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Summary. The Schréder and Konig iteration schemes to find the zeros of
a (polynomial) function g(z) represent generalizations of Newton’s method.
In both schemes, iteration functions f,,(z) are constructed so that sequences
Z,+1=Jm(z,) converge locally to a root z* of g(z) as O(z,—z*™). It is well
known that attractive cycles, other than the zeros z*, may exist for Newton’s
method (m=2). As m increases, the iteration functions add extraneous fixed
points and cycles. Whether attractive or repulsive, they affect the Julia set
basin boundaries. The Konig functions K,,(z) appear to minimize such per-
turbations. In the case of two roots, e.g. g(z)=1z?—1, Cayley’s classical result
for the basins of attraction of Newton’s method is extended for all K, (2).
The existence of chaotic {z,} sequences is also demonstrated for these itera-
tion methods.

Subject Classifications: AMS(MOS): 30DO0S5, 30-04, 65E05, 65H05; CR:
G.1.5.

1. Introduction

The Newton iteration function associated with a function g(z),
N(z)=z—g(2)/g'(2), (1.1)

defines a discrete dynamical system, z,,, =N(z,), for which the sequences {z,}
converge locally to a root z* of g(z) as |z,,,—z*|=0(z,—z*|*). When g(z)
is a polynomial, as will be assumed here, N(z) is a rational function. Cayley
[5] posed the following question before the classical works of Julia [17] and
Fatou [11]: What is the set of all initial values z,eC for which the sequence
{z,} converges to a given root z*; ie. what is the basin of attraction of z*?
From the Julia-Fatou theory of iterates of rational functions, it follows that
the basins of attraction of all roots share a common boundary, the set of all
points zeCu{o}, in all of whose neighbourhoods the family of N(z) and its
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iterates fails to be normal [1]. This set, now referred to as the Julia set J(N)
of N(z), is a perfect set with generally nonintegral Hausdorff-Besicovitch dimen-
sion [10], i.e. a fractal [19]. Since N(J)=J=N""'(J), if the initial value zo€eJ,
then z,eJ, i.e. the sequence never converges to a root z*. In fact, it behaves
chaotically.

Obviously, the possible nonconvergent behaviour of Newton sequences is
worrisome when one considers iterative methods of solving nonlinear equations
in general. It becomes important to ask: what is the set of points z,eC for
which the sequence {z,} does not converge to a root z*? Clearly J(N) is a
subset. However, J(N) is the closure of all repelling cycles of N(z) so the z,
will never be attracted to it. In finite precision calculations, if zyeJ, then the
z, will eventually be thrown off J due to roundoff error. A greater threat is
the existence of attractive cycles of N(z) which may trap the sequence {z,}.
This was indeed recognized by Barna [2], who was primarily concerned with
the behaviour of Newton sequences on the real line R. One of his classical
results states that if all roots of g(z) are real, then all higher cycles on R are
non-attractive. (He did, however, demonstrate attractive cycles in the complex
plane.) Since his work, the dynamics of Newton’s method on R has received
much attention [16, 21]. Patterns of nonconvergent Newton sequences in the
complex plane were shown by Curry [6], using a one-parameter family of cubic
polynomials. Similar phenomena were observed [24] for the generalized family
of Schroder iteration functions S,,(z), constructed so that iteration sequences
Zp+1=Sn(z,) converge locally to a root z* of g(z) as O(|z,—z*|"). For m>2,
the S,.(z) functions have extrancous fixed points, ie. fixed points which are
not roots of g(z). Whether attractive or repulsive, their presence affects the
global iteration dynamics. These aspects, also present for the Konig functions,
will be discussed below. We also mention that Howland and Vaillancourt [14]
studied the existence of attractive cycles for Newton functions which are mero-
morphic — a class of functions which have not yet received as much attention
as rational and transcendental functions.

