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1 Abstract

Image self-similarity plays a significant role in image processing, forming
the basis for many imaging techniques, such as Fractal image coding, Non-
local means denoising and non-local methods of enhancement (e.g. super-
resolution).

Starting from images being represented by functions, his thesis mainly
discusses about self-similarity in image processing in terms of the pixel rep-
resentation of images, which can be showed by two different ways: Mean
Squared Error (MSE) and the Structural Similarity (SSIM) Index. After
defining these two measures, we shall use them to estimate the similarities
between subblocks of an image with respect to affine greyscale transforma-
tion. We employ these particular types of affine transformation. The final
result is that MSE and SSIM show different degrees of self-similarity. From
a visual perspective, SSIM is shown to be the better measure.
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2 Introduction

The motivation for my research is that the degree that pixel-blocks of
an image can be well approximated by other pixel blocks of itself is the
theoretical basis of a large portion of efficient non-local image processing
techniques like nonlocal-means denoising, restoration, compression, super-
resolution and fractal image coding. [1, 2, 3, 4]

Generally, we call this property of images self-similarity, and it can be
possessed by many fractal sets, i.e. they can be expressed as unions of
contracted copies of themselves. Here are some examples of self-similarity
as follows:

Figure 1: Some examples for self-similarity: (1) Ternary Cantor set; (2) von Koch
curve; (3) Sierpinski triangle; (4) Devil’s staircase function.

A similar idea of self-similarity exists in image processing, which makes
it worth studying. We aim to use two different distances to measure self-
similarity, then see what are the advantages and shortcuts for both methods,
which is exactly my motivation for this research project.

1
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3 Mathematical Background

This section contains some important mathematical background for this
thesis. Images are represented as functions, and two kinds of measures are
defined for the comparison of images.

3.1 Images as functions

Images may be considered as two-dimensional signals. Further more,
digital images can be represented as matrices. Given a m× n grid I, when
we approximate an m×n image, it will be represented mathematically by a
function, i.e. u(i, j), where (i, j) is the point of an image. The matrix entry
u(i, j) will denote the greyscale value at pixel (i, j) For a black-and-white
image, u(i, j) is usually a non-negative value, called the ”greyscale value”
that represent the greyness of the image at (i, j). And a colour image can
be represented by a three-dimensional function, each point is defined three
colour values as red, green and blue, and combination of three primary
colours produces the colour at the point (i, j).

Figure 2: Greyscale and the red-blue spectrum vision of BOAT image

The image at the left of Figure 2 is “BOAT”, the standard test-image,
a 512×512−pixel digital image, 8 bits per pixel. Each pixel assumes one
of 256 greyscale values between 0 and 255, shows the graph of the image
function u(i, j). The red-blue spectrum of colours is used to characterize

2
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function values: Higher values are more red, lower values are more blue.

For an 8 bit-per-pixel image, its greyscale value u(i, j) should between
0-255. In our computations, however, we normalize the value of u(i, j) to be
between 0 and 1: the value 0 represents black while the value 1 represents
white. In this thesis we mainly consider greyscale images.

3.2 L2 (Euclidean) Distance

It is important to quantify distances between images in order to compare
them and to compute approximation errors. We used two distance measures
in this thesis. In what follows, L2 distance will be introduced first.

Let x = (x1, x2, ..., xN ) and y = (y1, y2, ..., yN ), then the L2 distance
between x and y can be defined as

d(x, y) =

!
N"

k=1

(xk − yk)
2

# 1
2

. (1)

One of the most widely used variants of the L2 distance in imaging
processing is the root mean error (RMSE) defined below,

RMSE(x, y) =

!
1

N

N"

k=1

(xk − yk)
2

# 1
2

. (2)

Also the mean squared error (MSE) is

MSE(x, y) = RMSE(x, y)2 =
1

N

N"

k=1

(xk − yk)
2. (3)

3.3 The Structural Similarity (SSIM) Index

The Structural Similarity Index, so called SSIM index is another useful
index for calculating error. We can set a definition for SSIM function, for
x, y ∈ R is defined as follows [5],

S(x, y) =
2x̄ȳ + C1

x̄2 + ȳ2 + C1

2sxsy + C2

s2x + sy + C2

sxy + C3

sxsy + C3
. (4)

3
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where the parameters C1, C2, C3 are small positive constants.

