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Topics

• Subgradient Inequality

• Characterizations of Convex Functions

• Convex Minimization over a Polyhedron

• (Mini)-KKT Theorem

• Smallest Enclosing Ball Problem



Subgradient Inequality

• Prop: Suppose f : R! R is differentiable. 

Then f is convex iff
f(y) ¸ f(x) + f’(x)(y-x) 8x,y 2 R

• Proof:
(: See Notes Section 3.2.

): Exercise for Assignment 4.  ¤



Convexity and Second Derivative

• Prop: Suppose f : R! R is twice-differentiable. 
Then f is convex iff f’’(x)¸0 8x2R.

• Proof: See Notes Section 3.2.



Subgradient Inequality in Rn

• Prop: Suppose f : Rn ! R is differentiable. 

Then f is convex iff
f(y) ¸ f(x) + rf (x)T(y-x) 8x,y2R

• Proof:
(: Exercise for Assignment 4.

): See Notes Section 3.2.  ¤



Minimizing over a Convex Set
• Prop: Let CµRn be a convex set.

Let f : Rn!R be convex and differentiable.

Then x minimizes f over C iff rf(x)T(z-x)¸0 8z2C.

• Proof: ( direction

Direct from subgradient inequality.

f(z)  ¸ f(x) + rf(x)T(z-x) ¸ f(x)

Subgradient inequality Our hypothesis



Minimizing over a Convex Set
• Prop: Let CµRn be a convex set.

Let f : Rn!R be convex and differentiable.

Then x minimizes f over C iff rf(x)T(z-x)¸0 8z2C.

• Proof: ) direction

Let x be a minimizer, let z2C and let y = z-x.

Recall that rf(x)Ty = f’(x;y) = limt!0 f(x+ty)-f(x).

If limit is negative then we have f(x+ty)<f(x) for 
some t2[0,1], contradicting that x is a minimizer.

So the limit is non-negative, and rf(x)Ty ¸ 0.   ¥

t



Positive Semidefinite Matrices (again)

• Assume M is symmetric

• Old definition: M is PSD if 9V s.t. M = VTV.

• New definition: M is PSD if yTMy ¸ 0 8y2Rn.

• Claim: Old ) New.

• Proof: yTMy = yTVTVy = kVyk2 ¸ 0.

• Claim: New ) Old.

• Proof: Based on spectral decomposition of M.



Convexity and Hessian

• Prop: Let f:Rn!R be a C2-function.

Let H(x) denote the Hessian of f at point x.
Then f is convex iff H(x) is PSD 8x2Rn.

• Proof: ) direction

Fix y2Rn. Consider function gy(®) = f(x+®y).

Convexity of gy follows from convexity of f.

Thus gy’’(0) ¸ 0. (convexity & 2nd derivative)

Fact: gy’’(0) = yT H(x) y (stated in Lecture 14)

So yT H(x) y¸0 8y2Rn ) H(x) is PSD.



Convexity and Hessian

• Prop: Let f:Rn!R be a C2-function.

Let H(x) denote the Hessian of f at point x.
Then f is convex iff H(x) is PSD 8x2Rn.

• Proof: ( direction. Fix x,y2R
n
.

Define g : [0,1] ! R by g(®) = f(x+®(y-x)).

For all ®, g’’(®)=(y-x)TH(x+®(y-x))(y-x)¸0.
(The equality was stated in Lecture 14.  The inequality holds since H is PSD.)

So g is convex. (By Prop “Convexity and Second Derivative”)

f((1-®)x+®y) = g(®) · (1-®)g(0) + ®g(1)

= (1-®)f(x) + ®f(y).             ¥



Hessian Example

• Example:

Let M be a symmetric nxn matrix. Let z2Rn.

Define f : Rn ! R by  f(x) = xTMx - xTz.

Note f(x) =§i§j Mi,j xi xj -§i xi zi.

