbb{R}^{n}$. Consider function $g_{y}(\alpha)=f(x+\alpha y)$.
Convexity of g_{y} follows from convexity of f.
Thus $\mathrm{g}_{\mathrm{y}}{ }^{\prime \prime}(0) \geq 0$.
(convexity \& $2^{\text {nd }}$ derivative)
Fact: $\mathrm{g}_{\mathrm{y}}{ }^{\prime \prime}(0)=\mathrm{y}^{\top} \mathrm{H}(\mathrm{x}) \mathrm{y}$
(stated in Lecture 14)
So $y^{\top} H(x) y \geq 0 \forall y \in \mathbb{R}^{n} \Rightarrow H(x)$ is PSD.

Convexity and Hessian

- Prop: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{2}-function.

Let $H(x)$ denote the Hessian of f at point x.
Then f is convex iff $H(x)$ is PSD $\forall x \in \mathbb{R}^{n}$.

- Proof: \Leftarrow direction. Fix $x, y \in \mathbb{R}^{n}$.

Define $\mathrm{g}:[0,1] \rightarrow \mathbb{R}$ by $\mathrm{g}(\alpha)=\mathrm{f}(\mathrm{x}+\alpha(\mathrm{y}-\mathrm{x}))$.
For all $\alpha, \mathrm{g}^{\prime \prime}(\alpha)=(\mathrm{y}-\mathrm{x})^{\top} \mathrm{H}(\mathrm{x}+\alpha(\mathrm{y}-\mathrm{x}))(\mathrm{y}-\mathrm{x}) \geq 0$.
(The equality was stated in Lecture 14. The inequality holds since H is PSD.)
So g is convex. (By Prop "Convexity and Second Derivative")

$$
\begin{aligned}
\mathrm{f}((1-\alpha) \mathrm{x}+\alpha \mathrm{y})=\mathrm{g}(\alpha) & \leq(1-\alpha) \mathrm{g}(0)+\alpha \mathrm{g}(1) \\
& =(1-\alpha) \mathrm{f}(\mathrm{x})+\alpha \mathrm{f}(\mathrm{y}) .
\end{aligned}
$$

Hessian Example

- Example:

Let M be a symmetric $n \times n$ matrix. Let $z \in \mathbb{R}^{n}$.
Define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f(x)=x^{\top} M x-x^{\top} z$.
Note $\mathrm{f}(\mathrm{x})=\Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} \mathrm{M}_{\mathrm{i}, \mathrm{j}} \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}}-\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}$.
Taking partial derivatives $\nabla f(x)_{i}=2 \sum_{j} M_{i, j} x_{j}-z_{i}$.
So $\nabla \mathrm{f}(\mathrm{x})=2 \mathrm{Mx}-\mathrm{z}$.
Recall the Hessian at x is $H(x)=\nabla(\nabla f(x))$.
So $H(x)=2 M$.

Smallest Ball Problem

- Let $\left\{p_{1}, \ldots, p_{n}\right\}$ be points in \mathbb{R}^{d}.

Find (unique!) ball of smallest volume (not an ellipsoid!) that contains all the p_{i} 's.

- In other words, we want to solve: $\min \left\{r: \exists y \in \mathbb{R}^{d}\right.$ s.t. $\left.p_{i} \in B(y, r) \forall i\right\}$

Smallest Ball Problem

- Let $\left\{p_{1}, \ldots, p_{n}\right\}$ be points in \mathbb{R}^{d}.

Find (unique!) ball of smallest volume (not an ellipsoid!) that contains all the p_{i} 's.

- In other words, we want to solve: $\min \left\{r: \exists y \in \mathbb{R}^{d}\right.$ s.t. $\left.p_{i} \in B(y, r) \forall i\right\}$
- We will formulate this as a convex program.
- In fact, our convex program will be of the form $\min \{f(x): A x=b, x \geq 0\}$, where f is convex. Minimizing a convex function over an (equality form) polyhedron
- To solve this, we will need optimality conditions for convex programs.

(Mini)-KKT Theorem

Theorem: Let $\mathrm{f}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}$ be a convex, C^{2} function.
Let $x \in \mathbb{R}^{n}$ be a feasible solution to the convex program

$$
\min \{f(x): A x=b, x \geq 0\}
$$

Then x is optimal iff $\exists y \in \mathbb{R}^{m}$ s.t.

1) $\nabla f(x)^{\top}+y^{\top} A \geq 0$,
2) For all j, if $x_{j}>0$ then $\nabla f(x)_{j}+y^{\top} A_{j}=0$.
$\mathrm{j}^{\text {th }}$ column of A

- Proven by Karush in 1939 (his Master's thesis!), and by Kuhn and Tucker in 1951.

(Mini)-KKT Theorem

Theorem: Let $\mathrm{f}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}$ be a convex, C^{2} function.
Let $x \in \mathbb{R}^{n}$ be a feasible solution to the convex program $\min \{f(x): A x=b, x \geq 0\}$
Then x is optimal iff $\exists y \in \mathbb{R}^{m}$ s.t.

