C&O 355
Lecture 12

N. Harvey

http://www.math.uwaterloo.ca/~harvey/

Topics

Polynomial-Time Algorithms

Ellipsoid Method Solves LPs in Polynomial Time
Separation Oracles

Convex Programs

Minimum s-t Cut Example

Polynomial Time Algorithms

* P =class of problems that can be solved efficiently

i.e., solved in time <n¢, for some constant ¢, where n=input size
* This is a bit vague

e Consider an LP max { c'x : Ax<b } where A has size m x d

* |Input is a binary file containing the matrix A, vectors b and ¢

* Two ways to define “input size”
A. # of bits used to store the binary input file

B. # of numbers in input file, i.e., m-d + m + d “Polynomial Time

* Leads to two definitions of “efficient algorithms” Algorithm”
A. Running time <n®where n = # bits in input file

B. Running time <n°wheren=m-d+m+d <« "Strongly Polynomial
Time Algorithm”

Algorithms for Solving LPs

Name Publication Running Time
Fourier-Motzkin Elimination | Fourier 1827, Motzkin 1936 | Exponential
Simplex Method Dantzig '47 Exponential
Perceptron Method Agmon '54, Rosenblatt '62 Exponential
Ellipsoid Method Khachiyan '79 Polynomial
Interior Point Method Karmarkar '84 Polynomial
Analytic Center Cutting Plane Method | Vaidya '89 & '96 Polynomial
Random Walk Method Bertsimas & Vempala '02-'04 | Polynomial
Boosted Perceptron Method Dunagan & Vempala '04 Polynomial
Random Shadow-Vertex Method | Kelner & Spielman '06 Polynomial

e Unsolved Problems:

Practical?
No

Yes

Sort of

No

Yes

No

Probably not
Probably not
Probably not

— Is there a strongly polynomial time algorithm?
— Does some implementation of simplex method

run in polynomial time?

Why is analyzing the simplex method hard?

e Recall how the algorithm works:
— It starts at a vertex of the polyhedron

— It moves to a “neighboring vertex” with better
objective value

— It stops when it reaches the optimum
* How many moves can this take?

* For any polyhedron, and for any two vertices,
can you move between them with few moves?

Why is analyzing the simplex method hard?

* For any polyhedron, and for any two vertices, can you
move between them with few moves?

* The Hirsch Conjecture (1957)
Let P ={ x : Ax<b } where A has size m x n.
You can move between any two vertices using
only m-n moves.

Example: A cube.
Dimension n=3.

constraints m=6.

Do m-n=3 moves suffice?

Yes!

http://en.wikipedia.org/wiki/Hirsch_conjecture

Why is analyzing the simplex method hard?

For any polyhedron, and for any two vertices, can you
move between them with few moves?

The Hirsch Conjecture (1957)

Let P ={ x : Ax<b } where A has size m x n.
You can move between any two vertices using
only m-n moves.

We have no idea how to prove this.
Theorem: [Kalai-Kleitman 1992] m'°8 "2 moves suffice.

Still the best known result. Proof amazingly beautiful!
We might prove it later in the course...

Want to prove a better bound? A group of (eminent)
mathematicians have a blog organizing a massively
collaborative project to do just that.

http://en.wikipedia.org/wiki/Hirsch_conjecture
http://gilkalai.wordpress.com/2009/08/09/the-polynomial-hirsch-conjecture-discussion-thread/

Ellipsoid Method for Solving LPs

Ellipsoid method finds feasible pointinP={x: Ax <b }

i.e., it can solve a system of inequalities
But we want to optimize, i.e., solve max { c'x : x€P }

* Restatement of Strong Duality Theorem: (from Lecture 8)
Primal has optimal solution < Dual has optimal solution
< the following system is solvable:

Ax <b Aty = ¢ y >0 cle>bly

“Solving an LP is equivalent to solving a system of inequalities’

4

= Ellipsoid method can be used to solve LPs

Ellipsoid Method for Solving LPs

Ellipsoid method finds feasible pointinP={x: Ax <b }

i.e., it can solve a system of inequalities
But we want to optimize, i.e., solve max { c'x : x€P }

Alternative approach: Binary search for optimal value

— Suppose we know optimal value is in interval [L,U]
— Add a new constraint c'x > (L+U)/2

— If LP still feasible, replace L with (L+U)/2 and repeat
— If LP not feasible, replace U with (L+U)/2 and repeat

c'x=1L

Issues with Ellipsoid Method

1. It needs to compute square roots, so it must work with
irrational numbers

* Solution: Approximate irrational numbers by rationals.
Approximations proliferate, and it gets messy.

