C&O 355 Lecture 15

N. Harvey

Topics

- Subgradient Inequality
- Characterizations of Convex Functions
- Convex Minimization over a Polyhedron
- (Mini)-KKT Theorem
- Smallest Enclosing Ball Problem

Subgradient Inequality

- **Prop:** Suppose $f : \mathbb{R} \to \mathbb{R}$ is differentiable. Then f is convex iff $f(y) \ge f(x) + f'(x)(y-x) \qquad \forall x, y \in \mathbb{R}$
- Proof:

 \Leftarrow : See Notes Section 3.2.

 \Rightarrow : Exercise for Assignment 4. \Box

Convexity and Second Derivative

- **Prop:** Suppose $f : \mathbb{R} \to \mathbb{R}$ is twice-differentiable. Then f is convex iff $f''(x) \ge 0 \forall x \in \mathbb{R}$.
- **Proof:** See Notes Section 3.2.

Subgradient Inequality in \mathbb{R}^n

- **Prop:** Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable. Then f is convex iff $f(y) \ge f(x) + \nabla f(x)^T(y-x) \quad \forall x, y \in \mathbb{R}$
- Proof:
 - \Leftarrow : Exercise for Assignment 4.
 - \Rightarrow : See Notes Section 3.2. \Box

Minimizing over a Convex Set

- Prop: Let C⊆Rⁿ be a convex set.
 Let f : Rⁿ→R be convex and differentiable.
 Then x minimizes f over C iff ∇f(x)^T(z-x)≥0 ∀z∈C.
- Proof:

 direction
 direction

Direct from subgradient inequality.

$$f(z) \geq f(x) + \nabla f(x)^{\mathsf{T}}(z-x) \geq f(x)$$

Subgradient inequality

Our hypothesis

Minimizing over a Convex Set

- Prop: Let C⊆Rⁿ be a convex set.
 Let f : Rⁿ→R be convex and differentiable.
 Then x minimizes f over C iff ∇f(x)^T(z-x)≥0 ∀z∈C.
- **Proof:** \Rightarrow direction

Let x be a minimizer, let $z \in C$ and let y = z-x. Recall that $\nabla f(x)^T y = f'(x;y) = \lim_{t \to 0} \frac{f(x+ty)-f(x)}{t}$.

If limit is negative then we have f(x+ty) < f(x) for some $t \in [0,1]$, contradicting that x is a minimizer. So the limit is non-negative, and $\nabla f(x)^{\mathsf{T}} y \ge 0$.

Positive Semidefinite Matrices (again)

- Assume M is symmetric
- Old definition: M is PSD if $\exists V \text{ s.t. } M = V^T V$.
- New definition: M is PSD if $y^TMy \ge 0 \ \forall y \in \mathbb{R}^n$.
- Claim: Old \Rightarrow New.
- **Proof:** $y^TMy = y^TV^TVy = ||Vy||^2 \ge 0.$
- Claim: New \Rightarrow Old.
- **Proof:** Based on spectral decomposition of M.

Convexity and Hessian

- Prop: Let f: Rⁿ→R be a C²-function.
 Let H(x) denote the Hessian of f at point x.
 Then f is convex iff H(x) is PSD ∀x∈Rⁿ.
- **Proof:** \Rightarrow direction

Fix $y \in \mathbb{R}^n$. Consider function $g_y(\alpha) = f(x+\alpha y)$. Convexity of g_y follows from convexity of f. Thus $g_y''(0) \ge 0$. (convexity & 2nd derivative) Fact: $g_y''(0) = y^T H(x) y$ (stated in Lecture 14) So $y^T H(x) y \ge 0 \forall y \in \mathbb{R}^n \implies H(x)$ is PSD.