In Sect. 2, we outline the major ideas of iteration functions of prescribed
order and introduce the Schréder and Ko6nig methods, the latter of which will
be the focus of this study. Aspects of Julia-Fatou theory relevant to iteration
functions are presented in Sect. 3. In the specific case of two roots, Cayley’s
classical result [5] for Newton’s method, i.e. that the basin boundary is the
right bisector of the line joining the two roots, is shown to hold for all Konig
functions K, (z). (This is not the case for the Schréder S,(z) functions) We
also present some results for the K,,(z) applied to the functions g,(z)=z"—1.
These results, along with other numerical evidence, indicate that basin boundary
“interference” caused by extraneous fixed points of the K, (z) is minimized —
these points are, in a sense, located as far as possible from the superattractive
fixed points z}. In Sect. 4 we investigate the KOnig method as applied to the
one-parameter family of cubic polynomials employed in [6] (Newton method)
and [24] (Newton and Schréder methods). Regions in this “parameter space”
are located which exhibit the morphology and dynamical patterns associated
with the classical Mandelbrot sets of quadratic maps [8, 18]. As the parameter
is varied continuously, the asymptotic behaviour of nonconvergent sequences
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{z,} exhibits a cascade of period-doubling bifurcations eventually leading to
chaos [7], a characteristic feature of quadratic and polynomial-like maps [9].
Detailed discussions on Newton’s method as a chaotic dynamlcal system are
found in [16] and [21].

2. Iteration Functions of Prescribed Order

Let f(z): C—>C be dndlytic on a compact subset .7 of the complex plane C,
having fixed point pe 7, ie. f(p)=p. The fixed point p is attractive, indifferent
or repulsive depending on whether | f'(p)| is less than, equal to or greater than
one. If f'(p)=0, then p is superattractive. Given a starting value, or seed z,€.7,
we define the iteration sequence {z,}& by z, ;= f(z,), n=0, 1, 2, .... Now assume
that p is attractive and that z, —» p as n — co. Let ¢,=z, — p be the error associated
with the nth iterate. Using the Taylor expansion of f(z) about z=p, we have

€yt 1=Zp+1— P
=fle,+p)—f(p)
.
=— f™(p)e)"+O[(e,)" '], n—oo, (2.1)
(m!)
where m is the smallest integer for which ™ (p)+0. Then, f(z) is said to be
an iteration function of order m. A detailed study and classification of rational
functions constructed with a specific number M of parameters to converge to
a given number n of distinct complex points with a specified order ¢ was made
by Smyth [23]. Newton’s method corresponds to the special case o=2, with
deg(numerator)=deg(denominator)+ 1. The Schréder and Konig functions dis-
cussed below are subclasses of more general families of functions for ¢ > 2.
The Schréoder iteration functions [13, 22] are a generalization of Newton’s

method:

Sm(z)=z+m2 c,[—g()]", m=273,4,..., (2.2)
n=1

where the coefficients ¢,(z) are given by

L A -
e iz] wor -

If g(z) is assumed analytic in 7 and g'(z)=0, then the c,(z), and hence the
S,.(z), are analytic in 7. The iteration sequences defined by z,,, ; =S,,(z,) converge
locally to a zero z¥€.7 of g(z) as O(|z,—z*|™), since S,,(z*)=z* and

S (z5) =S (z¥)=...=8S"" (z¥)=0. (2.4)
For a proof of Equation (2.4), see ([13], p. 520).
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The S,,(z) functions are truncations of an infinite series in g(z), the first
three terms of which are given below:

5 8Os LI
M@ -bg (g @)
[5G’

The construction of S,,(z) requires a knowledge of the first m—1 derivatives
of g(z).

Only for m=2, Newton’s method, does the fixed point condition S,,(p)=p
imply that g(p)=0. For m>2, it implies that either (i) g(p)=0, or (ii) 7,,(p)=0,
where

S(z)=z

[¢()].... (2.5)

m—2
T.(2)= Y cur1(D[—g@]" (2.6)
n=0

We shall refer to zeros of the T,,(z) which are not roots zF of g(z) as extraneous
fixed points. Their appearance may complicate the root-finding procedure. As
attractive fixed points, they may trap an iteration sequence, giving erroncous
results for a root z* of g(z). Even as repulsive or indifferent fixed points, however,
they may alter the structure of the basins of attraction for the roots. A seed
z, which may be relatively close to one of the roots may, in fact, converge
to another, remote root. In [24], these aspects of the Schroder functions were
observed in an application to the family of functions g,(z)=z"—L
The Kénig iteration functions [15] corresponding to g(z) are given by

