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Abstract
We consider the problem of modifying L2-based approximations so that they “con-
form” in a better way to Weber’s model of perception: Given a greyscale background 
intensity I > 0 , the minimum change in intensity �I perceived by the human visual 
system is �I∕Ia = C , where a > 0 and C > 0 are constants. A “Weberized distance” 
between two image functions u and v should tolerate greater (lesser) differences over 
regions in which they assume higher (lower) intensity values in a manner consist-
ent with the above formula. In this paper, we Weberize the L2 metric by inserting 
an intensity-dependent weight function into its integral. The weight function will 
depend on the exponent a so that Weber’s model is accommodated for all a > 0 . 
We also define the “best Weberized approximation” of a function and also prove the 
existence and uniqueness of such an approximation.

Keywords  Weber model of perception · range-dependent weight functions · 
Weberized image metrics · best Weberized approximation

1  Introduction

In this paper, we present a method of “Weberizing” L2-based methods of signal 
and image approximation by modifying the usual L2 metric in such a way that it 
“conforms” as much as possible to Weber’s model of perception. (We shall define 
the term “conform” later in the paper.) The term “Weberized” has appeared in 
several papers which have incorporated Weber’s model into classical image pro-
cessing methods, namely, total variation (TV) restoration Shen (2003) and Mum-
ford-Shah segmentation Shen and Jung (2006). Our methods of Weberization, 
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however, are quite unique in that the metrics we produce can be used in a wide 
variety of applications, e.g., best approximation, denoising and other image resto-
ration problems. The novelty of our approach lies in the fact that we are perform-
ing “range-based” approximation: The nonuniformity in the metric is based on 
the range values of the functions. The primary motivation for our research lies in 
the fact that the well known and very commonly used mean squared error (MSE) 
and peak signal-to-noise ratio (PSNR) – examples of L2-based distance measures 
– perform poorly in terms of perceptual image quality Girod (1993); Wang and 
Bovik (2009).

By Weber’s model of perception we mean the following: Given a greyscale 
background intensity I > 0 , the minimum change in intensity �I perceived by the 
human visual system (HVS) is related to I as follows,

where a > 0 and C is constant, or at least roughly constant over a significant range 
of intensities I. The case a = 1 corresponds to the standard Weber model – often 
known as “Weber’s Law” – which has been employed in practically all applications 
Wandell (1995). Even in this standard case, different values of the constant C may 
hold over different regions of intensity space Li et al. (2014). There are also situa-
tions in which other values of the exponent a, in particular a = 0.5 , may apply – see, 
for example, Michon (1966). These complications are well beyond the scope of this 
paper. Here we focus on the model in Eq. (1) with the understanding that our pro-
posed method can be adapted to conform to more complicated behaviours.

In our previous papers, we have referred to Eq. (1) as a generalized Weber model 
of perception in order to distinguish it from the special case a = 1 . Here, for the sake 
of simplicity, the words “generalization” or “generalized” will be omitted: Unless 
otherwise indicated, “Weber’s model” will refer to Eq. (1) for a > 0.

The basis of our entire program to Weberize metrics is as follows. Eq.  (1) 
implies that the HVS will be less (more) sensitive to a given change in intensity 
�I in regions of an image at which the local image intensity I(x) is high (low). As 
such, a Weberized distance between two functions u and v should tolerate greater 
(lesser) differences over regions in which they assume higher (lower) intensity 
values. The degree of toleration as I varies will be determined by the exponent a.

In Kowalik-Urbaniak et  al. (2014), the L2 metric was Weberized for the spe-
cial case a = 1 , Weber’s standard model in Eq. (1), by the insertion of an inten-
sity-dependent weight function into integral. Even though seemingly ad hoc, 
our method produced a distance function which could be viewed as accommo-
dating Weber’s standard model, a = 1 , in terms of approximations of piecewise 
constant functions (see Example 1 of Kowalik-Urbaniak et al. (2014)). Its use in 
the approximation of functions and images is discussed in much greater detail, 
through many examples, in Kowalik-Urbaniak (2014).

In this paper, we show that a simple modification of the weight function used 
in Kowalik-Urbaniak et  al. (2014); Kowalik-Urbaniak (2014) produces Weber-
ized distance functions that accommodate the general case a > 0 . We also provide 

(1)
�I

Ia
= C,
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the mathematical basis for best approximation in terms of all Weberized distance 
functions.

Let us also mention that the approach outlined in this paper is in no way restricted 
to Weber’s model of perception. Other forms of the intensity-based weight func-
tion, according to need or interest, may be employed. A few comments regarding the 
more general case are presented in the final section of this paper.

