
Random Forests: Presentation Summary

Theodoro Koulis

April 1, 2003

1



1 Introduction

Random forests are a combination of tree predictors, where each tree in the forest depends on
the value of some random vector θ. We have already seen an example of random forests when
bagging was introduced in class. In bagging, one generates a sequence of trees, one from each
bootstrapped sample. In this case, the random vector θ represents a single bootstrapped
sample. Please note that in this report, we shall discuss random forests in the context of
classification.

Note: The ideas presented here can be found in the technical report by Breiman (1999).

In essence, random forests are constructed in the following manner:

• At step k, a θk is generated.

• The θk’s are i.i.d.

• A tree predictor h(x, θk) is then constructed using the data chosen by θk.

• A large number of trees are then generated, k = 1, · · · , K (usually K >= 100).

• After a large number of trees have been generated, they all vote for the most popular
class.

• The random forest then classifies x by taking the most popular voted class from all the
tree predictors in the forest (h(x, θk), k = 1, · · · , K).

Example 1 (Bagging). Let’s look at bagging with a two class problem:

• The θk’s pick out the training set data to be used in the bootstrapped sample.

• θk’s consist of integers between 1 and M , where M is the training set size.

• We may have θ5 = (3, 4, 56, 3, · · · , 2).

• Table 1 gives the relationship between tree classifiers and the random vectors θk.

h(x, θ1) h(x, θ2) · · · h(x, θN)
classifier from classifier from · · · classifier from
1’st sample 2’nd sample N ’th sample

Table 1: Random Forest in Bagging

• Let P =
∑

I(h(x, θk) = 1).

• Let Q =
∑

I(h(x, θk) = 0).

• If P > Q then the forest classifies x as 1

• If Q > P then the forest classifies x as 0

2



2 Theoretical Background

In this section, we will discuss some theoretical aspects of random forests. In particular, we
shall see that random forests do not over-fit the data. This result will be associated with two
notions of strength and correlation. We shall follow the same arguments found in Breiman
(1999).

2.1 Random Forests Converge

Let h1(x), · · · , hK(x) be a collection of classifiers. Also, let Y, X be a random vector sampled
(from some distribution) from the training data. We now define the the margin function of
a collection of classifiers.

Definition 1 (Margin Function). The margin function for a collection of classifiers is
defined as

mg(X, Y) =

∑K

k=1
I(hk(X) = Y)

K
−max

j 6=Y

[

∑K

k=1
I(hk(X) = j)

K

]

(1)

where, I(·) is the indicator function.

Note the following:

If mg(X, Y) > 0 then the set of classifiers votes for the correct classification.

If mg(X, Y) < 0 then the set of classifiers votes for a classification that is incorrect.

Definition 2. The generalization error is

PE∗ = PX,Y (mg(X, Y ) < 0) (2)

This probability is over the space X, Y .

The generalization error is simply the misclassification rate that we are familiar with. In the
context of random forests, each classifier hk(x) is just h(x, θk). From now on, the margin
function and the generalization error will be with respect to the random forest h(x, θk),
k = 1, · · · , K. It was shown in Breiman (1999) that as the random forest gets larger
(K →∞)

PE∗
→ PX,Y

(

Pθ(h(x, θ) = Y))−max
j 6=Y

Pθ(h(x, θ) = j)) < 0

)

(3)

This means that the generalization error has a limiting value and that random forests do
not over-fit the data.

3



2.2 Correlation and Strength

Now we shall see what affects the generalization error for a random forest. The margin
function for a forest is:

mr(X, Y) = Pθ(h(x, θ) = Y))−max
j 6=Y

PΘ(h(x, θ) = j)) (4)

Let

s = EX,Y (mr(X, Y )) , (5)

the expected strength of the classifiers in a random forest. The strength can be interpreted
as a measure of accuracy for each tree in the forest. On top of this we can define the raw
margin function

rmg(θ, X, Y) = I(h(X, θ) = Y )− I(h(X, θ) = ĵ(X, Y ))) , (6)

where ĵ(X, Y ) is the most probable predicted class other than Y . One can calculate the cor-
relation between any two raw margin functions, rmg(θ, X, Y) and rmg(θ′, X, Y) say. Denote
this correlation by ρ(θ, θ′). Also, let ρ be the mean correlation (averaged across all possible
pairs (θ, θ′)). Then one can show that (Breiman (1999))

PE∗
≤ ρ

(1− s2)

s2
. (7)

The idea is that one would prefer to use random forests with small ρ and to get s close to 1.

Example 2 (Two Class Problem). In a two class problem, the margin function of a

random forest is

mr(X, Y) = 2Pθ(h(x, θ) = Y )− 1 (8)

If s > 0 is required, then one would require a random forest such that

EX,Y (Pθ(h(x, θ) = Y )) > 0.5 . (9)

The last equation simply states that we would like to do better at classifying than random

chance would allow.