Taking partial derivatives rf(x)i = 2§j Mi,j xj - zi.

So rf(x)= 2Mx-z.

Recall the Hessian at x is H(x) = r(r f(x)).

So H(x) = 2M.



Smallest Ball Problem
• Let {p1,…,pn} be points in Rd.

Find (unique!) ball of smallest volume (not an ellipsoid!)

that contains all the pi’s.

• In other words, we want to solve:

min { r : 9y2Rd s.t. pi2B(y,r) 8i }



Smallest Ball Problem
• Let {p1,…,pn} be points in Rd.

Find (unique!) ball of smallest volume (not an ellipsoid!)

that contains all the pi’s.

• In other words, we want to solve:

min { r : 9y2Rd s.t. pi2B(y,r) 8i }

• We will formulate this as a convex program.

• In fact, our convex program will be of the form

min { f(x) : Ax=b, x¸0 },  where f is convex.
Minimizing a convex function over an (equality form) polyhedron

• To solve this, we will need optimality conditions
for convex programs.



(Mini)-KKT Theorem

jth column of A

Theorem: Let f:Rn!R be a convex, C2 function.
Let x2Rn be a feasible solution to the convex program

min { f(x) : Ax=b, x¸0 }
Then x is optimal iff 9y2Rm s.t.

1) rf(x)T + yTA ¸ 0,

2) For all j, if xj>0 then rf(x)j + yTAj = 0.

• Proven by Karush in 1939 (his Master’s thesis!), 
and by Kuhn and Tucker in 1951.



(Mini)-KKT Theorem
Theorem: Let f:Rn!R be a convex, C2 function.
Let x2Rn be a feasible solution to the convex program

min { f(x) : Ax=b, x¸0 }
Then x is optimal iff 9y2Rm s.t.

1) rf(x)T + yTA ¸ 0,

2) For all j, if xj>0 then rf(x)j + yTAj = 0.

Special Case: (Strong LP Duality)
Let f(x) = -cTx.     (So the convex program is max { cTx : Ax=b, x¸0 })

Then x is optimal iff 9y2Rm s.t.

1) -cT + yTA ¸ 0,

2) For all j, if xj>0 then -cj + yTAj = 0.

y is feasible for Dual LP

Complementary Slackness 
holds



Theorem: Let f:Rn!R be a convex, C2 function.
Let x2Rn be a feasible solution to the convex program

min { f(x) : Ax=b, x¸0 }
Then x is optimal iff 9y2Rm s.t.

1) rf(x)T + yTA ¸ 0,

2) For all j, if xj>0 then rf(x)j + yTAj = 0.
Proof: ( direction. Suppose such a y exists. Then

(rf(x)T + yTA) x  =  0.       (Just like complementary slackness)

For any feasible z2Rn, we have

(rf(x)T + yTA) z  ¸ 0.
Subtracting these, and using Ax=Az=b, we get

rf(x)T(z-x) ¸ 0    8 feasible z.
So x is optimal. (By earlier proposition “Minimizing over a Convex Set”)



Theorem: Let f:Rn!R be a convex, C2 function.
Let x2Rn be a feasible solution to the convex program

min { f(x) : Ax=b, x¸0 }
Then x is optimal iff 9y2Rm s.t.

1) rf(x)T + yTA ¸ 0,

2) For all j, if xj>0 then rf(x)j + yTAj = 0.
Proof: ) direction. Suppose x is optimal. Let c=-rf(x).
Then  rf(x)T(z-x)¸0   ) cTz·cTx for all feasible points z.

By our earlier proposition “Minimizing over a Convex Set”



Theorem: Let f:Rn!R be a convex, C2 function.
Let x2Rn be a feasible solution to the convex program

min { f(x) : Ax=b, x¸0 }
Then x is optimal iff 9y2Rm s.t.