1) $\nabla f(x)^{\top}+y^{\top} A \geq 0$,
2) For all j, if $x_{j}>0$ then $\nabla f(x)_{j}+y^{\top} A_{j}=0$.

Special Case: (Strong LP Duality)
Let $f(x)=-c^{\top} x$. (So the convex program is $\max \left\{c^{\top} x: A x=b, x \geq 0\right\}$) Then x is optimal iff $\exists y \in \mathbb{R}^{m}$ s.t.

1) $-c^{\top}+y^{\top} A \geq 0$,
2) For all j, if $x_{j}>0$ then $-c_{j}+y^{\top} A_{j}=0$.
y is feasible for Dual LP
Complementary Slackness holds

Theorem: Let $\mathrm{f}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}$ be a convex, C^{2} function.
Let $x \in \mathbb{R}^{n}$ be a feasible solution to the convex program

$$
\min \{f(x): A x=b, x \geq 0\}
$$

Then x is optimal iff $\exists y \in \mathbb{R}^{m}$ s.t.

1) $\nabla f(x)^{\top}+y^{\top} A \geq 0$,
2) For all j, if $x_{j}>0$ then $\nabla f(x)_{j}+y^{\top} A_{j}=0$.

Proof: \Leftarrow direction. Suppose such a y exists. Then

$$
\left(\nabla f(x)^{\top}+y^{\top} A\right) x=0 .
$$

(Just like complementary slackness)
For any feasible $z \in \mathbb{R}^{n}$, we have

$$
\left(\nabla f(x)^{\top}+y^{\top} A\right) z \geq 0
$$

Subtracting these, and using $A x=A z=b$, we get
$\nabla f(x)^{\top}(z-x) \geq 0 \quad \forall$ feasible z.
So x is optimal. (By earlier proposition "Minimizing over a Convex Set")

Theorem: Let $\mathrm{f}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}$ be a convex, C^{2} function.
Let $x \in \mathbb{R}^{n}$ be a feasible solution to the convex program

$$
\min \{f(x): A x=b, x \geq 0\}
$$

Then x is optimal iff $\exists y \in \mathbb{R}^{m}$ s.t.

1) $\nabla f(x)^{\top}+y^{\top} A \geq 0$,
2) For all j, if $x_{j}>0$ then $\nabla f(x)_{j}+y^{\top} A_{j}=0$.

Proof: \Rightarrow direction. Suppose x is optimal. Let $c=-\nabla f(x)$.
Then $\nabla f(x)^{\top}(z-x) \geq 0 \Rightarrow c^{\top} z \leq c^{\top} x$ for all feasible points z. By our earlier proposition "Minimizing over a Convex Set"

Theorem: Let $\mathrm{f}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}$ be a convex, C^{2} function.
Let $x \in \mathbb{R}^{n}$ be a feasible solution to the convex program

$$
\min \{f(x): A x=b, x \geq 0\}
$$

Then x is optimal iff $\exists y \in \mathbb{R}^{m}$ s.t.

1) $\nabla f(x)^{\top}+y^{\top} A \geq 0$,
2) For all j, if $x_{j}>0$ then $\nabla f(x)_{j}+y^{\top} A_{j}=0$.

Proof: \Rightarrow direction. Suppose x is optimal. Let $c=-\nabla f(x)$.
Then $\nabla f(x)^{\top}(z-x) \geq 0 \Rightarrow c^{\top} z \leq c^{\top} x$ for all feasible points z. So x is optimal for the LP max $\left\{c^{\top} x: A x=b, x \geq 0\right\}$. So there is an optimal solution y to dual $L P \min \left\{b^{\top} y: A^{\top} y \geq c\right\}$. So $\nabla f(x)^{\top}+y^{\top} A=-c^{\top}+y^{\top} A \geq 0 \Rightarrow$ (1) holds.

Furthermore, x and y are both optimal so C.S. holds. \Rightarrow whenever $\mathrm{x}_{\mathrm{j}}>0$, the $\mathrm{j}^{\text {th }}$ dual constraint is tight

$$
\Rightarrow y^{\top} A_{j}=c_{j} \quad \Rightarrow \quad \text { (2) holds. }
$$

Smallest Ball Problem

- Let $P=\left\{p_{1}, \ldots, p_{n}\right\}$ be points in \mathbb{R}^{d}.

Let Q be $d x n$ matrix s.t. $Q_{i}=p_{i}$.
Let $z \in \mathbb{R}^{n}$ satisfy $z_{i}=p_{i}^{\top} p_{i}$.
Define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f(x)=x^{\top} Q^{\top} Q x-x^{\top} z$.