2. Can only work with bounded polyhedra P

* Solution: If P non-empty, there exists a solution x s.t.
|x.| <U Vi, where U is a bound based on numbers in A and b.
So we can assume that -U < x, < U for all i.

3. Polyhedron P needs to contain a small ball B(z,k)

* Solution: If P={x: Ax<b } then we can perturb b by a tiny
amount. The perturbed polyhedron is feasible iff P is, and
if it is feasible, it contains a small ball.

Ellipsoid Method in Polynomial Time

Input: A polyhedron P ={ x : Ax<b } where A has size m x d.
This is given as a binary file containing matrix A and vector b.

Input size: n = # of bits used to store this binary file
Output: A point x€P, or announce “P is empty”

Boundedness: Can add constraints -U<x.<U, where U = 16d2n,
The new P is contained in a ball B(0,K), where K<n-U.

Contains ball: Add € to b, for every i, where e = 32-d°n,
The new P contains a ball of radius k = €-2-9" > 64-d%n,

Iterations: We proved last time that:
iterations < 4d(d+1)log(K/k), and this is < 40d®n?

Each iteration does only basic matrix operations and can be
implemented in polynomial time.

Conclusion: Overall running time is polynomial in n (and d)!

What Does Ellipsoid Method Need?

* The algorithm uses almost nothing about polyhedra

(basic feasible solutions, etc.)

* |t just needs to (repeatedly) answer the question:
Is zeP?

If not, give me a constraint “a™x<b” of P violated by z

Let E(M,z) be an ellipsoid s.t. PCE(M,z)
If vol E(M,z) < vol B(O,r) then Halt: “P is empty”
(TFZEP, Halt: “z€ P” ——————

Else
_ Let “ai'’x < b{” be a constraint of P violated by z \ (i.e., a;'z>h;)

letH={x:a'x<a'z} (soP C E(M,z)H)
Let E(M’,2’) be an ellipsoid covering E(M,z)H
Set M&M’ and z<-z' and go back to Start

* Input: A polytope P ={ Ax<b }
* Output: A point x€P, or announce “P is empty”

The Ellipsoid Method

The algorithm uses almost nothing about polyhedra

(basic feasible solutions, etc.)

It just needs to (repeatedly) answer the question:

s 76p? Separation Oracle
s zeP:

If not, find a vector a s.t. a'x<a'z Vx&cP

The algorithm works for any convex set P, as long as

you can give a separation oracle.
e P still needs to be bounded and contain a small ball.

Remarkable Theorem: [Grotschel-Lovasz-Schijver ‘81]
For any convex set PCIR" with a separation oracle,

you can find a feasible point efficiently.

Caveats:
 “Efficiently” depends on size of ball containing P and inside P.
* Errors approximating irrational numbers means we get “approximately feasible point”

Martin Grotschel Laszlo Lovasz Alexander Schrijver

The Ellipsoid Method For Convex Sets

Separation Oracle

s zeP?
If not, find a vector a s.t. a'x<a'z Vx&P

* Feasibility Theorem: [Grotschel-Lovasz-Schijver ‘81]
For any convex set PCIR" with a separation oracle,

you can find a feasible point efficiently.
* Ignoring (many, technical) details, this follows from ellipsoid algorithm

* Optimization Theorem: [Grotschel-Lovasz-Schijver ‘81]
For any convex set PCIR" with a separation oracle,

you can solve optimization problem max { c'x : x&€P }.

* How?
* Follows from previous theorem and binary search on objective value.

* This can be generalized to minimizing non-linear
(convex) objective functions.

Separation Oracle for Ball

Let’s design a separation oracle for the convex
set P={x: ||x||<1}=unit ball B(0,1).

Separation Oracle

|s zeP?
If not, find a vector a s.t. a'x<a'z VxcP

Input: a point zeR"
If ||z|| <1, return “Yes”
If ||z||>1, return a=z/||z||
— For all xeP we have
a'x =zx/||z|| < [|x|| Why? Cauchy-Schwarz
— For z we have
a'z=2"z/||z||=||z||>1>||x|| = a'x <a'z

Separation Oracle for Ball

Let’s design a separation oracle for the convex
set P={x: |[x||<1}=unit ball B(0,1).

Separation Oracle

s zeP?
If not, find a vector a s.t. a'x<a'z Vx&P

Conclusion: Since we were able to give a
separation oracle for P, we can optimize a linear
function over it.