3.4 Introduction to the idea of self-similarity of images

We have the definition of self-similarity that regions (subblocks) of an
image are similar (in greyscale or colour values) to other regions of the image.

Self-similarity is very important in image processing for the reason that
any imaging techniques use self-similarity as the basis to form an integral
part, for example, fractal image coding, non-local means denoising and non-
local methods of enhancement like super-resolution. [1, 2, 3, 4]

In the next section, two methods to calculate self-similarity will be in-
troduced.

4 Self-similarity of images with respect to the L2

(Euclidean) distance

4.1 Introduction

Image self-similarity will be characterized in terms of L2 distances be-
tween image subblocks. Let u and v represent two n × n subblocks of an
image, where subblock u stands for the range block and subblock v stands
for the domain block. Then we can examine the self-similarity in term of L2

distance by compiling the errors in approximating each subblock u with all
other subblocks v with the form,

u ≈ αv + β. (5)

We consider best approximation of subblock v by affine transformation
of subblock u, which can be written as

vi ≈ αui + β , 1 ≤ i ≤ N, (6)

where ui and vi denote the greyscale values at each pixel.

The squared error is defined as

4
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∆(α,β) =

N"

i=1

(ui − αvi − β) , 1 ≤ i ≤ N (7)

Here we consider 3 cases as follows:

1. Case 1: α = 1, β = 0; No greyscale transformations.

2. Case 2: α = 1, β = ū− v̄; Greyscale shift only.

3. Case 3: α = suv
s2v

, β = ū− αv̄; Scaling plus greyscale shift.
Here,

ū =
1

N

N"

i=1

ui,

suv =
1

N−

N"

i=1

(ui − ū)(vi − v̄),

s2u =
1

N − 1

N"

i=1

(ui − ū)2.

In our numerical computations, we shall use non-overlapping 8× 8 pixel
blocks for convenience. The root mean squared error (RMSE) is applied to
report the distance between subblocks. For representations of self-similarity
in figure, the standard 8-bit 512×512 LENA and PEPPERS image are used.

5



SELF-SIMILARITY IN IMAGE PROCESSING HAOYUE CHEN

Figure 3: LENA (left) and PEPPERS (right)

4.2 Case 1 and Case 2

In Case 1, we take u ≈ v, ui ≈ vi, 1 ≤ i ≤ N , then the error becomes

∆1 =

N"

i=1

(ui − vi)
2

= (N − 1)[s2u + s2v − 2suv +N(ū− v̄)2].

(8)

Applying the equation in to the code (APPENDIX A) in MATLAB, the
following figures of Case 1 are obtained,

Figure 4: Case 1 error for L2 distance of LENA (left) and PEPPERS (right).

For the Case 2, the approximation is u ≈ v + β, ui ≈ vi + β, 1 ≤ i ≤ N,
then this best approximation is achieved when β = ū−v̄, as we derived before

6
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∆2 =

N"

i=1

(ui − vi − β)2,

∂∆2

∂β
= −2

N"

i=1

(ui − vi − β).

(9)

Therefore

N"

i=1

(ui − vi − β) = 0,

N"

i=1

(ui − vi) = Nβ,

(10)

and

β=
1

N

N"

i=1

(ui − vi) = ū− v̄. (11)

The error of Case 2 is

∆2 =

N"

i=1

(ui − vi − ū+ v̄)2

= (N − 1)[s2u + s2v − 2suv].

(12)

Once again, we use the code to produce the results in the figures below

Figure 5: Case 2 error for L2 distance of LENA (left) and PEPPERS (right).

7
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From the comparison of the figures of Case 1 and Case 2, it is clear
that there are big improvements between them. The histogram of Case1 is
closer to zero implying many more smaller errors than Case 1. This is to be
expected since there is one more parameter added in Case 2, implying that

0 ≤ ∆2 ≤ ∆1. (13)

4.3 Case 3

In the previous section, we have discussed the Case 1 and Case 2. In
this section we introduce the Case 3 in L2 distance. Once again, we start
with the definition of Case3, the approximation we assume

u ≈ αv + β,

so that
ui ≈ αvi + β, 1 ≤ i ≤ N.

