C&O 355 Lecture 12

N. Harvey

## **Topics**

- Polynomial-Time Algorithms
- Ellipsoid Method Solves LPs in Polynomial Time
- Separation Oracles
- Convex Programs
- Minimum s-t Cut Example

# Polynomial Time Algorithms

- P = class of problems that can be solved efficiently i.e., solved in time  $\leq n^c$ , for some constant c, where n=input size
- This is a bit vague
  - Consider an LP max  $\{c^Tx : Ax \le b\}$  where A has size m x d
  - Input is a binary file containing the matrix A, vectors b and c
- Two ways to define "input size"
  - A. # of bits used to store the binary input file
  - B. # of numbers in input file, i.e.,  $m \cdot d + m + d$

"Polynomial Time

- Leads to two definitions of "efficient algorithms" Algorithm"
  - A. Running time  $\leq n^c$  where n = # bits in input file  $\leftarrow$
  - B. Running time  $\leq \mathbf{n}^c$  where  $\mathbf{n} = \mathbf{m} \cdot \mathbf{d} + \mathbf{m} + \mathbf{d}$  "Strongly Polynomial Time Algorithm"

# Algorithms for Solving LPs

| Name                                 | Publication                 | Running Time | Practical?   |
|--------------------------------------|-----------------------------|--------------|--------------|
| Fourier-Motzkin Elimination          | Fourier 1827, Motzkin 1936  | Exponential  | No           |
| Simplex Method                       | Dantzig '47                 | Exponential  | Yes          |
| Perceptron Method                    | Agmon '54, Rosenblatt '62   | Exponential  | Sort of      |
| Ellipsoid Method                     | Khachiyan '79               | Polynomial   | No           |
| Interior Point Method                | Karmarkar '84               | Polynomial   | Yes          |
| Analytic Center Cutting Plane Method | Vaidya '89 & '96            | Polynomial   | No           |
| Random Walk Method                   | Bertsimas & Vempala '02-'04 | Polynomial   | Probably not |
| Boosted Perceptron Method            | Dunagan & Vempala '04       | Polynomial   | Probably not |
| Random Shadow-Vertex Method          | Kelner & Spielman '06       | Polynomial   | Probably not |

#### Unsolved Problems:

- Is there a strongly polynomial time algorithm?
- Does some implementation of simplex method run in polynomial time?

### Why is analyzing the simplex method hard?

- Recall how the algorithm works:
  - It starts at a vertex of the polyhedron
  - It moves to a "neighboring vertex" with better objective value
  - It stops when it reaches the optimum
- How many moves can this take?
- For any polyhedron, and for any two vertices, can you move between them with few moves?

## Why is analyzing the simplex method hard?

- For any polyhedron, and for any two vertices, can you move between them with few moves?
- The Hirsch Conjecture (1957)
   Let P = { x : Ax≤b } where A has size m x n.
   You can move between any two vertices using only m-n moves.

Example: A cube.

Dimension n=3.

# constraints m=6.

Do m-n=3 moves suffice?



### Why is analyzing the simplex method hard?

- For any polyhedron, and for any two vertices, can you move between them with few moves?
- The Hirsch Conjecture (1957)
   Let P = { x : Ax≤b } where A has size m x n.
   You can move between any two vertices using only m-n moves.
- We have no idea how to prove this.
- Theorem: [Kalai-Kleitman 1992] m<sup>log n+2</sup> moves suffice.
- Still the best known result. Proof amazingly beautiful!
   We might prove it later in the course...
- Want to prove a better bound? A group of (eminent)
  mathematicians have a blog organizing a massively
  collaborative project to do just that.

