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Topics

• Polynomial-Time Algorithms

• Ellipsoid Method Solves LPs in Polynomial Time

• Separation Oracles

• Convex Programs

• Minimum s-t Cut Example



Polynomial Time Algorithms
• P = class of problems that can be solved efficiently

i.e., solved in time ·nc, for some constant c, where n=input size

• This is a bit vague

• Consider an LP max { cTx : Ax·b } where A has size m x d

• Input is a binary file containing the matrix A, vectors b and c

• Two ways to define “input size”

A. # of bits used to store the binary input file

B. # of numbers in input file, i.e., m¢d + m + d

• Leads to two definitions of “efficient algorithms”

A. Running time ·nc where n = # bits in input file

B. Running time ·nc where n = m¢d + m + d

“Polynomial Time
Algorithm”

“Strongly Polynomial
Time Algorithm”



Algorithms for Solving LPs

• Unsolved Problems:
– Is there a strongly polynomial time algorithm?

– Does some implementation of simplex method 
run in polynomial time?

Name Publication Running Time Practical?

Fourier-Motzkin Elimination Fourier 1827, Motzkin 1936 Exponential No

Simplex Method Dantzig '47 Exponential Yes

Perceptron Method Agmon '54, Rosenblatt '62 Exponential Sort of

Ellipsoid Method Khachiyan '79 Polynomial No

Interior Point Method Karmarkar '84 Polynomial Yes

Analytic Center Cutting Plane Method Vaidya '89 & '96 Polynomial No

Random Walk Method Bertsimas & Vempala '02-'04 Polynomial Probably not

Boosted Perceptron Method Dunagan & Vempala '04 Polynomial Probably not

Random Shadow-Vertex Method Kelner & Spielman '06 Polynomial Probably not



• Recall how the algorithm works:

– It starts at a vertex of the polyhedron

– It moves to a “neighboring vertex” with better 
objective value

– It stops when it reaches the optimum

• How many moves can this take?

• For any polyhedron, and for any two vertices, 
can you move between them with few moves?

Why is analyzing the simplex method hard?



• For any polyhedron, and for any two vertices, can you 
move between them with few moves?

• The Hirsch Conjecture (1957)
Let P = { x : Ax·b } where A has size m x n.
You can move between any two vertices using
only m-n moves.

Example: A cube.
Dimension n=3.
# constraints m=6.
Do m-n=3 moves suffice?

Yes!

Why is analyzing the simplex method hard?

http://en.wikipedia.org/wiki/Hirsch_conjecture


Why is analyzing the simplex method hard?
• For any polyhedron, and for any two vertices, can you 

move between them with few moves?

• The Hirsch Conjecture (1957)
Let P = { x : Ax·b } where A has size m x n.
You can move between any two vertices using
only m-n moves.

• We have no idea how to prove this.

• Theorem: [Kalai-Kleitman 1992] mlog n+2 moves suffice.

• Still the best known result. Proof amazingly beautiful! 
We might prove it later in the course…

• Want to prove a better bound? A group of (eminent)

mathematicians have a blog organizing a massively 
collaborative project to do just that.

http://en.wikipedia.org/wiki/Hirsch_conjecture
http://gilkalai.wordpress.com/2009/08/09/the-polynomial-hirsch-conjecture-discussion-thread/


Ellipsoid Method for Solving LPs
• Ellipsoid method finds feasible point in P = { x : Ax · b }

i.e., it can solve a system of inequalities
• But we want to optimize, i.e., solve max { cTx : x2P }

• Restatement of Strong Duality Theorem: (from Lecture 8)

Primal has optimal solution  , Dual has optimal solution
, the following system is solvable:

“Solving an LP is equivalent to solving a system of inequalities”

) Ellipsoid method can be used to solve LPs



Ellipsoid Method for Solving LPs
• Ellipsoid method finds feasible point in P = { x : Ax · b }

i.e., it can solve a system of inequalities
• But we want to optimize, i.e., solve max { cTx : x2P }

• Alternative approach: Binary search for optimal value
– Suppose we know optimal value is in interval [L,U]

– Add a new constraint cTx ¸ (L+U)/2

– If LP still feasible, replace L with (L+U)/2 and repeat

– If LP not feasible, replace U with (L+U)/2 and repeat

P

cTx = L cTx = U
cTx¸(L+U)/2



Issues with Ellipsoid Method
1. It needs to compute square roots, so it must work with 

irrational numbers

• Solution: Approximate irrational numbers by rationals.
Approximations proliferate, and it gets messy.