To work out the values of α and β, from the best approximation, we need
to minimize the squared error defined before,

∆ =

N"

i=1

(ui − αvi − β)2 (14)

then impose the stationary conditions,

∂∆

∂α
= 0,

∂∆

∂β
= 0.

(15)

which yields the following system of equations in α and β

!
"

i

v2i

#
α+

!
"

i

v2i

#
β =

"

i

uivi,

!
"

i

vi

#
α+ nβ =

"

i

ui.

(16)

8
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The solution of the system is

aL2 =
n
$

i uivi − (
$

i ui)(
$

i vi)

n
$

i v
2
i − (

$
i vi)

2
=

suv
s2v

,

bL2 =
(
$

i v
2
i )(

$
i ui)− (

$
i uivi)(

$
i vi)

n
$

i v
2
i − (

$
i vi)

2
= ū− αv̄.

(17)

In summary, the optimal values of α and β from the approximation are

aL2 =
suv
s2v

,

bL2 = ū− αv̄.
(18)

Then the error is given by

∆3 = (N − 1)[s2u − s2uv
s2v

]. (19)

Using these result in MATLAB code, we obtained the following his-
tograms of Case 3 approximation errors.

Figure 6: Case 3 error for L2 distance of LENA (left) and PEPPERS (right).

Clearly, there is an improvement between the histograms from Case 2 to
Case 3 to zero, which indicates that the approximations become better.This
is expected, since the Case 3 approximation involves an optimization over
two parameters, one more than Case 1.

Then the final result of errors between Case1, Case2 and Case 3 are

0 ≤ ∆3 ≤ ∆2 ≤ ∆1. (20)

9
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In the next figures, we show the Case 1, Case 2 and Case 3 histograms in
one plot for each image. The differences between the cases are clearly seen:

Figure 7: Case 1,2,3 error for L2 distance of LENA (left) and PEPPERS (right).

Definitely, a higher the degree self-similarity with smaller error will bring
the peak of a histogram closer to zero.

10
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5 Self-Similarity With the Structural Similarity
Index

MSE is one of the most dominant methods to calculate the self-similarity,
that’s why we use a whole section to introduce the method of using RMSE to
measure self-similarity of image. However there is still some insurmountable
weakness of using MSE to investigate self-similarity, since it is not good for
image visual quality.

To explain this I will use a famous Einstein image with some variations,
performed by different MSE and SSIM values. For these nine images, they
respectively represent original image, mean contrast stretch, luminance shift,
impulsive noise contamination, JPEG compression, blurring, spatial shift to
the right and left, and the last one counter-clockwise rotation.

Figure 8: Comparison of MSE and SSIM values for an Einstein image and its
variations. (Taken from [5].)

11
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The images (b) to (f) are degraded versions of Einstein with roughly same
MSE (300). Some of these images look better than others. Images (g) to
(i) are degraded version of Einstein with much larger MSE, but which have
better visual quality. We must conclude that MSE is not a good measure of
image quality.

In the very beginning section, I introduced the structural similarity
(SSIM) index, indicates another way to calculate self-similarity, and from
the ”Einstein” image and SSIM values, (b) to (f) images are degraded ver-
sions with roughly same MSE (300), but with much different SSIM values.
That means the quality of the image is better reflected in the SSIM values.
This indicates that SSIM is a better measure of image quality than MSE.

This gives us a reason to study the structural similarity (SSIM) index
and related error for measuring self-similarity.

5.1 Introduction

The Structural Similarity Index has been mentioned in the chapter
“Mathematical Background”. Different from MSE, the SSIM Index mainly
aims to consider structural features of images such as blurriness, noisiness,
and blockiness. In addition, the core advantage is that SSIM is highly
adapted to the human visual system by taking the separation of structural
information from images.

The SSIM Index determines differences between luminance, contrasts,
and structures, which leads the overall function to be a combination of the
measuring function of these three quantities by multiplying them together.
Given two N -dimensional signals x and y, the SSIM function is defined as

S(x, y) =
2x̄ȳ + C1

x̄2 + ȳ2 + C1

2sxsy + C2

s2x + sy + C2

sxy + C3

sxsy + C3
, (21)

where the parameters C1, C2, C3 are small positive constants and

ū =
1

N

N"

i=1

ui,

suv =
1

N−

N"

i=1

(ui − ū)(vi − v̄),

s2u =
1

N − 1

N"

i=1

(ui − ū)2.