[1/g(z]" "2
[1/g(z)]™ """
If g(z*)=0, then K{(z*)=0 for i=1,2, ..., m—1, as can be shown expanding

g(z) as a Taylor series about z=z*. The case m=2 again corresponds to New-
ton’s method. The functions K ,,(z) for m=3 and 4 are presented below:

K, (2)=z+(m—1) 2.7)

2gg
Ki@=z+—— s
//_2
ggs [(g')’z( V2] 28
Ki()=z+——s 88 2802

6(g)°—6gg'g +g°¢

For m>2, as in the Schréder case, roots of g(z) are necessarily fixed points
of K,,(z), but not vice versa. If we assume that all roots are simple zeros, then
let

h(2)=[g(2)]71=2 Aj(z—z¥) "1, (2.9
so that

h(m)(z):(f l)mmy 2 Ai(Z_Z;k)—(m+ 1)

i=1
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Substitution into Equation (2.6) gives

Kn(2)=z—g(z) Lp— (2)[La(2)] ", (2.10)
where , i
L,(z)= Z A; ]_[ (z—zF)". (2.11)

For m> 2, the fixed point condition K,,(p)=p implies either (i) g(p)=0, or (ii)
L., {p)=0. Again the extrancous fixed points in (ii) may bc cither attractive
or repulsive. In the case of the K; method, a stronger statement may be made:

Proposition 2.1. All fixed points of K;(z) which are not roots of g(z) are repulsive.

Proof. A fixed point K;(p)=p implies either (i) g(p)=0 or (ii) g'(p)=0. Since
K4(2)=g2[3(g")* —2g ¢ 1/[gg" —2(2)*]? (cf. Equation (2.8)), then condition (ii)
implies that K5(p)=3.

3. Julia-Fatou Theory and Rational Iteration Functions

The theory of iteration of rational functions originated with the classical research
of Julia [17] and Fatou [11]. Details of important proofs are given by Brolin
[4]. An excellent review including morc recent work on complex analytic dynam-
ics 1s given by Blanchard [3]. The book by Devaney [7] is also highly recom-
mended. Here are outlined some important concepts relevant to rational root-
finding functions.

Let R(z) bc a rational function, R(z)= P(z)/Q(z), where P(z) and Q(z) are
polynomials with complex coefficients and no common factors and define its
degree as d =deg(R)=max {deg(P), deg(Q)} = 2. Definc the sequence of itcrates
{R"(2)} of R(z) as

R%(z)=z, R'(z)=R(2), ..., R""'(2)=R(R"*(2)), n=0,1,2,....

The inverses of R(z) will be denoted by R '(z), where the index i=1,2,...,d
cnumerates all branches. We consider R(z) as a mapping on the compact Rie-
mann sphere C=Cu { o0} with appropriate spherical metric. Given a point z,eC,
the forward orbit of z,, O™ (z,), is given by the iteration scquence

Zn+1 TR(Zn):R"+ ' (z¢)-

If R¥(p)=p and R™(p)=p for m<k, then p is a fixed point of order k. The
set of distinct points {p;, i=1,2, ..., k}, where

pi=R(p), p,=R(py) ... pi=R(pi_1),

1s called a k-cycle. (If k=1, then p is simply a fixed point of R(z).) The k-cycle
is attractive, indifferent or repulsive, depending on whether the multiplicr
[LR*(p))|=|R'(p,) R'(p,)... R (p,)| (Chain Rule) is less than, equal to or greater
than one, respectively.

Critical points z=¢; of R(z) are those points for which the equation R(z)=v
admits multiple roots. Locally, R'(¢;)=0.
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The Julia set J(R) of R(z) is classically defined as the set of zeC for which
the family of iterates R"(z) is not normal in the sense of Montel [1]. By Arzela’s
theorem [1], zeJ if the R" are not equicontinuous in any neighbourhood of
z. An equivalent and perhaps morc working description is that J(R)=closure
fset of all repulsive k-cycles of R(z), k=1, 2, ...}. Its complement is called the
Fatou set, F(R)=C\J(R).

Important properties of J(R) include: (i) J =+ ¢, (ii) R(J))=J=R"'(J), (ii)
if J has interior points, then J=C, (iv) J is a perfect set [3, 4, 7]. In general
J(R) has non-integral Hausdorff-Besicovitch dimension Dy, [10].