Convexity and Hessian

- Prop: Let f: Rⁿ→R be a C²-function.
 Let H(x) denote the Hessian of f at point x.
 Then f is convex iff H(x) is PSD ∀x∈Rⁿ.
- **Proof:** \Leftarrow direction. Fix $x,y \in \mathbb{R}^n$. Define $g : [0,1] \to \mathbb{R}$ by $g(\alpha) = f(x+\alpha(y-x))$. For all α , $g''(\alpha) = (y-x)^T H(x+\alpha(y-x))(y-x) \ge 0$. (The equality was stated in Lecture 14. The inequality holds since H is PSD.) So g is convex. (By Prop "Convexity and Second Derivative") $f((1, \alpha)x + \alpha x) = g(\alpha) \le (1, \alpha)g(0) + \alpha g(1)$
 - $f((1-\alpha)x+\alpha y) = g(\alpha) \le (1-\alpha)g(0) + \alpha g(1)$ $= (1-\alpha)f(x) + \alpha f(y).$

Hessian Example

• Example:

Let M be a symmetric nxn matrix. Let $z{\in}\mathbb{R}^n.$

Define $f : \mathbb{R}^n \to \mathbb{R}$ by $f(x) = x^T M x - x^T z$.

Note $f(x) = \Sigma_i \Sigma_j M_{i,j} x_i x_j - \Sigma_i x_i z_i$.

Taking partial derivatives $\nabla f(x)_i = 2 \sum_j M_{i,j} x_j - z_i$. So $\nabla f(x) = 2Mx - z$.

Recall the Hessian at x is $H(x) = \nabla(\nabla f(x))$.

So H(x) = 2M.

Smallest Ball Problem

- Let {p₁,...,p_n} be points in R^d.
 Find (unique!) ball of smallest volume (not an ellipsoid!) that contains all the p_i's.
- In other words, we want to solve: $\min \ \{ r : \exists y \in \mathbb{R}^d \text{ s.t. } p_i \in B(y,r) \ \forall i \ \}$

Smallest Ball Problem

- Let {p₁,...,p_n} be points in R^d.
 Find (unique!) ball of smallest volume (not an ellipsoid!) that contains all the p_i's.
- In other words, we want to solve: $\min \{ r : \exists y \in \mathbb{R}^d \text{ s.t. } p_i \in B(y,r) \forall i \}$
- We will formulate this as a convex program.
- In fact, our convex program will be of the form min { f(x) : Ax=b, x≥0 }, where f is convex. Minimizing a convex function over an (equality form) polyhedron
- To solve this, we will need optimality conditions for convex programs.

(Mini)-KKT Theorem

Theorem: Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex, C^2 function. Let $x \in \mathbb{R}^n$ be a feasible solution to the convex program min { $f(x) : Ax=b, x \ge 0$ } Then x is optimal iff $\exists y \in \mathbb{R}^m$ s.t. 1) $\nabla f(x)^T + y^T A \ge 0$, 2) For all j, if $x_j > 0$ then $\nabla f(x)_j + y^T A_j = 0$.

 Proven by Karush in 1939 (his Master's thesis!), and by Kuhn and Tucker in 1951.

(Mini)-KKT Theorem

Theorem: Let $f:\mathbb{R}^n \to \mathbb{R}$ be a convex, C² function. Let $x \in \mathbb{R}^n$ be a feasible solution to the convex program min { $f(x) : Ax=b, x \ge 0$ } Then x is optimal iff $\exists y \in \mathbb{R}^m$ s.t. 1) $\nabla f(x)^T + y^T A \ge 0$, 2) For all j, if $x_i > 0$ then $\nabla f(x)_i + y^T A_i = 0$.

Special Case: (Strong LP Duality)

Let $f(x) = -c^T x$. (So the convex program is max { $c^T x : Ax=b, x \ge 0$ }) Then x is optimal iff $\exists y \in \mathbb{R}^m$ s.t.

1)
$$-c^{T} + y^{T}A \ge 0$$
,

2) For all j, if $x_j > 0$ then $-C_j + y^T A_j = 0$.

y is feasible for Dual LP

Complementary Slackness holds **Theorem:** Let $f:\mathbb{R}^n \to \mathbb{R}$ be a convex, C² function.