12
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The motivation for the definition of the SSIM Index comes from Weber’s
Law of perception [5].

S(x, y) represents a “similarity” between x and y, S(x, y)= 1 if x = y,
S(x, y)= -1 if x = −y.

In order to compare SSIM with L2-based distance functions, we define
an SSIM-based “disimilarity” distance function between x and y as follows,

T (x, y) =
%

1− S(x, y). (22)

Then the“SSIM-based approximation error” between two subblocks will be

T (u, v) =
%

1− S(u,αv + β) (23)

in our computation.

Once again, three cases will be considered,

1. Case 1: α = 1, β = 0;

2. Case 2: α = 1, β = ū− v̄;

3. Case 3: α = suv
s2v

, β = ū− αv̄.

5.2 Case 1 and Case 2

In Case 1, similar with it in L2 distance, when α = 1,β = 0, the
approximation is u ≈ v, so the SSIM function becomes

S(u, v) =
2ūv̄ + C1

ū2 + v̄2 + C1

2susv + C2

s2u + sv + C2

suv + C3

susv + C3
(24)

and the “SSIM-based approximation error” is

T (u, v) =
%

1− S(u, v). (25)

Using them into the code of MATLAB (APPENDIX B), we obtain the
following distribution of errors in terms of SSIM index,

13
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Figure 9: Case 1 SSIM error of LENA (left) and PEPPERS (right).

and“SSIM-based approximation error” T =
√
1− S:

Figure 10: Case 1
√
1− S of LENA (left) and PEPPERS (right).

Similarly, in Case 2 we have approximation α = 1,β = x̄ − ȳ, the ap-
proximation is u ≈ v + β,

S2(u, v + β) =
suv + C2

s2u + s2v + C2
, (26)

the results are shown before.

14
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Figure 11: Case 2 SSIM error of LENA (left) and PEPPERS (right).

“SSIM-based error” T =
√
1− S:

Figure 12: Case 2
√
1− S of LENA (left) and PEPPERS (right).

We can see comparison from Case 1 to Case 2, there is an improvement,
but not as significant as it is in L2 distance. This shows that images are not
as self-similar in terms of visual quality (SSIM) as they are in terms of MSE.

15
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5.3 Case 3

In Case 3, the approximation is u ≈ αv + β, there will be two different
conditions to define the values of α and β.

Zero Stability Constant

We start with the case of zero stability constants i.e. C1 = C2 = C3 = 0.
The SSIM function becomes

S(x, y) = S1(x, y)S2(x, y) =
2x̄ȳ

x̄2 + ȳ2
2sxy

s2x + sy
, (27)

with x = u, y = αv + β.

S(u,αv + β) = S1(u,αv + β)S2(u,αv + β), (28)

where

S1(u,αv + β) =
2ū(αv̄ + β)

x̄2 + (αv̄ + β)2
. (29)

Now impose stationarity conditions,

∂S(u,αv + β)

∂α
= 0;

∂S(u,αv + β)

∂β
= 0. (30)

We take the component functions separately, then S1 is

S1(u,αv + β) =
2ū(αv̄ + β)

ū2 + (αv̄ + β)2
(31)

and S2

S2(u,αv + β) =
2αsuv

s2u + α2s2v
. (32)

Then from previous equations we take derivative of S1 in terms of β

∂S1(u,αv + β)

∂β
=

2ū[ū2 − (αv̄ + β)2]

[ū2 + (αv̄ + β)2]2

= 0.

(33)

In order that S1=1, the relation between ū and v̄ is as follows,

ū = αv̄ + β, (x̄ = ȳ). (34)

16
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Similarly, take derivative of S2 in terms of α

∂S2(u,αv + β)

∂α
=

2suv
(s2u + α2s2v)

2
[s2u − α2s2v]

= 0.