Let p represent an attractive fixed point (or cycle) of R(z). Its basin of attrac-
tion (stable set) W (p) is defined as

W(p)=1{zeC: R"(z) »pasn— 0}

[lustrative Example: R(z)=z%. The Julia set J(R) is the unit circle € = {z: |z| = 1}.
R(z) has two superattractive fixed points, p;=0 and p,=occ. All other fixed
points of R"(z), n=1, 2, ... form a dense set on ¢ and are repulsive. ¥ is the
boundary of the two basins of attraction W(0)={z:|z|<1] and W(x0)
={z:|z|>1}. Here Dyp=1. (In fact, % is the Julia set for R(z)=z", n=2)

The following thcorems play an important role in the behaviour of Newton-
like sequences:

Theorem 3.1 (Fatou). Every attractive cycle of R(z) attracts at least one critical
point.

For an iteration function of order m =2, constructed to determine the roots
of a polynomial g(z), it follows from Equation (2.1) that the sct of its critical
points includes the roots z}* of g(z).

Theorem 3.2 (Montel). Given any neighbourhood U of a point zeJ(R), the set

of values | ] {R"(U)} omits at most two values a, beC.
n=1

Montel’s remarkable theorem implies that if R(z) is a Newton-like rational
function with attractive fixed points (or cycles) p;, every neighbourhood of a
point zeJ(R) must contain open sets which belong to each basin of attraction
W(p,). Tt then follows that all basins share a common boundary, J(R). This
accounts for the infinitely self-similar, fractal patterns observed in basin bound-
ary plots for root-finding Newton methods. We first analyze the Newton,
Schréder and Konig methods as applied to the relatively simple case of two
roots.

The Case of Two Roots

Without loss of generality, it suffices to consider g(z)=z>—1. The associated
Newton function, N(z)=z/241/(2z), was analyzed by Cayley [5], who found
that the boundary of the two attractive basins W(1) and W(— 1) was the imagin-
ary axis .. Let ¢p(2)=(z+ 1)/(z— 1)and ¥ = {z: Re(2) <0} and Z = {z: Re(2)>0}.
Then ¢N ¢~ "(w)=w? p(L)={w: |w| <1}, p(#)={w: |w|>1},and ¢(F) =%, the
unit circle. In other words, Newton’s function N(z) is topologically conjugate
to the map R(w)=w? on the w-sphere. Hence, J(N)=.#.
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An extension of the above conjugacy analysis reveals the following property
of Konig functions K,,(z) for the case of two roots.

Proposition 3.1. For g(z)=z>—1, J(K,)=.%, m=2,3,4, ..., where .9 denotes the
imaginary axis.

Proof. Since h(z)=[g(z)] '=[z—1)"'—(z+1)"']/2, and h'™(z) given accord-
ingly, it is straightforward to show that K, =(1+w™)/(1 —w™), where w=¢(z)
=(z+1)/(z—1). We find easily that K,,(w)=¢ K,,¢ ' (w)=w™. Since J(K,)=%
for m= 2, the proposition follows.

It follows that all extraneous fixed points for the Konig functions are repul-
sive and lic on the imaginary axis .#. The Schréder functions do not behave
in the same manner [24]. S;(z) has two repulsive fixed points at z= +(1/5)!/?,
and S,(z) has four repulsive fixed points at z= i(2ii|/7)”2/]/1 1. These repul-
sive fixed points must lie on the respective Julia sets J(S,,). As a result, the
stable sets W(+ 1) are distortions of the Newton case, as the imaginary axis
no longer serves as the common boundary. This is seen in Fig. 1, where basin

,a
/]
-1
-1
c
1
o b
Fig. 1. Basins of attraction for the Schroder
S,,(z) functions corresponding to g(z)=z>—1 in
the complex region [—1, I]x[—1,1]; W(—1)
in white, W(1) in black.
-1 (a) S5, (b} Sy, (€) S5

-1
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Fig. 2. A comparison of basins of attraction for
Schréder and Konig functions applied to g(z)
=2z*—1 in the complex region
[—1,1]x{—1,1]; W) white; W(—i) black;
W(—1) light grey; W(l) dark grey.