Let $x{\in}\mathbb{R}^n$ be a feasible solution to the convex program

min { f(x) : Ax=b, x ≥0 }

Then x is optimal iff $\exists y \in \mathbb{R}^m$ s.t.

1) $\nabla f(\mathbf{x})^T + \mathbf{y}^T \mathbf{A} \ge \mathbf{0}$,

2) For all j, if $x_j > 0$ then $\nabla f(x)_j + y^T A_j = 0$.

Proof: \Leftarrow direction. Suppose such a y exists. Then

 $(\nabla f(x)^T + y^T A) x = 0.$ (Just like complementary slackness) For any feasible $z \in \mathbb{R}^n$, we have

 $(\nabla f(\mathbf{x})^{\mathsf{T}} + \mathbf{y}^{\mathsf{T}} \mathsf{A}) \mathbf{z} \geq 0.$

Subtracting these, and using Ax=Az=b, we get

 $\nabla f(x)^{T}(z-x) \geq 0 \quad \forall \text{ feasible } z.$

So x is optimal. (By earlier proposition "Minimizing over a Convex Set")

Theorem: Let $f:\mathbb{R}^n \to \mathbb{R}$ be a convex, C² function.

Let $x \in \mathbb{R}^n$ be a feasible solution to the convex program

min { f(x) : Ax=b, x ≥0 }

Then x is optimal iff $\exists y \in \mathbb{R}^m$ s.t.

1) $\nabla f(\mathbf{x})^{\mathsf{T}} + \mathbf{y}^{\mathsf{T}} \mathbf{A} \ge \mathbf{0}$,

2) For all j, if $x_i > 0$ then $\nabla f(x)_i + y^T A_i = 0$.

Proof: \Rightarrow direction. Suppose x is optimal. Let c=- $\nabla f(x)$. Then $\nabla f(x)^T(z-x) \ge 0 \Rightarrow c^T z \le c^T x$ for all feasible points z.

By our earlier proposition "Minimizing over a Convex Set"

Theorem: Let $f:\mathbb{R}^n \to \mathbb{R}$ be a convex, C² function.

Let $x \in \mathbb{R}^n$ be a feasible solution to the convex program

min { f(x) : Ax=b, x ≥0 }

Then x is optimal iff $\exists y \in \mathbb{R}^m$ s.t.

1) $\nabla f(\mathbf{x})^{T} + \mathbf{y}^{T} \mathbf{A} \geq \mathbf{0}$,

2) For all j, if $x_j > 0$ then $\nabla f(x)_j + y^T A_j = 0$. **Proof:** \Rightarrow direction. Suppose x is optimal. Let $c = -\nabla f(x)$. Then $\nabla f(x)^T(z-x) \ge 0 \Rightarrow c^T z \le c^T x$ for all feasible points z. So x is optimal for the LP max { $c^T x : Ax = b, x \ge 0$ }. So there is an optimal solution y to dual LP min { $b^T y : A^T y \ge c$ }. So $\nabla f(x)^T + y^T A = -c^T + y^T A \ge 0 \Rightarrow$ (1) holds.

Furthermore, x and y are both optimal so C.S. holds.

⇒ whenever $x_j>0$, the jth dual constraint is tight ⇒ $y^T A_j = c_j$ ⇒ (2) holds.

Smallest Ball Problem

- Let $P = \{p_1, ..., p_n\}$ be points in \mathbb{R}^d . Let Q be dxn matrix s.t. $Q_i = p_i$. Let $z \in \mathbb{R}^n$ satisfy $z_i = p_i^T p_i$. Define $f : \mathbb{R}^n \to \mathbb{R}$ by $f(x) = x^T Q^T Q x - x^T z$.
- Claim 1: f is convex.
- Consider the convex program min { $f(x) : \sum_j x_j = 1, x \ge 0$ }.
- Claim 2: This program has an optimal solution x.
- Claim 3: Let $p^* = Qx$ and $r = \sqrt{-f(x)}$. Then $P \subset B(p^*, r)$.
- Claim 4: B(p^{*},r) is the smallest ball containing P.