(35)

The equation to obtain the value of α is

α2 =
s2u
s2v

. (36)

and the final result is
α = ±su

sv
. (37)

now combine the equation (30) and(33) together, the value of β would be

β = ū∓ su
sv

v̄. (38)

In order to make S2 >0, we choose

α = sgn(suv)
su
sv

. (39)

Earlier, we derived the best L2 parameter αL2 and βL2 . We now compare
them with optimal SSIM parameters

αSSIM

αL2

=
βSSIM − ū

βL2 − ū
=

susv
|suv|

. (40)

The next step it to use them in the code (APPENDIX B), then SSIM
distances between all pairs of 8X8-pixel blocks u ≈ αv+ β are shown below

17
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Figure 13: Case 3 with zero stability constant SSIM of LENA (left) and PEPPERS
(right).

The result of T (u,αv + β) are

Figure 14: Case 3 with zero stability constant
√
1− S of LENA (left) and PEP-

PERS (right).

We can focus on the figures of function T (u,αv + β), compared with
Case 1 and Case 2, the histogram in Case 3 is closer to zero because α and
β are added, which makes the approximation goes better.

Non-zero Stability Constant

We now Consider non-zero stability constant case. First let C3 = 2C2, so
that the SSIM function simplified as

S(x, y) = S1(x, y)S2(x, y) =
2x̄ȳ + C1

x̄2 + ȳ2 + C1

2sxsy + C2

s2x + sy + C2
. (41)

Then let x = u, y = αv + β, so that the equation above becomes

S(u,αv + β) = S1(u,αv + β)S2(u,αv + β). (42)

18
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Now impose stationarity conditions to get the maximum values

∂S(u,αv + β)

∂α
= 0;

∂S(u,αv + β)

∂β
= 0 (43)

For convenience, we examine the component functions separately, first
from S1

S1(u,αv + β) =
2ū(αv̄ + β) + C1

ū2 + (αv̄ + β)2 + C1
, (44)

and for S2

S2(u,αv + β) =
2αsusv + C2

s2u + α2s2v + C2
. (45)

We can see that S2 is only related with α, so we only need to take derivative
of S2 with respect to β

∂S1(u,αv + β)

∂β
=

[ū2 + (αv̄ + β) + C1](2ūv̄)− [2ū(αv̄ + β) + C1][2(αv̄ + β)v̄]

[ū2 + (αv̄ + β)2 + C1]2

=
2ūv̄[ū2 − (αv̄ + β)2] + 2C1v̄[ū− (αv̄ + β)]

[ū2 + (αv̄ + β)2]2

= 0.

(46)

From the above equation, we have the following result, the stationary
condition is

ū = αv̄ + β, (47)

In which case S1 will be 1. This result hasn’t change as compared with
the zero stability constants condition, which means that the relationship
between ū and v̄ is independent on the constants.

If we take α=1, then ū = v̄ + β, this is the Case 2 approximation. For
S2 we have

∂S2(u,αv + α)

∂β
=

2suv[s
2
u − α2s2v] + 2C2[suv − αs2v]

[s2u + α2s2v + C2]2

= 0.

(48)
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(since S2 is not dependent on β, there is no need to take derivative with
regard to β).This equation is zero when

suv[s
2
u − α2s2v] + C2[suv − αs2v] = 0, (49)

which is quadratic equation in α,

suvs
2
vα

2 + C2s
2
vα− suv[s

2
u + C2] = 0,

α2 +

&
C2

suv

'
− 1

s2v
[s2u + C2] = 0.

(50)

This equation has two solutions,

α± = − C2

2suv
±

(
(
C2

suv
)2 +

4

s2v
[s2u + C2]

) 1
2

. (51)

This is a new result for the case of nonzero stability constant.
If we take the limit C2 → 0, we have the limit α → ± su

sv
, which is in

agreement with the result in zero stability constant condition. This conclu-
sion is desirable.
Again, the figures of non-zero stability constants condition are

Figure 15: Case 3 with non-zero stability constant SSIM of LENA (left) and
PEPPERS (right). C1 = C2 = 0.00001.

The figures for the function T are
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Figure 16: Case 3 with non-zero stability constant
√
1− S of LENA (left) and

PEPPERS (right). C1 = C2 = 0.00001.