1) rf(x)T + yTA ¸ 0,

2) For all j, if xj>0 then rf(x)j + yTAj = 0.
Proof: ) direction. Suppose x is optimal. Let c=-rf(x).
Then  rf(x)T(z-x)¸0   ) cTz·cTx for all feasible points z.
So x is optimal for the LP max { cTx : Ax=b, x¸0 }.
So there is an optimal solution y to dual LP min { bTy : ATy¸c }.
So rf(x)T + yTA = -cT + yTA ¸ 0    ) (1) holds.

Furthermore, x and y are both optimal so C.S. holds.
) whenever xj>0, the jth dual constraint is tight
) yT Aj = cj ) (2) holds. ¥



Smallest Ball Problem
• Let P={p1,…,pn} be points in Rd.

Let Q be dxn matrix s.t. Qi=pi.
Let z2Rn satisfy zi=pi

Tpi. 
Define f : Rn ! R by f(x) = xTQTQx - xTz.

• Claim 1: f is convex.

• Consider the convex program
min { f(x) : j xj = 1, x¸0 }.

• Claim 2: This program has an optimal solution x.

• Claim 3: Let p*=Qx and r=√-f(x). Then P½B(p*,r).

• Claim 4: B(p*,r) is the smallest ball containing P.



• Let P={p1,…,pn} be points in Rd.
Let Q be dxn matrix s.t. Qi=pi.
Let z2Rn satisfy zi=pi

Tpi.
Define f : Rn ! R by f(x) = xTQTQx - xTz.

• Claim 1: f is convex.

• Proof:
By our earlier example, the Hessian of f at x is

H(x) = 2¢QTQ.
This is positive semi-definite.

By our proposition “Convexity and Hessian”,
f is convex. ¤



• Let P={p1,…,pn} be points in Rd.
Let Q be dxn matrix s.t. Qi=pi.
Let z2Rn satisfy zi=pi

Tpi.
Define f : Rn ! R by f(x) = xTQTQx - xTz.

• Consider the convex program
min { f(x) : j xj = 1, x¸0 }.

• Claim 2: This program has an optimal solution.

• Proof:
The objective function is continuous.

The feasible region is a bounded polyhedron,
and hence compact.

By Weierstrass’ Theorem, an optimal solution 
exists. ¤



• Let Q be dxn matrix s.t. Qi=pi.
Let z2Rn satisfy zi=pi

Tpi.
Define f : Rn ! R by f(x) = xTQTQx - xTz.

• Let x be an optimal solution of min {f(x) :jxj=1,x¸0 }
Let p* = Qx and r2 = -f(x)=jxj pj

T pj - p*Tp*.

• Claim 3: The ball B(p*,r) contains P.

• Proof: Note that rf(x)T = 2xTQTQ - zT.

By KKT, 9y2R s.t. 2pj
Tp* - pj

Tpj + y¸0 8j.

Furthermore, equality holds 8j s.t. xj>0.

So y =j xjy=j xjpj
Tpj -2jxjpj

Tp* =jxjpj
Tpj -2p*Tp*.

So y+ p*Tp* =jxjpj
Tpj -p*Tp* = -f(x) ) r = √y + p*Tp*



• Let p* = Qx and r2 = -f(x)=jxj pj
T pj - p*Tp*.

• Claim 3: The ball B(p*,r) contains P.

• Proof: Note that rf(x) = 2xTQTQ - z.
By KKT, 9y2R s.t. 2pj

Tp* - pj
Tpj + y¸0 8j.

Furthermore, equality holds 8j s.t. xj>0.
) r = √y + p*Tp*

It remains to show that B(p*,r) contains P.
This holds iff kpj-p

*k · r 8j.
Now kpj-p

*k2 = (pj-p
*)T(pj-p

*)
= p*Tp*-2pj

Tp*+pj
Tpj

· y+p*Tp* = r2 8j.                         ¤



• Claim 4: B(p*,r) is the smallest ball containing P.

• Proof: See Textbook.