2. Can only work with bounded polyhedra P

• Solution: If P non-empty, there exists a solution x s.t.
|xi|·U 8i, where U is a bound based on numbers in A and b.
So we can assume that -U · xi · U for all i.

3. Polyhedron P needs to contain a small ball B(z,k)

• Solution: If P = { x : Ax·b } then we can perturb b by a tiny 
amount. The perturbed polyhedron is feasible iff P is, and
if it is feasible, it contains a small ball.



Ellipsoid Method in Polynomial Time

• Input: A polyhedron P = { x : Ax·b } where A has size m x d.
This is given as a binary file containing matrix A and vector b.

• Input size: n = # of bits used to store this binary file

• Output: A point x2P, or announce “P is empty”

• Boundedness: Can add constraints -U·xi·U, where U = 16d2n.
The new P is contained in a ball B(0,K), where K<n¢U.

• Contains ball: Add ² to bi, for every i, where ² = 32-d2n.
The new P contains a ball of radius k = ²¢2-dn > 64-d2n.

• Iterations: We proved last time that:
# iterations · 4d(d+1)log(K/k), and this is < 40d6n2

• Each iteration does only basic matrix operations and can be 
implemented in polynomial time.

• Conclusion: Overall running time is polynomial in n (and d)!



What Does Ellipsoid Method Need?

• Input: A polytope P = { Ax·b }
• Output: A point x2P, or announce “P is empty”

Let E(M,z) be an ellipsoid s.t. PµE(M,z)
If vol E(M,z) < vol B(0,r) then Halt: “P is empty”
If z2P, Halt: “z 2 P”
Else

Let “ai
Tx · bi” be a constraint of P violated by z   (i.e., ai

Tz>bi)
Let H = { x : ai

Tx · ai
Tz }     (so P µ E(M,z)ÅH)

Let E(M’,z’) be an ellipsoid covering E(M,z)ÅH
Set MM’ and zz’ and go back to Start

• The algorithm uses almost nothing about polyhedra
(basic feasible solutions, etc.)

• It just needs to (repeatedly) answer the question:
Is z2P?
If not, give me a constraint “aTx·b” of P violated by z



The Ellipsoid Method
• The algorithm uses almost nothing about polyhedra

(basic feasible solutions, etc.)

• It just needs to (repeatedly) answer the question:

• The algorithm works for any convex set P, as long as
you can give a separation oracle.
• P still needs to be bounded and contain a small ball.

• Remarkable Theorem: [Grotschel-Lovasz-Schijver ‘81]

For any convex set PµRn with a separation oracle,

you can find a feasible point efficiently.
• Caveats:
• “Efficiently” depends on size of ball containing P and inside P.
• Errors approximating irrational numbers means we get “approximately feasible point”

Is z2P?
If not, find a vector a  s.t.  aTx<aTz 8x2P

Separation Oracle



Martin Grotschel Laszlo Lovasz Alexander Schrijver



The Ellipsoid Method For Convex Sets

• Feasibility Theorem: [Grotschel-Lovasz-Schijver ‘81]

For any convex set PµRn with a separation oracle,

you can find a feasible point efficiently.
• Ignoring (many, technical) details, this follows from ellipsoid algorithm

• Optimization Theorem: [Grotschel-Lovasz-Schijver ‘81]

For any convex set PµRn with a separation oracle,

you can solve optimization problem max { cTx : x2P }.
• How?
• Follows from previous theorem and binary search on objective value.

• This can be generalized to minimizing non-linear 
(convex) objective functions.

Is z2P?
If not, find a vector a  s.t.  aTx<aTz 8x2P

Separation Oracle



Separation Oracle for Ball
• Let’s design a separation oracle for the convex 

set P = { x : kxk·1 } = unit ball B(0,1).

• Input: a point z2Rn

• If kzk·1, return “Yes”
• If kzk>1, return a=z/kzk

– For all x2P we have
aTx = zTx/kzk · kxk Why?

– For z we have
aTz = zTz/kzk=kzk> 1¸kxk ) aTx < aTz

Is z2P?
If not, find a vector a  s.t.  aTx<aTz 8x2P

Separation Oracle

Cauchy-Schwarz



Separation Oracle for Ball
• Let’s design a separation oracle for the convex 

set P = { x : kxk·1 } = unit ball B(0,1).