Comparison between zero and non-zero conditions is obvious:

Figure 17: Case 1,2,3 with non-zero stability constant
√
1− S of LENA (left) and

PEPPERS (right). C1 = C2 = 0.00001.

Figure 18: Case 1,2,3
√
1− S of LENA (left) and PEPPERS (right) with zero

constants

Recall that when we use L2 distance to calculate self-similarity, there is

21



SELF-SIMILARITY IN IMAGE PROCESSING HAOYUE CHEN

significant improvement from Case 1 to Case 2. This is because it is easier to
approximate low-variance subblocks. However, SSIM-based self-similarity is
not so distinct between different cases.

Let me explain this briefly. It is well known that the best constant
approximation of an image subblock u is the mean of the subblock, i.e.
u ≈ ū. To see this, we minimize the squared L2 error

∆ =

N"

i=1

(ui − c)2. (52)

Impose the stationary condition,

∂∆

∂c
= −2

N"

i=1

(ui − c) = 0, (53)

which yields

c =
1

N

N"

i=1

ui = ū. (54)

The squared L2 error of this approximation is

∆ =

N"

i=1

(ui − ū)2 = (N − 1)δ2u. (55)

In other words, the small the variance of u, the lower the error of approxi-
mation by a constant.
The best constant approximation of a subblock u using SSIM is also u ≈ ū.
To see this, the first component of the SSIM index, S1(u, c),

S1(u, c) =
ūc

ū2 + c2
, (56)

is maximized when c = ū, in which case S1(u, ū)=1. However,

S2(u, c) =
2suc
s2u + 0

=
2suc
s2u

(57)

and

suc =
1

N − 1

N"

i=1

(ui − ū)(c̄− c̄) = 0. (58)
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Therefore
S(u, ū) = 0 (59)

In other words, the best SSIM-based constant approximation to an image
subblock is also the mean of u, ū, but its SSIM value is always 0. This implies
that T (u, ū)=1. It can never be improved.

This shows that images are not as self-similar in terms of visual quality
(SSIM) as they are in term of MSE.
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6 Conclusions

In our research, we revisited self-similarity in terms of two measures
based on pixel domain; inspired by the fact that many imaging techniques
are based on self-similarity. We started from images represented by two-
dimensional functions, then introduced two common distances for calcula-
tion, MSE and SSIM respectively.

MSE is one of the most widely used method in calculating self-similarity,
based on L2 distance. The main idea is making an approximation of u ≈
αv + β, working on 3 cases with different α and β to see how they influence
the error. In comparison of histograms for Case 1, 2, a significant improve-
ment to zero are shown. However, the weakness is that MSE is not a good
measure of visual quality, since low MSE does not necessarily mean good
quality. In order resolve this problem, SSIM, which is a is a better measure
of image qualities, introduced after. Following similar process to make an
approximation, same conclusion for both MSE and SSIM would be stated
here, Case 2 errors with one parameter are smaller than Case 1 errors with
no parameters and Case 3 errors of two parameters are smaller than Case 2
errors. As improvements in term of SSIM are much smaller than improve-
ments for MSE, images are not as self-similar in terms of visual quality as
they are in term of L2 distance.

For the further research, instead of pixel only, another domain called
wavelet domain will be introduced later. The wavelet representation of the
image is a common setting for image processing. To deal with wavelet, a
new function, Harr wavelet will be mentioned, and after we may combine
the MSE and SSIM with wavelet. In addition, we will continue to work
on some applications of self-similarity, mainly focusing on non-local means
denoising technique in image processing. It is achieved by calculating the
estimated value of the denoised pixels as a weighted sum of the other pixels
in the noisy digital image using feedbacks from different parts from a noisy
image, is called “non-local. This is our preliminary decision on what to do
next.
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8 APPENDICES