4



3 Random Selection

In this section we will introduce a random forest which is similar to bagging. The usual tree
construction such as CART, a search is performed over all variables to find the best split at
a given node. Usually the tree is grown as much as possible and then it is pruned back (1-SE
rule for instance). Breiman (1999) introduces the idea of random inputs in tree construction.
The following describes random input selection to create random forests.

• Start with a bootstrap sample. Let M be fixed and M << # of variables.

• At each node, select M variables at random.

• Search for the best split over these M variables.

• The splitting criterion for random input selection is the GINI criterion.

• The largest possible tree is grown and not pruned.

• This is done for each bootstrap sample.

• One then bags the results to enhance accuracy.

Random input selection is faster than methods such as bagging which usually use a greedy
search algorithm to find the best split points. The resulting set of tree classifiers is then a
random forest.

4 Out-of-Bag Estimation

The use of bootstrapped samples to grow each tree brings us to the notion of out-of-bag
estimation. Let T = the training set and Tk = the k’th bootstrapped sample associated with
h(X, Θk). For each x, y in the training set, aggregate the votes only for those classifiers for
which Tk does not contain x, y. These are the out-of-bag data points. Bagging these points
results in out-of-bag classification. Since these points are independent of the classifiers, we
can use them to get an unbiased error rate. This practically eliminates the need for a test set
or cross-validation. More details on out-of-bag estimation can be found in Breiman (2003).

5



0 20 40 60 80 100

0.
06

0.
08

0.
10

0.
12

0.
14

rf1

trees

E
rr

or

Figure 1: Out-of-bag Error as Forest Gets Larger, M = 7

5 SPAM Data

In this section we shall illustrate the methods of random input selection and out-of-bag
estimation with the SPAM data set that we are familiar with from class (Hopkins et al.
(1999)).

First we used SPAM data with a training set and test set. This is redundant since the out-
of-bag estimates make test sets obsolete. For demonstration purposes, they were included in
the analysis. We used M = 7 for the random input selection. Here is the result:

OOB estimate of error rate: 5.84%
Confusion matrix:

0 1 class.error
0 1762 65 0.03557745
1 114 1124 0.09208401

Test set error rate: 5.34%
Confusion matrix:

0 1 class.error
0 928 33 0.03433923
1 49 526 0.08521739

As you can see, the out-of-bag error estimate is close to the test set estimate. Recall that this
was not always the case with CART or RPART. This compares very well with boosting. The
test set error rate obtained in class using boosting was around 5.2%. Figure 1 shows that
the estimate for the error rate converges to a lower-bound as expected from the theoretical
results of random forests.

We re-performed the analysis with M = 2. Here is the result:

6



0 20 40 60 80 100

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

rf2

trees

E
rr

or

Figure 2: Out-of-bag Error as Forest Gets Larger, M = 2

OOB estimate of error rate: 6.43%
Confusion matrix:

0 1 class.error
0 1770 57 0.03119869
1 140 1098 0.11308562

Test set error rate: 6.18%
Confusion matrix:

0 1 class.error
0 921 40 0.04162331
1 55 520 0.09565217

As you can see there is a sligh improvement when M is larger. Figure 2 illustrates the
convergence of the generalization error as before.

7



6 Importance of Variables

There are four measures of variable importance in random forests

• Measure 1: Get the left out cases for the k’th tree. Randomly permute values of the
m’th covariate. Compute the error rate. The amount by which this new error rate
exceeds the original out-of-bag estimate is the importance of the m’th covariate

• Measure 2: Instead of error, use the empirical margin function for each permuted
covariate. The 2’nd measure is the average lowering of the of the margin.

• Measure 3: Using the same permute values, count how many margins are lowered
minus the number raised.

• Measure 4: The splitting criterion for random input selection is the GINI criterion.
Measure 4 is the sum of all decreases in the GINI criterion due to a given a variable,
normalized by the number of trees.

We can use the SPAM data to illustrate these measures. The figure on the next page shows
the importance of the covariates using the 4 measures described above. The first measure is
the harshest one of all, and this is usually the case. Measure 4 is similar to the importance
measure used in boosting (as seen in class).

