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Topics

Subgradient Inequality
Characterizations of Convex Functions
Convex Minimization over a Polyhedron
(Mini)-KKT Theorem

Smallest Enclosing Ball Problem



Subgradient Inequality

* Prop: Suppose f: R — R is differentiable.

Then f is convex iff
f(y) > f(x) + £'(x)(y-x) Vx,y € R

* Proof:
<=: See Notes Section 3.2.

—: Exercise for Assignment 4.




Convexity and Second Derivative

* Prop: Suppose f: R — R is twice-differentiable.
Then f is convex iff f”’(x)>0 VxeR.

 Proof: See Notes Section 3.2.




Subgradient Inequality in IR"

* Prop: Suppose f: R" — R is differentiable.

Then f is convex iff
fly) > f(x) + V£ (x)"(y-x) Vx,yeR

* Proof:
<: Exercise for Assignment 4.

—>: See Notes Section 3.2.




Minimizing over a Convex Set

* Prop: Let CCIR" be a convex set.
Let f : R"—=R be convex and differentiable.

Then x minimizes f over C iff Vf(x)"(z-x)>0 Vz&C.

 Proof: <= direction

Direct from subgradient inequality.
f(z) > f(x) + VI(x)'(z-x) > f(x)

\ \

Subgradient inequality Our hypothesis




Minimizing over a Convex Set

* Prop: Let CCIR" be a convex set.
Let f : R"—=R be convex and differentiable.

Then x minimizes f over C iff Vf(x)"(z-x)>0 Vz&C.

* Proof: = direction
Let x be a minimizer, let zeC and let y = z-x.

Recall that Vf(x)'y =f'(x;y) = lim,_,, f(x+’iy)-f(x).

If limit is negative then we have f(x+ty)<f(x) for
some t€[0,1], contradicting that x is a minimizer.

So the limit is non-negative, and Vf(x)'y > 0. W




Positive Semidefinite Matrices (again)

Assume M is symmetric
Old definition: M is PSD if 9V s.t. M = V'V.

New definition: M is PSD if yTMy > 0 YyeR",

Claim: Old = New.
Proof: y"My = y"VTVy = || Vy||2 > 0.
Claim: New = Old.

Proof: Based on spectral decomposition of M.




Convexity and Hessian

* Prop: Let f:R"—R be a C>-function.

Let H(x) denote the Hessian of f at point x.
Then f is convex iff H(x) is PSD ¥x€R".

* Proof: = direction
Fix yeR". Consider function g (a) = f(x+ay).
Convexity of g, follows from convexity of f.
Thus gy"(O) > 0. (convexity & 2 derivative)

Fact: gy"(O) = yT H(X) \ (stated in Lecture 14)
So y"H(x) y>0 VyeR" = H(x) is PSD.



Convexity and Hessian

* Prop: Let f:R"—R be a C>-function.

Let H(x) denote the Hessian of f at point x.
Then f is convex iff H(x) is PSD ¥xeR".

e Proof: <= direction. Fix x,yeR".
Define g : [0,1] — R by g(a) = f(x+a(y-x)).
For all o, g”(a)=(y-x)"H(x+a(y-x)) (y-x) > 0.

(The equality was stated in Lecture 14. The inequality holds since H is PSD.)

SO g is convex.  (ByProp “Convexity and Second Derivative”)
f((1-a)x+ay) = g(ar) < (1-a)g(0) + aug(1)
= (1-a)f(x) + af(y). B



Hessian Example

 Example:
Let M be a symmetric nxn matrix. Let zelR".
Define f : R" — R by [f(x) = x"MXx - x'z.
Note f(x)=2; 2 M, x; x; - X %, 2,
Taking partial derivatives Vf(x), = 2 2 M, :x; -z,
So|V{(x)=2Mx-z.
Recall the Hessian at x is H(x) = V(V f(x)).
So|H(x) =




Smallest Ball Problem

* Let {py,...,p,} be points in RC.
Find (unique!) ball of smallest volume
that contains all the p/’s.

* |n other words, we want to solve:
min {r: dycR9s.t. p.€B(y,r) Vi }




Smallest Ball Problem

Let {p,,...,p,} be points in RY.
Find (unique!) ball of smallest volume
that contains all the p/’s.

In other words, we want to solve:
min {r: dycR9s.t. p.€B(y,r) Vi }
We will formulate this as a convex program.
In fact, our convex program will be of the form

min { f(x) : Ax=b, x>0}, where fis convex.
Minimizing a convex function over an (equality form) polyhedron
To solve this, we will need optimality conditions
for convex programes.



KKT Theorem

Theorem: Let f:R"— R be a convex, C2 function.
Let x€R" be a feasible solution to the convex program
min { f(x) : Ax=b, x>0}
Then x is optimal iff JyeR™ s.t.
1) V§(x)T+y'A >0,
2) Forallj, if x>0 then Vf(x), + ny\j = 0.

jth column of A

* Proven by Karush in 1939 (his Master’s thesis!),
and by Kuhn and Tucker in 1951.



KKT Theorem

Theorem: Let f:R"—R be a convex, C2 function.
Let x€R" be a feasible solution to the convex program
min { f(x) : Ax=b, x>0}
Then x is optimal iff JyeR™ s.t.
1) V§(x)T+y'A >0,
2) For allj, if x>0 then Vf(x); + y'A = 0.