8.1 APPENDIX A

A = imread ( ’ lenna .pgm ’ ) ;%A=imread ( ’ pepper . pgm ’ ) ;
A = uint8 (A) ;
npix=8;
s izeA = s ize (A) ;
N=npix∗npix ;
NA = ( s izeA (1) /npix ) ∗( s izeA (2) /npix ) ;
for i =1: s izeA (1) /npix
for j =1: s izeA (2) /npix
sum1=0.0;
for k=1: npix
for l =1: npix
A8(k , l )=double (A( ( i −1)∗npix+k , ( j−1)∗npix+l ) ) / 255 . 0 ;
sum1=sum1+A8(k , l ) ;
end
end
amean( i , j )=sum1/N;
sum1=0;
for k=1: npix
for l =1: npix
sum1=sum1+(A8(k , l )−amean( i , j ) )
end
end
avar ( i , j )=sum1/(N−1) ;
end
end
kk=0;
i a =0;
for i 1 =1: s izeA (1) /npix
for j 1 =1: s izeA (2) /npix
i a=i a +1;
for k=1: npix
for l =1: npix
A8(k , l )=double (A( ( i1 −1)∗npix+k , ( j1−1)∗npix+l ) ) / 255 . 0 ;
end
end
ib =0;
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for i 2 =1: s izeA (1) /npix
for j 2 =1: s izeA (2) /npix
ib=ib+1;

i f ( ib>i a )
kk=kk+1;
for m=1: npix
for n=1: npix
B8(m, n)=double (A( ( i2 −1)∗npix+m, ( j2−1)∗npix+n) ) /255 . 0 ;
end
end
sum2=0.0;
sum3=0.0;
for m=1: npix
for n=1: npix
sum2=sum2+(A8(m, n)−amean( i1 , j 1 ) ) ∗(B8(m, n)−amean( i2 , j 2 )

) ;
sum3=sum3+(A8(m, n)−B8(m, n) ) ∗(A8(m, n)−B8(m, n) ) ;
end
end
acov=sum2/(N−1) ;
t s q e r r 1=sum3 ;
mse1=t sq e r r 1 /N;
rmse1=sqrt (mse1 ) ;
case1 ( kk )=rmse1 ;
t s q e r r 2=(N−1)∗avar ( i1 , j 1 )+(N−1)∗avar ( i2 , j 2 )−2∗(N−1)∗

acov ;
mse2=t sq e r r 2 /N;
rmse2=sqrt (mse2 ) ;
case2 ( kk )=rmse2 ;
t s q e r r 3=(N−1)∗avar ( i1 , j 1 )−(N−1)∗( acov/avar ( i2 , j 2 ) ;
mse3=t sq e r r 3 /N;
rmse3=sqrt (mse3 ) ;
case3 ( kk )=rmse3 ;
end
end
end
end
end
figure (1 )
imshow (A) ; %o r i g i n a l image ;
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f igure (2 )
histogram ( case1 , 100 ) , xlabel ( ’RMSE case1 ’ ) ;%Case1
f igure (3 )
histogram ( case2 , 100 ) , xlabel ( ’RMSE case2 ’ ) ;%Case2
f igure (4 )
histogram ( case3 , 100 ) , xlabel ( ’RMSE case3 ’ ) ;%Case3

8.2 APPENDIX B

A = imread ( ’ lenna .pgm ’ ) ;
%A = imread ( ’ peppers . pgm ’ ) ;
A = uint8 (A) ;
s izeA = s ize (A) ;
bitsA = sizeA (1) ∗ s izeA (2) ∗8 ;
NA = sizeA (1) ∗ s izeA (2) ;
npix=8;
np=npix∗npix ;
c1 =0.0 ;
c2 =0.0 ;
%c1=0.00001;
%c2=0.00001;
for i =1: s izeA (1) /npix ,
for j =1: s izeA (2) /npix ,
A8=A( ( i −1)∗npix +1: i ∗npix , ( j−1)∗npix+1: j ∗npix ) ;
A8=double (A8) /255 . 0 ;
amean( i , j )=mean(A8 ( : ) ) ;
avar=var (A8 ( : ) ) ;
saa ( i , j )=avar ;
end ;
end ;
kk=0;
i a =0;
for i =1: s izeA (1) /npix ,
for j =1: s izeA (2) /npix ,
i a=i a +1;
A8=A( ( i −1)∗npix +1: i ∗npix , ( j−1)∗npix+1: j ∗npix ) ;
B8=double (A8) /255 . 0 ;
ib =0;
for k=1: s izeA (1) /npix ,
for l =1: s izeA (2) /npix ,
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ib=ib+1;
i f ( ib > i a )
kk=kk+1;
B8=A( ( k−1)∗npix +1:k∗npix , ( l −1)∗npix+1: l ∗npix ) ;
B8=double (B8) /255 . 0 ;
sab = sum(sum( ( double (A8)−amean( i , j ) ∗ ones ( npix ) ) . ∗ (