8



wf.make
wf.address

wf.all
wf.3d

wf.our
wf.internet

wf.order
wf.mail

wf.receive
wf.will

wf.people
wf.report

wf.addresses
wf.free

wf.business
wf.email

wf.you
wf.credit
wf.your
wf.font
wf.000

wf.money
wf.hpl

wf.george
wf.650
wf.lab

wf.labs
wf.telnet

wf.857
wf.data
wf.415

wf.85
wf.technology

wf.1999
wf.parts

wf.pm
wf.direct

wf.cs
wf.meeting
wf.original
wf.project

wf.re
wf.table

wf.conference
cf.semicolon

cf.roundbkt
cf.sqbkt
cf.dollar

cf.pound
capavg
captot
wf.hp

wf.edu
wf.over

caplong
cf.exclaim
wf.remove

Importance

0 2 4 6

Measure 1

(a) Measure 1, M = 7

wf.parts
wf.table

wf.cs
wf.857

wf.3d
wf.report

wf.conference
wf.415

wf.make
wf.project
cf.pound

wf.people
wf.addresses

wf.address
wf.direct
wf.over
wf.pm

cf.sqbkt
wf.original

wf.telnet
wf.85

wf.data
wf.lab

wf.font
wf.mail

wf.technology
cf.semicolon

wf.email
wf.all

wf.labs
wf.order

cf.roundbkt
wf.credit

wf.650
wf.will
wf.re

wf.meeting
wf.receive
wf.internet

wf.1999
wf.business

wf.you
wf.our
wf.edu
wf.hpl

wf.money
wf.your

wf.george
wf.000
wf.free
captot

cf.dollar
capavg

wf.remove
cf.exclaim

caplong
wf.hp

Importance

0 1 2 3 4 5 6

Measure 2

(b) Measure 2, M = 7

wf.parts
wf.table

wf.cs
wf.report

wf.3d
wf.857

wf.make
wf.conference

wf.people
wf.415
wf.over

wf.project
cf.sqbkt

cf.pound
wf.addresses

wf.address
wf.pm
wf.85

wf.telnet
wf.direct

wf.original
wf.all

wf.data
wf.mail
wf.lab

cf.semicolon
wf.font

wf.email
wf.technology

wf.labs
cf.roundbkt

wf.will
wf.650

wf.order
wf.credit

wf.re
wf.meeting

wf.1999
wf.our

wf.internet
wf.you

wf.receive
wf.business

wf.edu
wf.hpl

wf.your
wf.george
wf.money

captot
capavg
wf.000
wf.free

caplong
cf.exclaim

cf.dollar
wf.hp

wf.remove

Importance

0.0 0.1 0.2 0.3 0.4

Measure 3

(c) Measure 3, M = 7

wf.table
wf.parts

wf.cs
wf.857
wf.415

wf.3d
wf.direct

wf.conference
wf.telnet

wf.lab
wf.original
wf.project

wf.font
wf.addresses

wf.85
wf.labs

cf.sqbkt
wf.pm

wf.report
wf.credit

wf.technology
wf.make

wf.650
wf.order
wf.data

wf.meeting
wf.address

cf.pound
cf.semicolon

wf.over
wf.people

wf.email
wf.re

wf.receive
wf.mail

wf.all
wf.business

wf.internet
wf.george

wf.hpl
wf.1999

cf.roundbkt
wf.edu
wf.will
wf.our
wf.you
wf.000

wf.money
wf.hp

captot
wf.remove

caplong
capavg
wf.your
wf.free

cf.dollar
cf.exclaim

Importance

0.0 0.2 0.4 0.6 0.8 1.0

Measure 4

(d) Measure 4, M = 7

9



7 Conclusions

We have seen that random forests have a limiting generalization error which means that no
over-fitting is possible. This is a good feature which allows one to grow a random forest
as much as possible to obtain a generalization error that is close to the lower-bound (in
principle). Also, there is a relationship between strength, correlation and error. It is not
clear at present how one could improve strength and correlation or even how to construct a
random forest with optimal correlation and strength. This would be a great topic for future
research. As seen with the SPAM data, the precision in random forests is comparable to
that of boosting methods. Another neat feature of random forests is the use of out-of-bag
estimates which essentially eliminates the need for test data. Although not discussed here,
random forests can be easily extended to regression type settings. With further research,
random forests has the potential to become a powerful tool in tree based classification and
regression methods.

10



References

Breiman, Leo (1999). Random Forests – Random Features.
http://oz.berkeley.edu/users/breiman/randomforest2001.pdf.

Breiman, Leo (2003). Manual on setting up, using, and understanding random forests
v3.1. http://oz.berkeley.edu/users/breiman/Using random forests V3.1.pdf.

Hopkins, Mark, Reeber, Eric, Forman, George, and Suermondt, Jaap (1999).
SPAM E-mail Database. Donor: George Forman (gforman at nospam hpl.hp.com),
Hewlett-Packard Labs, 1501 Page Mill Rd., Palo Alto, CA 94304.
URL http://www-stat-class.stanford.edu/ tibs/ElemStatLearn/datasets/spam.data

11


