Hyperspectral images as function-valued mappings, their self-similarity and a class of fractal transforms

E.R. Vrscay1 D. Otero1 Davide La Torre2

Department of Applied Mathematics, Faculty of Mathematics, University of Waterloo, Waterloo, ON, Canada

Department of Economics, Business and Statistics, University of Milan, Milan Italy

ervrscay@uwaterloo.ca, dotero@uwaterloo.ca, davide.latorre@unimi.it

1 Introduction

2 A complete metric space \((Y, d_Y)\) of function-valued images

3 Self-similarity of greyscale images

4 Self-similarity of hyperspectral images

5 A class of block fractal transforms on hyperspectral images
Outline

1. Introduction
2. A complete metric space \((Y, d_Y)\) of function-valued images
3. Self-similarity of greyscale images
4. Self-similarity of hyperspectral images
5. A class of block fractal transforms on hyperspectral images
This study represents ongoing work on the development of multifunction representations of images, in particular,

- **Measure-valued image functions:**

- **Function-valued image functions:**
Our work is involved with generalizations of the usual mathematical representation of a (greyscale/colour) image, i.e.,
\[u : X \rightarrow R_g, \]
where
- \(X \): base or pixel space, the support of the image, \(X \subset \mathbb{R}^n, n = 1, 2, 3, \)
- \(R_g \subset \mathbb{R} \) (or \(\mathbb{R}^3 \)): the greyscale (or colour) range.
Representations of image functions

Greyscale-valued image function
At each pixel $x \in X$, $u(x)$ is a **real value** (or a vector of real values, i.e., “RGB”)

Function-valued image function
At each pixel $x \in X$, $u(x)$ is a **real-valued function**, i.e., $u(x; t)$

Example: In multispectral/hyperspectral imaging, u represents the **spectral density function**. The values $u(x, t_k)$, $t_1 < t_2 < \cdots < t_M$ represent intensities of reflected radiation from point x on ground, as captured by satellite reading, at a discrete set of wavelengths, t_k.

Diagram:
- **(a) Greyscale-valued image function**
- **(b) Function-valued image function**
Hyperspectral imaging
In practical situations, multispectral/hyperspectral images may be represented by vector-valued functions,

\[u : X \rightarrow \mathbb{R}^M, \]

e.g.,

\[u(x) = (u_1(x), u_2(x), \cdots, u_M(x)), \]

where

\[u_k : X \rightarrow \mathbb{R}, \quad 1 \leq k \leq M \]

are the usual real-valued image functions. (Of course, RGB images are special, low-dimensional, cases.)

That being said, it is instructive to start with the continuous, multifunction approach, from which definitions over vector-valued image functions naturally follow.
Introduction

A complete metric space (Y, d_Y) of function-valued images

Self-similarity of greyscale images

Self-similarity of hyperspectral images

A class of block fractal transforms on hyperspectral images
Introduction A complete metric space \((Y, d_Y)\) of function-valued images

Self-similarity of greyscale images Self-similarity of hyperspectral images A class of block fractal transforms on hyperspectral images

\[x(t), u(x, t) \]

\[y(x, t), v(x, t) \]

(a) (b)

Linear space: For \(u, v : X \rightarrow L^2(R_{g}) \), define

\[(c_1 u + c_2 v)(x, t) = c_1 u(x, t) + c_2 v(x, t), \quad \text{etc. (linear space)}\]

Normed linear space \(Y \): For \(u : X \rightarrow L^2(R_{g}) \), norm of \(u(x) \) is given by

\[\| u(x) \|_{L^2(R_{g})}^2 = \int_{R_{g}} u(x, t)^2 \, dt. \]

Integrate over all \(x \in X \) to define norm of \(u \):

\[\| u \|_{Y}^2 = \int_X \| u(x) \|_{L^2(R_{g})}^2 \, dx. \]
Complete metric space \((Y, d_Y)\):

1. At each \(x \in X\), compute \(L^2\) distance between functions \(u(x)\) and \(v(x)\):

 \[
 \|u(x) - v(x)\|^2_{L^2(R_g)} = \int_{R_g} [u(x, t) - v(x, t)]^2 \, dt
 \]