double (B8)−amean(k , l ) ∗ ones ( npix ) ) ) ) / double (np−1) ;
case1a = (2 . 0∗ amean( i , j ) ∗amean(k , l )+c1 ) /(amean( i , j )

amean(k , l ) c1 ) ;
case1b = (2 . 0∗ sab+c2 ) /( saa ( i , j )+saa (k , l )+c2 ) ;
case1 ( kk ) = case1a ∗ case1b ;
case2 ( kk ) = case1b ;
t1=(c2/ sab ) + 4 . 0∗ ( saa ( i , j )+c2 ) / saa (k , l ) ;
i f ( sab < 0) alpha=−0.5∗c2/ sab − 0 .5∗ sqrt ( t1 ) ;
end
i f ( sab > 0) alpha=−0.5∗c2/ sab + 0.5∗ sqrt ( t1 ) ;
end
case3 ( kk ) = (2 . 0∗ alpha ∗ sab+c2 ) /( saa ( i , j )+alpha saa (k , l )

+c2 ) ;
end ;
end ;
end ;
end ;
end ;
kmax=kk ;
t1=sqrt (1.0− case1 ) ;
t2=sqrt (1.0− case2 ) ;
t3=sqrt (1.0− case3 ) ;

f igure (1 )
imshow (A) ;

f igure (2 )
histogram ( case1 , 200 , ’ BinLimits ’ , [ −1 ,1 ] ) , xlabel ( ’SSIM ’ )

, t i t l e ( ’ Lena c1=c2=0.0 ’ ) ;
histogram ( case1 , 200 , ’ BinLimits ’ , [ −1 ,1 ] ) , xlabel ( ’SSIM ’ )

, t i t l e ( ’ Lena c1=c2=0.00001 ’ ) ;
hold on
histogram ( case2 , 200 , ’ BinLimits ’ , [ −1 ,1 ] ) , xlabel ( ’SSIM ’ )

;
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hold on
histogram ( case3 , 200 , ’ BinLimits ’ , [ −1 ,1 ] ) , xlabel ( ’SSIM ’ )

;

f igure (3 )
histogram ( t1 , 200 , ’ BinLimits ’ , [ 0 , 2 ] ) , xlabel ( ’ s q r t (1−S) ’

) , t i t l e ( ’ Lena c1=c2=0.0 ’ ) ;
histogram ( t1 , 200 , ’ BinLimits ’ , [ 0 , 2 ] ) , xlabel ( ’ s q r t (1−S) ’

) , t i t l e ( ’ Lena c1=c2=0.00001 ’ ) ;
hold on
histogram ( t2 , 200 , ’ BinLimits ’ , [ 0 , 2 ] ) , xlabel ( ’ s q r t (1−S) ’

) ;
hold on
histogram ( t3 , 200 , ’ BinLimits ’ , [ 0 , 2 ] ) , xlabel ( ’ s q r t (1−S) ’

) ;

f igure (4 )
histogram ( case3 , 200 , ’ BinLimits ’ , [ −1 ,1 ] ) , xlabel ( ’SSIM ’ )

;
%histogram ( case2 ,200 , ’ BinLimits ’ , [ −1 ,1 ] ) , x l a b e l ( ’SSIM

’ ) ;
%his togram ( case1 ,200 , ’ BinLimits ’ , [ −1 ,1 ] ) , x l a b e l ( ’SSIM

’ ) ;

f igure (5 )
histogram ( t3 , 200 , ’ BinLimits ’ , [ 0 , 2 ] ) , xlabel ( ’ s q r t (1−S) ’

) ;
%histogram ( t2 ,200 , ’ BinLimits ’ , [ 0 , 2 ] ) , x l a b e l ( ’ s q r t (1−S)

’ ) ;
%his togram ( t1 ,200 , ’ BinLimits ’ , [ 0 , 2 ] ) , x l a b e l ( ’ s q r t (1−S)

’ ) ;
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