- Let $P=\{p_1,...,p_n\}$ be points in \mathbb{R}^d . Let Q be dxn matrix s.t. $Q_i=p_i$. Let $z\in\mathbb{R}^n$ satisfy $z_i=p_i^Tp_i$. Define $f:\mathbb{R}^n\to\mathbb{R}$ by $f(x)=x^TQ^TQx-x^Tz$.
- Claim 1: f is convex.
- Proof:

By our earlier example, the Hessian of f at x is $H(x) = 2 \cdot Q^{T}Q$.

This is positive semi-definite.

By our proposition "Convexity and Hessian", f is convex.

- Let $P=\{p_1,...,p_n\}$ be points in \mathbb{R}^d . Let Q be dxn matrix s.t. $Q_i=p_i$. Let $z\in\mathbb{R}^n$ satisfy $z_i=p_i^Tp_i$. Define $f:\mathbb{R}^n\to\mathbb{R}$ by $f(x)=x^TQ^TQx-x^Tz$.
- Consider the convex program min { f(x) : $\sum_j x_j = 1, x \ge 0$ }.
- Claim 2: This program has an optimal solution.
- Proof:

The objective function is continuous.

The feasible region is a bounded polyhedron, and hence compact.

By Weierstrass' Theorem, an optimal solution exists.

- Let Q be dxn matrix s.t. $Q_i = p_i$. Let $z \in \mathbb{R}^n$ satisfy $z_i = p_i^T p_i$. Define $f : \mathbb{R}^n \to \mathbb{R}$ by $f(x) = x^T Q^T Q x - x^T z$.
- Let x be an optimal solution of min { $f(x) : \sum_j x_j = 1, x \ge 0$ } Let $p^* = Qx$ and $r^2 = -f(x) = \sum_j x_j p_j^T p_j - p^{*T} p^*$.
- **Claim 3:** The ball B(p^{*},r) contains P.
- **Proof:** Note that $\nabla f(x)^T = 2x^TQ^TQ z^T$. By KKT, $\exists y \in \mathbb{R}$ s.t. $2p_j^Tp^* - p_j^Tp_j + y \ge 0 \forall j$. Furthermore, equality holds $\forall j$ s.t. $x_j > 0$. So $y = \sum_j x_j y = \sum_j x_j p_j^Tp_j - 2\sum_j x_j p_j^Tp^* = \sum_j x_j p_j^Tp_j - 2p^{*T}p^*$. So $y + p^{*T}p^* = \sum_j x_j p_j^Tp_j - p^{*T}p^* = -f(x) \Rightarrow r = \sqrt{y + p^{*T}p^*}$

- Let $p^* = Qx$ and $r^2 = -f(x) = \sum_j x_j p_j^T p_j p^{*T} p^*$.
- **Claim 3:** The ball B(p^{*},r) contains P.
- **Proof:** Note that $\nabla f(x) = 2x^TQ^TQ z$. By KKT, $\exists y \in \mathbb{R}$ s.t. $2p_j^Tp^* - p_j^Tp_j + y \ge 0 \forall j$. Furthermore, equality holds $\forall j$ s.t. $x_j > 0$. $\Rightarrow r = \sqrt{y + p^{*T}p^*}$
 - It remains to show that $B(p^*,r)$ contains P. This holds iff $||p_j-p^*|| \le r \forall j$. Now $||p_j-p^*||^2 = (p_j-p^*)^T(p_j-p^*)$ $= p^{*T}p^*-2p_j^Tp^*+p_j^Tp_j$ $\le y+p^{*T}p^* = r^2 \forall j$.

- **Claim 4:** B(p^{*},r) is the smallest ball containing P.
- **Proof:** See Textbook.