(a) S, =K,=Newton;

(b1) S3; (b2) K5:

(1) Sy4: (€2) Ky
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plots are presented for S, (z), m=3, 4, 5. For example, in the case m=3, a large
interfering component of W(—1) is seen to ¢xtend from the origin toward the
root z*=1, and vice versa. It is natural to conjecture that for general m, S,,(z)
introduces m— 2 repulsive fixed points into each of the right and left half-planes,
symmetrically about z=0. The asymptotic distribution of these points as m — oo
is an interesting question.

More Than Two Roots

Our attention is restricted to the family of functions g,(z)=:z"—1. Some definite
results for these cases illustrate the minimal interference caused by the Julia
set boundaries J(K,). It is expected that similar effects cxist in the case of
less symmetric distributions of roots.

Proposition 3.2. For n=2, the set of roots z¥ of g z)=z"—1is Z,={z}
—exp(2jn/n), j=0,1,2,...,n—1}. For m=3, all extraneous fixed points p of
K, (2), i.e. p¢Z,, are repulsive and lie on the rays arg (2)=(2j+ 1) n/n.

Proof. Given in Appendix.

Geometrically, for a given value of n>2, the repulsive fixed points of K,,(z)
lie on the perpendicular bisectors of the regular n-gon formed by the nth roots
of unity. This result is again in sharp contrast with the Schroder method applied
to the g,(z) [24]. For m=3 and 4, the S,(z) introduce m—2 repulsive fixcd
points into each sector (2j— 1) n/n <arg(z)<(2j+ 1) n/n, j=0, 1, ..., n— 1. Again,
we conjecture that this procedure continues for m>4. Attractive basin plots
for the §,,(z) and K, (z) associated with g,(z), m=3 and 4, arc presented in
Fig. 2, again demonstrating the rclative minimization of interference afforded
by the Kénig procedure. It would be interesting to compare numerical estimates
of the fractal dimensions of the Julia set basin boundaries for both mcthods.

4. Parameter Space and Chaotic Dynamics

As mentioned earlier, root-finding methods involving rational functions are not
guaranteed to converge to the zeros of a function g(z). If the initial point zo€J,
the Julia set, then the sequence {z,} will always remain on J. (In practice, round-
off error will eventually kick the sequence away from the repeller set J.) Apart
from this rather improbable case, the possibility does exist that the z, converge
to periodic cycles or even exhibit chaotic behaviour. Instead of constructing
specific examples of such pathological behaviours, we may systematically exam-
ine iteration schemes associated with a paramecterized family of polynomials.
Here, we consider the one-parameter family of cubic polynomials

g ()= +(A—-1)z— A, 4.1

the roots of which are z¥=1, z% y=(—1+]/1—44)/2. We shall now work in
the complex-parameter space AeC. For a given rational iteration function, each
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point A=(Re(A), Im(A4)) represents a dynamical system with its own cycles
and Julia set. It will be seen that pathological behaviour will be concentrated
in particular regions of parameter space whose morphology and dynamics are
similar to those of the classical Mandelbrot sets of complex quadratic mappings
[19,9].

Curry [6] first examined Newton’s method in this parameter space to discov-
er regions where extraneous attractive periodic cycles exist. This feature is also
observed for the Schréder functions associated with g (z) [24]. In this latter
case, there may exist attractive fixed points corresponding to the zeroes of T,,(z)
in equation (2.6). Here we include some aspects of Newton’s method in parameter
space and present results for S; and K5 methods.

To detect the existence of extraneous attractive cycles for S,,(z) and K,,(z),
we observe the orbits of their critical points. By Fatou’s Thecorem 3.1, each
attractive cycle will attract at least one critical point. Obviously, only critical
points which are not roots of g(z), which we shall refer to as free critical points,
could possibly detect these extra cycles.

In the paramcter space plots presented below, regions in the complex A-plane
are shaded according to where the relevant free critical point is attracted: white
for zf =1, grey for z% ; and black for neither. Details of the microcomputing
involved in generating these plots are given in [24].