2. Integrate over all \(x \in X\):

 \[
 \left[d_Y(u, v) \right]^2 = \int_X \|u(x) - v(x)\|^2_{L^2(R_g)} \, dx.
 \]
Hilbert space:
Since $u(x), v(x) \in L^2(R_g)$, we may compute their inner product $\langle u(x), v(x) \rangle_{L^2(R_g)}$. Integrate over all $x \in X$ to define inner product between function-valued image mappings,

$$\langle u, v \rangle_Y = \int_X \langle u(x), v(x) \rangle_{L^2(R_g)} \, dx, \quad u, v \in Y.$$
A complete metric space \((Y, d_Y)\) of function-valued images

Self-similarity of greyscale images
Self-similarity of hyperspectral images
A class of block fractal transforms on hyperspectral images

Complete metric space \((Y, d_Y)\) of function-valued image mappings

\[Y = \{ u : X \rightarrow L^2(R_g) \mid \|u\|_Y < \infty \} \]

where

\[\|u\|^2_Y = \int_X \|u(x)\|^2_{L^2(R_g)} \, dx \]

In our applications,

\[R_g = [a, b] \subset R_+ = [0, \infty). \]
Introduction

A complete metric space \((Y, d_Y)\) of function-valued images

Self-similarity of greyscale images

Self-similarity of hyperspectral images

A class of block fractal transforms on hyperspectral images

Outline

1. Introduction
2. A complete metric space \((Y, d_Y)\) of function-valued images
3. Self-similarity of greyscale images
4. Self-similarity of hyperspectral images
5. A class of block fractal transforms on hyperspectral images
Self-similarity of greyscale images

It was shown that images generally possess a considerable degree of **affine self-similarity**, i.e.,

Subblocks of an image are well approximated by a number of other subblocks – with the possible help of affine greyscale transformations

Self-similarity of images has been implicitly used in a number of **nonlocal image processing schemes**, including

- Yes, vector quantization! (Fractal image coding is, in fact, “self-vector quantization”.)
A simple model of affine image self-similarity

For simplicity, consider the discrete case: X is an $n_1 \times n_2$ pixel array. Then:

1. Let \mathcal{R} be a set of $n \times n$-pixel **range** subblocks R_i, $1 \leq i \leq N_R$, such that $\bigcup_i R_i = X$. (For convenience, assume that they are nonoverlapping.)

2. Let \mathcal{D} denote a set of $m \times m$-pixel **domain** subblocks D_j, $1 \leq j \leq N_D$, where $m \geq n$ and $\bigcup_i D_i = X$.

3. Let $w_{ij}: D_j \rightarrow R_i$ denote affine geometric transformation (along with decimation, if necessary). There are 8 possible mappings of squares to squares - here we consider only one (no rotation/flipping).

In ICIAR08 study, 8 × 8-pixel range blocks R_j and 8 × 8- or 16 × 16-pixel domain blocks were used.
How well are subimages $u(R_i)$ approximated by subimages $u(D_j)$?

$$u(R_i) \approx \phi_i u(w_{ij}^{-1}(R_i)), \quad 1 \leq i \leq N_R,$$

where $\phi_i : \mathbb{R} \rightarrow \mathbb{R}$ is a greyscale transformation.

Left: Range block R_i and associated domain block D_i. Right: Greyscale mapping ϕ_i from $u(D_j)$ to $u(R_i)$.

Introduction A complete metric space (Y, d_Y) of function-valued images Self-similarity of greyscale images Self-similarity of hyperspectral images A class of block fractal transforms on hyperspectral images
Consider **affine greyscale maps**, i.e.,

\[\phi(t) = \alpha t + \beta \]

Simple in form, yet sufficiently flexible

Then examine the distribution of \(L^2 \) (RMS) approximation errors \(\Delta_{ij} \), \(1 \leq i \leq N_R \), \(1 \leq j \leq N_D \):

\[\Delta_{ij} = \| u(R_i) - \phi(u(w_{ij}^{-1}(R_i))) \|_2 \]

Note that all images are assumed to be **normalized**, i.e., \(0 \leq u_{pq} \leq 1 \), so that

\[0 \leq \Delta_{ij} \leq 1 \]
Four particular cases of self-similarity considered:

1. **Case 1 (Purely translational):** The w_{ij} are translations and $\alpha_i = 1$, $\beta_i = 0$, i.e.,

 \[u(R_i) \approx u(D_j) \]

 Employed in nonlocal means denoising

2. **Case 2 (Translational + greyscale shift):** The w_{ij} are translations and $\alpha_i = 1$, optimize β:

 \[u(R_i) \approx u(D_j) + [u(R_i) - u(D_j)] \]

3. **Case 3 (Affine, same scale):** The w_{ij} are translations but we optimize α and β:

 \[u(R_i) \approx \alpha_i u(D_j) + \beta_i \]

4. **Case 4 (Affine, cross-scale):** The w_{ij} are affine spatial contractions (which involve decimations in pixel space).

 \[u(R_i) \approx \alpha_i u(w_{ij}^{-1}(R_i)) + \beta_i \]

 Employed in fractal image coding
Same-scale self-similarity – Cases 1, 2 and 3

Recall:

- **Case 1**: Purely translational
- **Case 2**: Translational + greyscale shift β
- **Case 3**: Translational + affine greyscale transformation $\alpha t + \beta$.

We expect that

$$0 \leq \Delta_{ij}^{(\text{Case 3})} \leq \Delta_{ij}^{(\text{Case 2})} \leq \Delta_{ij}^{(\text{Case 1})}$$
“World’s most self-similar image”

The “flat” image,

\[
u(x, y) = C \quad \text{(constant)}
\]

\(\Delta^{(\text{Case } q)}\)-error distributions have single peaks at \(\Delta = 0\), for \(q = 1, 2, 3\) and 4.

Next on the list:

“Ramped” images,

\[
u(x, y) = C + Ax + By
\]

\(\Delta^{(\text{Case } q)}\)-error distributions have single peaks at \(\Delta = 0\), for \(q = 2, 3\) and 4.

And now on to more realistic images ...
Case 1 (Purely translational)

Case 1 (same-scale) self-similarity error distributions

\[\Delta_{ij}^{(\text{Case 1})} = \| u(R_j) - u(R_i) \|_2, \quad i \neq j, \]

for normalized 512 × 512-pixel Lena and Mandrill images. In all cases, 8 × 8-pixel blocks \(R_i = D_i \) were used.
Same-scale self-similarity – Cases 1, 2 and 3

(a) Lena
(b) Mandrill

Same-scale (Cases 1, 2 and 3) RMS self-similarity error distributions for normalized Lena and Mandrill images. Again, 8 × 8-pixel blocks $R_i = D_i$ were used. Case 1 distributions are shaded.
Introduction

A complete metric space \((Y, d_Y)\) of function-valued images

Self-similarity of greyscale images

Self-similarity of hyperspectral images

A class of block fractal transforms on hyperspectral images
Assume that digital hyperspectral image is supported on an $N_1 \times N_2$ pixel array, as before, but now M channels per pixel.

At a pixel location $(i_1, i_2) \in X$, the hyperspectral image function is a non-negative M-vector with components

$$u_k(i_1, i_2), \quad 1 \leq k \leq M.$$
Also as before:

1. Let \mathcal{R} be a set of $n \times n$-pixel **range** subblocks R_i, $1 \leq i \leq N_R$, such that $\cup_i R_i = X$. (For convenience, assume that they are nonoverlapping.)

2. Let \mathcal{D} denote a set of $m \times m$-pixel **domain** subblocks D_j, $1 \leq j \leq N_D$, where $m \geq n$ and $\cup_i D_i = X$.

3. Let $w_{ij} : D_j \rightarrow R_i$ denote affine geometric transformation (along with decimation, if necessary).

![Diagram of 3D block fractal transform](image-url)
Let $u(R_i)$ denote portion of hyperspectral image function supported on subblock $R_i \in X$. Here, $u(R_i)$ will be an $n \times n \times M$ cube of nonnegative real numbers.