# Ellipsoid Method for Solving LPs

- Ellipsoid method finds feasible point in P = { x : Ax ≤ b }
   i.e., it can solve a system of inequalities
- But we want to **optimize**, i.e., solve max  $\{c^Tx : x \in P\}$
- Restatement of Strong Duality Theorem: (from Lecture 8)
   Primal has optimal solution ⇔ Dual has optimal solution
   ⇔ the following system is solvable:

$$Ax \le b$$
  $A^{\mathsf{T}}y = c$   $y \ge 0$   $c^{\mathsf{T}}x \ge b^{\mathsf{T}}y$ 

"Solving an LP is equivalent to solving a system of inequalities"

⇒ Ellipsoid method can be used to solve LPs

# Ellipsoid Method for Solving LPs

- Ellipsoid method finds feasible point in P = { x : Ax ≤ b }
   i.e., it can solve a system of inequalities
- But we want to **optimize**, i.e., solve max  $\{c^Tx : x \in P\}$
- Alternative approach: Binary search for optimal value
  - Suppose we know optimal value is in interval [L,U]
  - Add a new constraint  $c^Tx \ge (L+U)/2$
  - If LP still feasible, replace L with (L+U)/2 and repeat
  - If LP not feasible, replace U with (L+U)/2 and repeat



# Issues with Ellipsoid Method

- 1. It needs to compute square roots, so it must work with irrational numbers
  - Solution: Approximate irrational numbers by rationals.
     Approximations proliferate, and it gets messy.
- 2. Can only work with bounded polyhedra P
  - **Solution:** If P non-empty, there exists a solution x s.t.  $|x_i| \le U \ \forall i$ , where U is a bound based on numbers in A and b. So we can assume that  $-U \le x_i \le U$  for all i.
- 3. Polyhedron P needs to contain a small ball B(z,k)
  - Solution: If  $P = \{x : Ax \le b \}$  then we can perturb b by a tiny amount. The perturbed polyhedron is feasible iff P is, and if it is feasible, it contains a small ball.

## Ellipsoid Method in Polynomial Time

- Input: A polyhedron P = { x : Ax≤b } where A has size m x d.
   This is given as a binary file containing matrix A and vector b.
- Input size: n = # of bits used to store this binary file
- Output: A point x∈P, or announce "P is empty"
- Boundedness: Can add constraints -U≤x<sub>i</sub>≤U, where U = 16<sup>d2n</sup>.
   The new P is contained in a ball B(0,K), where K<n·U.</li>
- Contains ball: Add  $\epsilon$  to  $b_i$ , for every i, where  $\epsilon = 32^{-d^2n}$ . The new P contains a ball of radius  $k = \epsilon \cdot 2^{-dn} > 64^{-d^2n}$ .
- Iterations: We proved last time that:
   # iterations ≤ 4d(d+1)log(K/k), and this is < 40d<sup>6</sup>n<sup>2</sup>
- Each iteration does only basic matrix operations and can be implemented in polynomial time.
- Conclusion: Overall running time is polynomial in n (and d)!

## What Does Ellipsoid Method Need?

- The algorithm uses almost nothing about polyhedra (basic feasible solutions, etc.)
- It just needs to (repeatedly) answer the question:
   Is z∈P?
   If not, give me a constraint "a<sup>T</sup>x≤b" of P violated by z

```
Let E(M,z) be an ellipsoid s.t. P \subseteq E(M,z)

If vol\ E(M,z) < vol\ B(0,r) then Halt: "P is empty"

If z \in P, Halt: "z \in P"

Else

Let "a_i^T x \le b_i" be a constraint of P violated by z (i.e., a_i^T z > b_i)

Let H = \{x : a_i^T x \le a_i^T z \} (so P \subseteq E(M,z) \cap H)

Let E(M',z') be an ellipsoid covering E(M,z) \cap H

Set M \leftarrow M' and z \leftarrow z' and go back to Start
```

- Input: A polytope  $P = \{ Ax \leq b \}$
- Output: A point x∈P, or announce "P is empty"

# The Ellipsoid Method

- The algorithm uses almost nothing about polyhedra (basic feasible solutions, etc.)
- It just needs to (repeatedly) answer the question:

# Separation Oracle Is $z \in P$ ? If not, find a vector a s.t. $a^Tx < a^Tz \ \forall x \in P$

- The algorithm works for any convex set P, as long as you can give a separation oracle.
  - P still needs to be bounded and contain a small ball.
- Remarkable Theorem: [Grotschel-Lovasz-Schijver '81] For any convex set  $P \subseteq \mathbb{R}^n$  with a separation oracle, you can find a feasible point efficiently.
- Caveats:
  - "Efficiently" depends on size of ball containing P and inside P.
  - Errors approximating irrational numbers means we get "approximately feasible point"



Martin Grotschel



Laszlo Lovasz



Alexander Schrijver

## The Ellipsoid Method For Convex Sets

#### **Separation Oracle**

Is z∈P?

If not, find a vector a s.t.  $a^Tx < a^Tz \ \forall x \in P$ 

Feasibility Theorem:

[Grotschel-Lovasz-Schijver '81]

- For any convex set  $P \subseteq \mathbb{R}^n$  with a separation oracle, you can find a feasible point efficiently.
  - Ignoring (many, technical) details, this follows from ellipsoid algorithm
- Optimization Theorem:

[Grotschel-Lovasz-Schijver '81]

- For any convex set  $P \subseteq \mathbb{R}^n$  with a separation oracle, you can solve optimization problem max  $\{c^Tx : x \in P\}$ .
  - How?
  - Follows from previous theorem and binary search on objective value.
- This can be generalized to minimizing non-linear (convex) objective functions.

# Separation Oracle for Ball

• Let's design a separation oracle for the convex set  $P = \{x : ||x|| \le 1\} = \text{unit ball B}(0,1).$ 

#### **Separation Oracle**

Is  $z \in P$ ?

If not, find a vector a s.t.  $a^Tx < a^Tz \ \forall x \in P$ 

- Input: a point  $z \in \mathbb{R}^n$
- If  $||z|| \le 1$ , return "Yes"
- If ||z||>1, return a=z/||z||
  - For all  $x \in P$  we have  $a^Tx = z^Tx/||z|| \le ||x||$  Why? Cauchy-Schwarz
  - For z we have  $a^{T}z = z^{T}z/||z|| = ||z|| > 1 \ge ||x|| \implies a^{T}x < a^{T}z$

## Separation Oracle for Ball

• Let's design a separation oracle for the convex set  $P = \{x : ||x|| \le 1\} = \text{unit ball B}(0,1).$ 

```
Separation Oracle Is z \in P?
If not, find a vector a s.t. a^Tx < a^Tz \ \forall x \in P
```

- Conclusion: Since we were able to give a separation oracle for P, we can optimize a linear function over it.
- Note: max  $\{c^Tx : x \in P\}$  is a non-linear program. (Actually, it's a convex program.)
- Our next topic: convex analysis and convex programs!

- Let G=(V,E) be a graph. Fix two vertices  $s,t \in V$ .
- An s-t cut is a set F⊆E such that, if you delete F, then s and t are disconnected i.e., there is no s-t path in G\F = (V,E\F).



- Let G=(V,E) be a graph. Fix two vertices  $s,t \in V$ .
- An s-t cut is a set F⊆E such that, if you delete F, then s and t are disconnected i.e., there is no s-t path in G\F = (V,E\F).



These edges are an s-t cut

- Let G=(V,E) be a graph. Fix two vertices  $s,t \in V$ .
- An s-t cut is a set F⊆E such that, if you delete F, then s and t are disconnected i.e., there is no s-t path in G\F = (V,E\F).



These edges are a **minimum** s-t cut

# Minimum Cut Example



From Harris and Ross [1955]: Schematic diagram of the railway network of the Western Soviet Union and Eastern European countries, with a maximum flow of value 163,000 tons from Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as `The bottleneck'.