Note: max { c'x : x€P } is a non-linear program.
(Actually, it’s a convex program.)

Our next topic:
convex analysis and convex programs!

Minimum s-t Cut in a Graph

* Let G=(V,E) be a graph. Fix two vertices s,teV.

* Ans-t cutis a set FCE such that, if you delete F,

then s and t are disconnected
i.e., there is no s-t path in G\F = (V,E\F).

Minimum s-t Cut in a Graph

* Let G=(V,E) be a graph. Fix two vertices s,teV.

* Ans-t cutis a set FCE such that, if you delete F,

then s and t are disconnected
i.e., there is no s-t path in G\F = (V,E\F).

These edges are an s-t cut

Minimum s-t Cut in a Graph

* Let G=(V,E) be a graph. Fix two vertices s,teV.

* Ans-t cutis a set FCE such that, if you delete F,

then s and t are disconnected
i.e., there is no s-t path in G\F = (V,E\F).

These edges are a minimum s-t cut

Minimum Cut Example

s 1

o 191

From Harris and Ross [1955]: Schematic diagram of the railway network of the Western Soviet
Union and Eastern European countries, with a maximum flow of value 163,000 tons from
Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as ‘"The bottleneck'.

Minimum s-t Cut in a Graph

e Let G=(V,E) be a graph. Fix two vertices s,teV.

 Ans-t cutis aset FCE such that, if you delete F,

then s and t are disconnected
i.e., there is no s-t path in G\F = (V,E\F).

* Can write this as an integer program.
Make variable x, for every e ¢ E.
Let P be (huge!) set of all s-t paths.

st Y ze >1 VpeP

Te € {0,1} Vee E

Minimum s-t Cut in a Graph

Can write this as an integer program.
Make variable x, for every e € E.
Let P be (huge!) set of all s-t paths.

We don’t know how to deal with integer programs,
so relax it to a linear program.

min E Te

eck

st. Y e >1 VpeP
ecp
Te >0 Vee K

Theorem: Every BFS of this LP has x,€{0,1} Ve&cE.

(So integer program and linear program are basically the same!)

Proof: Maybe later in the course, maybe in C&O 450.

Minimum s-t Cut in a Graph
min 2{:3@

eclk
st. Y ze >1 VpeP
ecp

Te >0 Vee E

How can we solve this LP?

If graph has |V|=n, then |P| can be enormous!
(Exponential in n).

Our local-search algorithm will take a very long time.
Can use Ellipsoid method, if we can give separation oracle.

Minimum s-t Cut in a Graph
min Z:Ue

eck

st. Y ze >1 VpeP
ecp
Te >0 Vee E

s 7€P? Separation Oracle

If not, find a vector a s.t. a'x<a'z Vx&P

Can use Ellipsoid method, if we can give separation oracle.
If | give you z, can you decide if it is feasible?
Need to testif Xocp 2z, > 1 for every s-t path p.

Think of value z_ as giving “length” of edge e.
Need to test if shortest s-t path p* has length > 1.

If so, z is feasible. If not, constraint for p* is violated by z.

Minimum s-t Cut in a Graph

If | give you z, can you decide if it is feasible?
Need to test if 2ocpz. > 1 for every s-t path p.

Think of value z,_ as giving “length” of edge e.
Need to test if shortest s-t path p” has length > 1.

If so, z is feasible. If not, constraint for p” is violated by z.

How to efficiently find shortest s-t path in a graph?

There are efficient algorithms that don’t check every path.
e.g., Dijkstra’s algorithm. Such topics are discussed in C&O 351.

Another way: Let’s use our favorite trick again.
Write down IP, relax to LP, prove they are equivalent,
then solve using the Ellipsoid Method!

This can get crazy...

-

_

A common Linear Program
relaxation of
Traveling Salesman Problem

\

J

Everything runs in
polynomial time!

Solve by Ellipsoid Method
Separation oracle uses...

Minimum S-T Cut Problem]

Solve by Ellipsoid Method
Separation oracle is...

Shortest Path Problem J

Solve by Ellipsoid Method!

Solving Discrete Optimization Problems

How to efficiently find shortest s-t path in a graph?

Let’s use our favorite trick again.
Write down IP, relax to LP, prove they are equivalent,
then solve using the Ellipsoid Method!

Very general & powerful approach for solving discrete

optimization problems.
Almost every problem discussed in C&0O 351 and C&O 450 can be solved this way.

Main Ingredient: Proving that the Integer Program and
Linear Program give the same solution.

We will discuss this topic in last few weeks of CO 355.