• Conclusion: Since we were able to give a 
separation oracle for P, we can optimize a linear 
function over it.

• Note: max { cTx : x2P } is a non-linear program.
(Actually, it’s a convex program.)

• Our next topic:
convex analysis and convex programs!

Is z2P?
If not, find a vector a  s.t.  aTx<aTz 8x2P

Separation Oracle



Minimum s-t Cut in a Graph

• Let G=(V,E) be a graph. Fix two vertices s,t2V.

• An s-t cut is a set FµE such that, if you delete F, 
then s and t are disconnected
i.e., there is no s-t path in G\F = (V,E\F).

s t



Minimum s-t Cut in a Graph

• Let G=(V,E) be a graph. Fix two vertices s,t2V.

• An s-t cut is a set FµE such that, if you delete F, 
then s and t are disconnected
i.e., there is no s-t path in G\F = (V,E\F).

s t

These edges are an s-t cut



Minimum s-t Cut in a Graph

• Let G=(V,E) be a graph. Fix two vertices s,t2V.

• An s-t cut is a set FµE such that, if you delete F, 
then s and t are disconnected
i.e., there is no s-t path in G\F = (V,E\F).

s t

These edges are a minimum s-t cut



Minimum Cut Example

From Harris and Ross [1955]: Schematic diagram of the railway network of the Western Soviet
Union and Eastern European countries, with a maximum flow of value 163,000 tons from
Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as `The bottleneck'.



Minimum s-t Cut in a Graph
• Let G=(V,E) be a graph. Fix two vertices s,t2V.

• An s-t cut is a set FµE such that, if you delete F,
then s and t are disconnected
i.e., there is no s-t path in GnF = (V,EnF).

• Can write this as an integer program.
Make variable xe for every e 2 E.
Let P be (huge!) set of all s-t paths.



Minimum s-t Cut in a Graph
• Can write this as an integer program.

Make variable xe for every e 2 E.
Let P be (huge!) set of all s-t paths.

• We don’t know how to deal with integer programs,
so relax it to a linear program.

• Theorem: Every BFS of this LP has xe2{0,1}  8e2E.
(So integer program and linear program are basically the same!)

• Proof: Maybe later in the course, maybe in C&O 450.



Minimum s-t Cut in a Graph

• How can we solve this LP?
If graph has |V|=n, then |P| can be enormous!
(Exponential in n).

• Our local-search algorithm will take a very long time.

• Can use Ellipsoid method, if we can give separation oracle.



Minimum s-t Cut in a Graph

• Can use Ellipsoid method, if we can give separation oracle.

• If I give you z, can you decide if it is feasible?

• Need to test if §e2p ze ¸ 1  for every s-t path p.

• Think of value ze as giving “length” of edge e.
Need to test if shortest s-t path p* has length ¸ 1.

• If so, z is feasible. If not, constraint for p* is violated by z.

Is z2P?
If not, find a vector a  s.t.  aTx<aTz 8x2P

Separation Oracle



Minimum s-t Cut in a Graph
• If I give you z, can you decide if it is feasible?

• Need to test if §e2p ze ¸ 1  for every s-t path p.

• Think of value ze as giving “length” of edge e.
Need to test if shortest s-t path p* has length ¸ 1.

• If so, z is feasible. If not, constraint for p* is violated by z.

• How to efficiently find shortest s-t path in a graph?

• There are efficient algorithms that don’t check every path.
e.g., Dijkstra’s algorithm. Such topics are discussed in C&O 351.

• Another way: Let’s use our favorite trick again.
Write down IP, relax to LP, prove they are equivalent, 
then solve using the Ellipsoid Method!



This can get crazy…
A common Linear Program

relaxation of
Traveling Salesman Problem

Minimum S-T Cut Problem

Shortest Path Problem

Solve by Ellipsoid Method
Separation oracle uses…

Solve by Ellipsoid Method
Separation oracle is…

Solve by Ellipsoid Method!

Everything runs in 
polynomial time!



Solving Discrete Optimization Problems
• How to efficiently find shortest s-t path in a graph?

• Let’s use our favorite trick again.
Write down IP, relax to LP, prove they are equivalent, 
then solve using the Ellipsoid Method!

• Very general & powerful approach for solving discrete 
optimization problems.
Almost every problem discussed in C&O 351 and C&O 450 can be solved this way.

• Main Ingredient: Proving that the Integer Program and 
Linear Program give the same solution.

• We will discuss this topic in last few weeks of CO 355.