Special Case: (Strong LP Duality)
Let f(x) = -c'™X.  (So the convex program is max { c'x : Ax=b, x>0 })
Then x is optimal iff JyeR™ s.t.

1) -cl + yTA >0, y is feasible for Dual LP

2) Forallj, if x>0 then -C; + y'A; = 0. Comp'emeh”tfgy Slackness
oldas




Theorem: Let f:R"— R be a convex, C2 function.
Let x€R" be a feasible solution to the convex program
min { f(x) : Ax=b, x>0}
Then x is optimal iff JyeR™ s.t.
1) VE(x)"+y'A >0,
2) For allj, if x>0 then Vf(x); + y'A = 0.
Proof: <= direction. Suppose such a y exists. Then

(V(x)" + y'A) x = 0. (Just like complementary slackness)
For any feasible zeR", we have

(VI(x)T+y'A)z > 0.
Subtracting these, and using Ax=Az=b, we get

VT(x)"(z-x) > 0 V feasible z.
So x is optimal. (By earlier proposition “Minimizing over a Convex Set”)



Theorem: Let f:R"— R be a convex, C2 function.
Let x€R" be a feasible solution to the convex program
min { f(x) : Ax=b, x>0}
Then x is optimal iff JyeR™ s.t.
1) V§(x)T+y'A >0,
2) For allj, if x>0 then Vf(x); + y'A = 0.
Proof: = direction. Suppose x is optimal. Let c=-V{(x).
Then V{(x)"(z-x)>0 = c'z<c'x for all feasible points z.

By our earlier proposition “Minimizing over a Convex Set”



Theorem: Let f:R"— R be a convex, C2 function.
Let x€R" be a feasible solution to the convex program
min { f(x) : Ax=b, x>0}

Then x is optimal iff JyeR™ s.t.

1) VFI(x)T+vy'A >0,

2) For allj, if x>0 then Vf(x); + y'A = 0.
Proof: = direction. Suppose x is optimal. Let c=-V{(x).
Then V{(x)"(z-x)>0 = c'z<c'x for all feasible points z.
So x is optimal for the LP max { c'x : Ax=b, x>0 }.
So there is an optimal solution y to dual LP min { b'y : Aly>c }.
So Vf(x)T+y'/A=-cT+y/A>0 = (1) holds.

Furthermore, x and y are both optimal so C.S. holds.

= whenever x>0, the j™ dual constraint is tight
= y"Aj=¢; = (2)holds. _



Smallest Ball Problem
et P={p,,...,p,} be points in R,

et Q be dxn matrix s.t. Q=p..
et zeR" satisfy z=p."p..
Define f : R" — R by f(x) = x'"Q'Qx - x'z.

Claim 1: f is convex.

Consider the convex program
min { f(x) : 2,,x,= 1, x>0 }.

Claim 2: This program has an optimal solution x.
Claim 3: Let p*=Qx and r=V-f(x). Then PCB(p*,r).
Claim 4: B(p7,r) is the smallest ball containing P.



* Let P={p,,...,p,} be points in R

et Q be dxn matrix s.t. Q=p..

et zeR" satisfy z=p."p..

Define f : R" — R by f(x) = x'"Q'Qx - x'z.

e Claim 1:fis convex.

* Proof:
By our earlier example, the Hessian of f at x is
H(x) = 2-Q'Q.

This is positive semi-definite.
By our proposition “Convexity and Hessian”,
f is convex.




et P={p,,...,p,,} be points in Rq.
et Q be dxn matrix s.t. Q=p..
et zeR" satisfy z=p.'p..
Define f : R" — R by f(x) = x'Q'Qx - x'z.
Consider the convex program

min { f(x) : 2,,x,= 1, x>0 }.
Claim 2: This program has an optimal solution.

Proof:
The objective function is continuous.

The feasible region is a bounded polyhedron,
and hence compact.

By Weierstrass’ Theorem, an optimal solution
exists.




* Let Q be dxn matrix s.t. Q;=p..

et zeR" satisfy z=p.'p..

Define f : R" — R by f(x) = x'"Q'Qx - x'z.

* Letx be an optimal solution of min {f(x) : 2;x=1,x>0}
letp” =Qxand r’=-f(x)=2x;pTp,-P P .

* Claim 3: The ball B(p”,r) contains P.

* Proof: Note that Vf(x)" = 2x'Q'Q - Z'.

By KKT, dycR s.t. 2p,'p"-p;"p;+y >0 V.

Furthermore, equality holds Vj s.t. x>0.
SOy =2,%Y 5 2,%P;'P;-22,% PP = 2% Py P;-2p P,

Soy+pTp =Xx.pp;-p P = -f(x) = r="y +p"p’




* Lletp"=Qxandr?=-f(x)=2xpTp-p p .
* Claim 3: The ball B(p”,r) contains P.
* Proof: Note that Vf(x) = 2x'Q'Q - z.
By KKT, dycR s.t. 2p,/p™-p;"p;+y >0 V.
Furthermore, equallty holds Vj s.t. x>0.
= r=\y+pTp’

It remains to show that B(p~,r) contains P.
This holds iff ||p;-p"|| <r Vij.
Now Hpj-p*Hz =(pj‘p*)T(pj'p*)
=p p -2p,"p"+p;'p,
<y+p Tp =r?Vij.

N




* Claim 4: B(p’,r) is the smallest ball containing P.
* Proof: See Textbook.