- Let G=(V,E) be a graph. Fix two vertices  $s,t \in V$ .
- An s-t cut is a set F⊆E such that, if you delete F, then s and t are disconnected
   i.e., there is no s-t path in G\F = (V,E\F).
- Can write this as an integer program. Make variable  $x_e$  for every  $e \in E$ . Let  $\mathcal{P}$  be (huge!) set of all s-t paths.

$$\min \sum_{e \in E} x_e$$
s.t. 
$$\sum_{e \in p} x_e \ge 1 \qquad \forall p \in \mathcal{P}$$

$$x_e \in \{0, 1\} \qquad \forall e \in E$$

- Can write this as an integer program. Make variable  $x_e$  for every  $e \in E$ . Let  $\mathcal{P}$  be (huge!) set of all s-t paths.
- We don't know how to deal with integer programs, so relax it to a linear program.

min 
$$\sum_{e \in E} x_e$$
  
s.t.  $\sum_{e \in p} x_e \ge 1$   $\forall p \in \mathcal{P}$   
 $x_e \ge 0$   $\forall e \in E$ 

- Theorem: Every BFS of this LP has  $x_e \in \{0,1\} \ \forall e \in E$ . (So integer program and linear program are basically the same!)
- Proof: Maybe later in the course, maybe in C&O 450.

min 
$$\sum_{e \in E} x_e$$
 s.t.  $\sum_{e \in p} x_e \ge 1$   $\forall p \in \mathcal{P}$   $x_e \ge 0$   $\forall e \in E$ 

- How can we solve this LP? If graph has |V|=n, then  $|\mathcal{P}|$  can be enormous! (Exponential in n).
- Our local-search algorithm will take a very long time.
- Can use Ellipsoid method, if we can give separation oracle.

min 
$$\sum_{e \in E} x_e$$
 s.t.  $\sum_{e \in p} x_e \ge 1$   $\forall p \in \mathcal{P}$   $x_e \ge 0$   $\forall e \in E$ 

#### **Separation Oracle**

Is  $z \in P$ ?
If not, find a vector a s.t.  $a^Tx < a^Tz \ \forall x \in P$ 

- Can use Ellipsoid method, if we can give separation oracle.
- If I give you z, can you decide if it is feasible?
- Need to test if  $\Sigma_{e \in p} z_e \ge 1$  for every s-t path p.
- Think of value z<sub>e</sub> as giving "length" of edge e. Need to test if shortest s-t path  $p^*$  has length > 1.
- If so, z is feasible. If not, constraint for p\* is violated by z.

- If I give you z, can you decide if it is feasible?
- Need to test if  $\Sigma_{e \in p} z_e \ge 1$  for every s-t path p.
- Think of value  $z_e$  as giving "length" of edge e. Need to test if shortest s-t path  $p^*$  has length  $\geq 1$ .
- If so, z is feasible. If not, constraint for p\* is violated by z.
- How to efficiently find shortest s-t path in a graph?
- There are efficient algorithms that **don't** check **every** path. e.g., Dijkstra's algorithm. Such topics are discussed in C&O 351.
- Another way: Let's use our favorite trick again.
   Write down IP, relax to LP, prove they are equivalent, then solve using the Ellipsoid Method!

# This can get crazy...

A common Linear Program relaxation of Traveling Salesman Problem

# Everything runs in polynomial time!

Solve by Ellipsoid Method Separation oracle uses...

Minimum S-T Cut Problem

Solve by Ellipsoid Method Separation oracle is...

**Shortest Path Problem** 

Solve by Ellipsoid Method!

## Solving Discrete Optimization Problems

- How to efficiently find shortest s-t path in a graph?
- Let's use our favorite trick again.
   Write down IP, relax to LP, prove they are equivalent, then solve using the Ellipsoid Method!
- Very general & powerful approach for solving discrete optimization problems.

Almost every problem discussed in C&O 351 and C&O 450 can be solved this way.

- Main Ingredient: Proving that the Integer Program and Linear Program give the same solution.
- We will discuss this topic in last few weeks of CO 355.