- Claim 1: f is convex.
- Consider the convex program

$$
\min \left\{f(x): \sum_{j} x_{j}=1, x \geq 0\right\}
$$

- Claim 2: This program has an optimal solution x.
- Claim 3: Let $p^{*}=Q x$ and $r=\sqrt{-f(x)}$. Then $P \subset B\left(p^{*}, r\right)$.
- Claim 4: $B\left(p^{*}, r\right)$ is the smallest ball containing P.
- Let $P=\left\{p_{1}, \ldots, p_{n}\right\}$ be points in \mathbb{R}^{d}.

Let Q be $d x n$ matrix s.t. $Q_{i}=p_{i}$.
Let $z \in \mathbb{R}^{n}$ satisfy $z_{i}=p_{i}{ }^{\top} p_{i}$.
Define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f(x)=x^{\top} Q^{\top} Q x-x^{\top} z$.

- Claim 1: f is convex.
- Proof:

By our earlier example, the Hessian of f at x is $H(x)=2 \cdot Q^{\top} Q$.
This is positive semi-definite.
By our proposition "Convexity and Hessian", f is convex.

- Let $P=\left\{p_{1}, \ldots, p_{n}\right\}$ be points in \mathbb{R}^{d}.

Let Q be $d x n$ matrix s.t. $Q_{i}=p_{i}$. Let $z \in \mathbb{R}^{n}$ satisfy $z_{i}=p_{i}^{\top} p_{i}$.
Define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f(x)=x^{\top} Q^{\top} Q x-x^{\top} z$.

- Consider the convex program

$$
\min \left\{f(x): \sum_{j} x_{j}=1, x \geq 0\right\}
$$

- Claim 2: This program has an optimal solution.
- Proof:

The objective function is continuous.
The feasible region is a bounded polyhedron, and hence compact.
By Weierstrass' Theorem, an optimal solution exists.

- Let Q be $d x n$ matrix s.t. $Q_{i}=p_{i}$. Let $z \in \mathbb{R}^{n}$ satisfy $z_{i}=p_{i}{ }^{\top} p_{i}$.
Define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f(x)=x^{\top} Q^{\top} Q x-x^{\top} z$.
- Let x be an optimal solution of $\min \left\{f(x): \sum_{j} x_{j}=1, x \geq 0\right\}$ Let $p^{*}=Q x$ and $r^{2}=-f(x)=\sum_{j} x_{j} p_{j}^{\top} p_{j}-p^{* T} p^{*}$.
- Claim 3: The ball $B\left(p^{*}, r\right)$ contains P.
- Proof: Note that $\nabla f(x)^{\top}=2 x^{\top} Q^{\top} Q-z^{\top}$.

By KKT, $\exists \mathrm{y} \in \mathbb{R}$ s.t. $2 p_{j}^{\top} p^{*}-p_{j}^{\top} p_{j}+y \geq 0 \forall j$.
Furthermore, equality holds $\forall \mathrm{j}$ s.t. $\mathrm{x}_{\mathrm{j}}>0$.
So $y=\sum_{j} x_{j} y_{\bar{j}}=\sum_{j} x_{j} p_{j}^{\top} p_{j}-2 \sum_{j} x_{j} p_{j}^{\top} p^{*}=\sum_{j} x_{j} p_{j}^{\top} p_{j}-2 p^{* T} p^{*}$.
So $y+p^{* T} p^{*}=\sum_{j} x_{j} p_{j}{ }^{\top} p_{j}-p^{*} p^{*}=-f(x) \Rightarrow r=\sqrt{y+p^{* T} p^{*}}$

- Let $p^{*}=Q x$ and $r^{2}=-f(x)=\sum_{j} x_{j} p_{j}^{\top} p_{j}-p^{* T} p^{*}$.
- Claim 3: The ball $B\left(p^{*}, r\right)$ contains P.
- Proof: Note that $\nabla f(x)=2 x^{\top} Q^{\top} Q-z$. By KKT, $\exists \mathrm{y} \in \mathbb{R}$ s.t. $2 p_{j}^{\top} p^{*}-p_{j}^{\top} p_{j}+y \geq 0 \forall j$. Furthermore, equality holds $\forall \mathrm{j}$ s.t. $\mathrm{x}_{\mathrm{j}}>0$.

$$
\Rightarrow r=\sqrt{y+p^{* T} p^{*}}
$$

It remains to show that $B\left(p^{*}, r\right)$ contains P.
This holds of $\left\|p_{j}-p^{*}\right\| \leq r \forall j$.
Now $\left\|p_{j}-p^{*}\right\|^{2}=\left(p_{j}-p^{*}\right)^{\top}\left(p_{j}-p^{*}\right)$

$$
\begin{aligned}
& =p^{*} T p^{*}-2 p_{j}^{\top} p^{*}+p_{j}^{\top} p_{j} \\
& \leq y+p^{*} T p^{*}=r^{2} \forall j .
\end{aligned}
$$

\square

- Claim 4: $\mathrm{B}\left(\mathrm{p}^{*}, \mathrm{r}\right)$ is the smallest ball containing P . - Proof: See Textbook.