Newton’s Method
The only free critical point is ¢=0. The parameter space plot for the Newton

method in Fig. 3 was first presented in [6]. Small black areas, representing
A-values for which pathological attractive cycles exist, are observed at A ~(0.31,

4
3 0.01 T
ot
- . -0.01 L
-2 0 2 0.35 0.36 0.37

Fig. 3. Complex A-parameter space plot for Newton’s method applied to the polynomials g,(z)
in Equation (4.1): regions in Ae[—2,2] x[—2,2] for which the free critical point ¢=0 converges
to z¥ =1 (white), z¥ or z¥ (grey) or none of these roots (black)

Fig. 4. A magnification of the Mandelbrot-like set in the region [0.35, 0.37] x [ -0.01, 0.01] of Fig. 3,
i.e. parameter values A for which the critical point ¢ =0 does not converge to a root z¥ of g 4(z)
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1.0 f———m
0.0 N R
-1.0 : : :

0.35 0.36 0.37

A

Fig. 5. Asymplotic trajectory of the critical point ¢=0 for Newton’s method applied 1o g,(z) for
0.35<4<0.37, i.e. the real A-values of Fig. 4

+1.64) and (1.01, +0.98). When magnified, these regions have the same general
shape as the remarkable Mandelbrot sets [ 18, 20] for quadratic maps R(z)=1z*
+¢. Four other sets symmetric about the real A-axis are detectable at the real
values A~0.26, 0.36, 0.5 and 0.65. Note that real attractive cycles lying in these
regions do not conflict with Barna’s theorem for Newton’s method on the real
line: in all cases, the two roots z§ 5 are complex. Figure 4 gives a magnification
of the region [0.35, 0.37] x [—0.01, 0.01]. As in the case of quadratic maps,
these sets represent zones of stable cycles which undergo the classical period-
doubling route to chaotic behaviour [12]. For example, the major cardioid
in Fig. 4 rcpresents A-values for which there exist attractive 2-cycles. (Recall
that no extraneous fixed points can occur for Newton’s method.) The adjacent
circular region corresponds to attractive 4-cycles, etc. In Fig. 5, we plot the
asymptotic orbits, (z, for n>10000) of the critical point ¢, =0 for the range
of real paramcter values 0.35<4<0.37. As the parameter 4 is decreased from
0.37, a transition is observed at 4=0.362683..., when ¢, becomes mapped to
attractive 2-cycles. The cascade to 2-cycles proceeds quite rapidly, with an even-
tual transition to chaotic behaviour. A Sarkovskii-type ordering of cycles [7]
with the appearance of a 3-cycle is observed. At A=0.35286..., a return from
chaotic behaviour back to the fixed point zF =1 is observed.

S5 Iteration

Figure 6 is the parameter space plot obtained with the free critical point ¢,
=[(A—1)/15]"2. The parameter space map for the other critical point ¢, = —¢;
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5 T 0.03 T

or ot
-5 = -0.03 — *
-5 o] S 1.89 1.92 1.95

Fig. 6. Complex A-parameter space plot for the Schroder S; method applied to the polynomials

g4lz): regions in [ —5,5] x[—5. 5] for which the [ree critical point ¢;= |/(/1 — /15 converges to
z¥ =1 {white), z¥ or z¥ (grey), or nonc of these roots (black)

Fig. 7. A magnification of a Mandelbrot-like set in Fig. 6 for the $; method

is obtained by reflecting the regions in Fig. 6 about the rcal A-axis. An enlarge-
ment of the Mandclbrot-like set in [1.89, 1.95] x [0, 0.03] is shown in Fig. 7
along with its reflection about the real A-axis. The upper half of this set, including
the real axis comes from the ¢, plot. The major cardioid corresponds to attractive
fixed points, or zeros of T;(z) in Equation (2.6) for g(z)=g,(z). A little algebra
shows that such attractive fixed points can exist for parameter values 4 where
a root of the equation

T3(2)=12z*+9(A~1)z2 =34z +(4-1)>=0
satisfies the inequality
1S5 =I5+(1-A4)/32%) < 1.