The L^2 (RMS) distance, Δ_{ij}, between two hyperspectral image subblocks $u(R_i)$ and $u(R_j)$ will be given by

$$\Delta_{ij} = \frac{1}{n\sqrt{M}} \left[\sum_{i_1=I_1}^{I_1+n-1} \sum_{i_2=I_2}^{I_2+n-1} \sum_{k=1}^{M} [u_k(i_1, i_2, \ldots) - u_k(i_1 + J_1, i_2 + J_2)]^2 \right]^{1/2}$$

This may also be viewed as the error associated with the (Case 1) approximation,

$$u(R_i) \approx u(R_j) \quad \text{(Case 1)}$$
Case 2 approximations with spectral shifts

- Simplest case - the same shift, $\beta \in \mathbb{R}$, for all channels
 \[u(R_i) \approx u(R_j) + \beta, \quad \text{(Case 2(a))} \]
 This does not improve the Case 1 approximation significantly.
- Separate shift, β_k, for each channel
 \[u(R_i) \approx u(R_j) + \beta, \quad \text{(Case 2(b))} \]

Componentwise,
\[u_k(i_1, i_2) \approx u_k(j_1, j_2) + \beta_k, \quad 1 \leq k \leq M \]
Case 3 approximation with affine scaling + spectral shift

\[u(R_i) \approx \alpha u(R_j) + \beta \quad \text{(Case 3)} \]

Note that we are using only **one** scaling coefficient \(\alpha \) for all channels.

Note: If we used separate scaling coefficients for each channel \(k \), i.e.,

\[u_k(R_i) \approx \alpha_k u(R_j) + \beta_k, \quad 1 \leq k \leq M, \]

then we are essentially treating a hyperspectral image as \(M \) separate greyscale images (which defeats the purpose of hyperspectral image analysis).

Approximation errors:

\[0 \leq \Delta_{ij}^{(\text{Case 3})} \leq \Delta_{ij}^{(\text{Case 2(b)})} \leq \Delta_{ij}^{(\text{Case 2(a)})} \leq \Delta_{ij}^{(\text{Case 1})} \]
Results of some computations

33-channel hyperspectral image, “Scene 2,” downloaded from webpage of D.H. Foster, University of Manchester

Per-pixel error distributions $\Delta_{ij}^{(Case \ q)}$ for 33-channel HS fern image. In all cases, 8 x 8-pixel blocks R_i and D_j were used.
224-channel AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) hyperspectral image, “Yellowstone calibrated scene 0,” a 224-channel image, available from JPL.

Per-pixel error distributions $\Delta_{ij}^{(Case\ m)}$ for the 224-channel AVIRIS image. In all cases, 8×8-pixel blocks R_i and D_j were used.
Because of the additional degree of freedom along the spectral axis, we may consider $n \times n$-pixel blocks as $n \to 1$, in particular, $n = 1$.

Case 1 error distributions $\Delta_{ij}^{(\text{Case 1})}$ for spectral functions supported on single-pixel blocks R_i.

However, L^2 distance (RMSE) is not necessarily a good indicator of signal/image fidelity or correlation.
A number of alternative quality indices exist, e.g., “structural similarity.” Here, however, we examine simple correlation $C(x, y)$ between spectral functions $x, y \in \mathbb{R}^M$.

The dramatic correlation demonstrated in these plots strongly suggests that single-pixel spectral functions are quite suitable for nonlocal methods of image processing.
Introduction

A complete metric space \((Y, d_Y)\) of function-valued images

Self-similarity of greyscale images

Self-similarity of hyperspectral images

A class of block fractal transforms on hyperspectral images
In fractal image coding of greyscale images:

1. Affine greyscale transformations are employed, i.e.: \(\phi(t) = \alpha t + \beta \).
2. Domain blocks \(D_j \) are \textbf{larger} than range blocks \(R_j \).