Figure 8 shows the asymptotic orbits of ¢, in the rcal parameter region 1.89
<A=195

K5 Iteration

In Fig. 9 the region of complex A-space [—3, 3] x [ —4, 2] has been probed
with the free critical point ¢, =[(4—1)/15]"/2. (The other free critical point is
¢, = —c,. Its corresponding parameter space plot is again a reflection of Fig. 9
about the real-4 axis.) Only two regions of nonconvergence to the roots of
g4(z) are detectable at this resolution: at A ~(1.99, —3.26) and (—1.98, —2.68).
A magnification of the former region is presented in Fig. 10. The primary car-
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1.0 — —
———— —
0 . : .
1.89 1.92 1.95

A

Fig. 8. Asymptotic trajectories of the S critical point ¢, =]/(4—1)/15 for the real A-values in Fig. 7,
1.89=4<195

-3 0 3 195 2.0 2.05
Fig. 9. Complex A-parameter space plot for the Kénig K5 method applied to the polynomials g ,(2):

regions in [ —3,3]x[—4, 2] for which the free critical point ¢; = V(4—1)/15 converges to zf=1
(white), z¥ or z¥ (grey) or none of the roots (black)

Fig. 10. A magnification of the region [1.95, 2.05] x [ —3.35, —3.25] revealing a Mandelbrot-like
set as well as the complicated dynamics occurring near this set

dioid in the Figure represents parameter values with attractive 2-cycles (cf. Prop-
osition 2.1). The cascade of period-doubling bifurcations leading to chaotic
behaviour has also been numerically observed here.
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Appendix
Proof of Proposition 3.2.

We introduce polynomials p, (x) defined by

1w (2"
EallRErars (A1)

z"—1 Zt— !

so that py(x)=1.
The Konig functions K, (z) constructed from the polynomial g(z)=z"—1
may now be written as

K ()=z+(m—1)z(z—1) Pn=2)

) 2
P (&) (A.2)

Differentiation of Equation (A.1) gives the following recurrence relation for the

Pi(x),
Pi+1(x)=nx(x—1) pi(x) + [k —(nk+n+k)x] p,(x). (A.3)

The next three polynomials are given by

pi(x)=
p2(x)= XE(n+1)X+(n—1)]
p3(x)=—nx[(n+)n+2)x*+4(n+(n—1) x+(n—1)(n—2)].
Note that for all n=2, all roots x are real and nonpositive.

Propeosition. p,(x) is a polynomial of degree k with p,(x)— 0 as x » — w0, and
Pr(x) has q zero roots and k— q distinct negative roots where q = k/n.

Proof. By induction on k. For k=1, p,(x) has one zero root. Suppose inductively
that r, <r,<...<r,_, are the negative roots of p,(x). Then

p(x)=(—1}[Ax*+...+ Bx?], where 4, B>0.

(By Descartes’ Rule of Signs, all coefficients of p,(x) must have the same sign.)
Using (A.3),
Piv1(X)=(—=1F[(nk—(nk+n+k) Ax*"'+ .. +(—nq+k) Bx7]
=(—D""(n+k)Ax*T '+ ... +(ng—k) Bx7].
Therefore p,, (x) is a polynomial of degree k+1, p;, ,(x)— oo as x » — oo and
Pr+1(x) has at least g zero roots. For any root r; of p,(x) we have, by (A.3),
Prv 1 (r)=n(m?—r) pi(r),

which has the same sign as p,(r,). The signs of p,(r,), i=1, 2, ..., k—g alternate
as —+ —+..., 30 p,.(x) has at least k—q distinct negative roots which are
less than ry _,,.
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There is now only one root of the polynomial p, . (x) unaccounted for.
Hence, it must be a real root. Suppose that ng— k>0 so that p, , ,(x) has exactly
g zero roots. Now p, . (r, -,) has a sign of (— 1~ 7 and p, ., ;(x) is approximately
(— ¥ ' (ng—k) Bx7 near x =0. Hence the remaining root must lie between r, _,,
and 0. Thus there are exactly g zero roots and since ng—k >0 and the numbers
are integers, ng—k=1; ie. g=(k+1)/n. if ng—k=0, then p, . ,(x) has g+1 zero
roots. The number of zero roots then satisfies g+ 1> (k+ 1)/n. The result now
follows by induction.

Theorem. The roots of p,(z") all have arguments of the form (2j+ 1) n/n.

Proof. All roots of py(x) have argument 7, by the previous proposition.

By Equation (A.2), the above result establishes the location of the fixed
points of the K,,(z) which are not the nth roots of unity. (It also establishes
the location of all poles.) To show that these fixed points are repulsive, differenti-
ate Equation (A.2) with respect to z and set z=r, where p,,_,(r")=0 to give

K ()=1+m—1nr"(r"—1) pl 2 (r")/ P 1 ("").

From the recurrence relation (A.3), we find that K, (r)=m.
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