As before, consider the discrete case: \(X \) is an \(n_1 \times n_2 \) pixel array. Then:

1. Let \(\mathcal{R} \) be a set of \(n \times n \)-pixel range subblocks \(R_i \), \(1 \leq i \leq N_R \), such that \(\bigcup_i R_i = X \). (For convenience, assume that they are nonoverlapping.)
2. Let \(\mathcal{D} \) denote a set of \(2n \times 2n \)-pixel domain subblocks \(D_j \), \(1 \leq j \leq N_D \), where \(m \geq n \) and \(\bigcup_i D_i = X \).
3. Let \(w_{ij} : D_j \rightarrow R_i \) denote affine geometric \textbf{contraction mapping} - in pixel domain this is accomplished by some kind of decimation/downsampling.
Fractal transform of greyscale image

For $1 \leq i \leq N_R$, approximate $u(R_i)$ with greyscale modified and spatially contracted (decimated) copy of $u(D_{j(i)})$:

$$u(R_i) \approx \alpha_i u(D_{j(i)})' + \beta_i \tag{Case 4}$$

$$= \alpha_i u(w_{ij}^{-1}(R_i)) + \beta_i$$

$$=: (Tu)(R_i), \quad 1 \leq i \leq N_R.$$

T is fractal transform operator. (Prime denotes spatial contraction/pixel decimation.)
Fractal transform of hyperspectral image

For $1 \leq i \leq N_R$, approximate the “data cube” $u(R_i)$ with greyscale modified and spatially contracted (decimated) copy of “data cube” $u(D_j(i))$:

$$u(R_i) \approx \alpha_i u(D_j(i))' + \beta_i$$ \hspace{1cm} (Case 4)

$$= \alpha_i u(w_{ij}^{-1}(R_i)) + \beta_i$$

$$=: (Tu)(R_i), \quad 1 \leq i \leq N_R.$$

T is fractal transform operator. (Prime denotes spatial contraction/pixel decimation.)

Note: As in Case 3 approximations of hyperspectral images, we employ one scaling coefficient α and a vector of shift coefficients β_i.
Under appropriate conditions on α_i, the hyperspectral fractal transform operator T is \textbf{contractive} on the metric space (Y, d_Y) of hyperspectral images.

From Banach’s Fixed Point Theorem, there exists a unique $\bar{u} \in Y$ such that

$$\bar{u} = T\bar{u}.$$

Furthermore,

For any “seed” image $u_0 \in Y$, if we define the iteration procedure,

$$u_{n+1} = Tu_n,$$

then

$$d_Y(u_n, \bar{u}) \to 0 \quad \text{as} \quad n \to \infty.$$
Inverse problem for hyperspectral fractal transforms on \((Y, d_Y)\)

Given a target element (hyperspectral image) \(u \in Y\), find a contractive fractal transform \(T : Y \to Y\) such that its fixed point \(\tilde{u}\) approximates \(u\) to a desired accuracy, i.e.,

\[d_Y(\tilde{u}, u) < \epsilon.\]

Such a fractal transform \(T\) will be defined by

1. The range block-domain block assignments \((i, j(i)), 1 \leq i \leq N_R,\)
2. The scaling coefficients \(a_i\) and \(\beta_i, 1 \leq i \leq N_R.\)

- The hyperspectral image \(u\) has been approximated by the fixed point \(\tilde{u}\) of the contractive fractal transform operator \(T\).
- The fixed point \(\tilde{u}\) may be generated by iteration of \(T\).

Result: The hyperspectral image \(u\) has been **fractally coded**.
Most, if not all, fractal image coding methods rely on a simple consequence of Banach’s Fixed Point Theorem, known as the Collage Theorem.

Given a contraction mapping \(T : Y \rightarrow Y \) with contraction factor \(c_T \in [0, 1) \) and fixed point \(\bar{u} \), then for any \(u \in Y \),

\[
\| u - \bar{u} \| \leq \frac{1}{1 - c_T} \| u - Tu \|
\]

In order to approximate the target \(u \) with a fixed point \(\bar{u} \), we look for a transform \(T \) that maps the target \(u \) as close as possible to itself, i.e., we minimize the **collage distance** \(\| u - Tu \| \).

This is accomplished by finding, for each range block \(u(R_i) \), the domain block \(u(D_{j(i)}) \) that **best approximates** \(u(R_i) \), i.e., minimizes the approximation error \(\Delta_{ij} \).
Example: Fractal coding of 224-channel AVIRIS “Yellowstone” image

Channel 120. Left: Original. Right: Fractal-based approximation.
8 × 8-pixel range blocks and 16 × 16-domain blocks.
Example: Fractal coding of 224-channel AVIRIS “Yellowstone” image

8 × 8-pixel range blocks and 16 × 16-domain blocks.