Finally, we should draw the reader’s attention to another method that has been 
devised to Weberize Lp-based metrics, namely, the use of appropriate measures that 
are supported on the (positive) range space ℝg = [A,B] of functions to reformulate 
the integrals which normally define the Lp distance between two functions. (When 
Lebesgue measure is used on ℝg , the result is the usual Lp distance integral.) Some 
of the main ideas of such “range-based” or “intensity-dependent” measures appeared 
in Li et al. (2018) and Li et al. (2019) and are discussed in much more detail in Li 
(2020). Some of the mathematics used in these works has been used in this paper to 
provide the mathematical basis of the best Weberized approximation problem.

2 � Mathematical preliminaries

The basic mathematical ingredients of our formalism are listed below. 

1.	 The base (or pixel) space X ⊂ ℝ
n on which our signals/images are supported. 

Here, without loss of generality since our discussion is purely theoretical, we sim-
ply consider the one-dimensional case X = [0, 1] ⊂ ℝ . The extension to higher-
dimensional cases is rather straightforward. We also mention that our discussion 
easily extends to the discrete case encountered in practice, where X is comprised 
of pixels or voxels – for example, X = {1, 2,⋯ , n1} × {1, 2,⋯ , n2} , in which case 
the images are n1 × n2 arrays of numbers.

2.	 The (greyscale or intensity) range space For an A > 0 , ℝg = [A,B] , where B < ∞ . 
Once again, our discussion can be extended to the discrete case, e.g., N bit-per-
pixel digital images for which ℝg = {0, 1,⋯ , 2N − 1}.

3.	 Set of (signal/image) functions F(X) = {u ∶ X → ℝg | u measurable } . From our 
definition of the greyscale range ℝg , u ∈ F(X) is positive and bounded almost 
everywhere, i.e., 0 < A ≤ u(x) ≤ B < ∞ for almost every x ∈ X . A consequence 
of this boundedness is that F(X) ⊂ Lp(X) for all p ≥ 1 , where the Lp(X) function 
spaces are defined in the usual way. In this paper, we shall be using the L2 metric 
on X, 

It is important to mention that because of the restrictions on the range values, F(X) 
is not a linear space: Given u, v ∈ F(X) , it does not follow that c1u + c2v ∈ F(X) 
for all c1, c2 ∈ ℝ . Moreover, the zero function is not an element of F(X) . As will be 
seen below, the restriction to nonnegative range values is necessary because of the 
form of the weight functions used in our Weberized distance integrals.

(2)d2(u, v) = ‖u − v‖2 =
�

∫X

[u(x) − v(x) ]2 dx

�1∕2
, u, v ∈ L2(X) .
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Theorem 1  The set F(X) is bounded, closed and convex.

Proof 

(a)	 Since 0 < A ≤ u(x) ≤ B < ∞ for a.e. x ∈ X , it follows that ‖u‖2 ≤ m(X)B , where 
m(X) denotes the Lebesgue measure of X. Hence the set F(X) is bounded.

(b)	 To show that F(X) is closed, let {un} ⊂ F(X) be a convergent sequence with 
limit u, i.e., d2(un, u) → 0 as n → ∞ . This implies that there exists a subsequence 
{unk} which converges to u pointwise. Since {unk} ⊂ F(X) , it follows that for all 
nk , A ≤ unk (x) ≤ B for a.e. x ∈ X . Taking the pointwise limit as k → ∞ yields 
A ≤ u(x) ≤ B for a.e. x ∈ X , which implies that u ∈ F(X) . Therefore F(X) is 
closed.

(c)	 To show that F(X) is convex, let u, v ∈ F(X) . Then for any � ∈ [0, 1] , 

 for a.e. x ∈ X . Adding the two inequalities yields, 

 which implies the convexity of F(X).
	�  ◻

3 � Intensity‑dependent weight functions which produce Weberized 
distance functions

In the usual L2-based methods of approximation employed in signal and image pro-
cessing, the L2 metric in Eq. (2) is used. This metric, and indeed all other Lp - based 
metrics, p ≥ 1 , are not adapted to Weber’s model of perception since they involve 
integrations over appropriate powers of intensity differences, |u(x) − v(x)| , with no 
consideration of the magnitudes of u(x) or v(x).

Recall that a Weberized distance between two functions u and v should tolerate 
greater (lesser) differences over regions in which they assume higher (lower) inten-
sity values. One way to accomplish such a “Weberization” of the L2 metric is to 
insert an intensity-dependent weight function in the integrand of Eq. (2). The gen-
eral form or forms of such a weight function is an open problem worthy of explora-
tion, the discussion of which is beyond the scope of this paper. Here we simply men-
tion that one possibility is to consider weight functions which are dependent upon 
one or both of the intensities of the image functions u(x) and v(x). The resulting 
weighted L2 metric may be written in the generic form,

where g ∶ ℝg ×ℝg → ℝ+ denotes the intensity-dependent weight function.

(3)�A ≤ �u(x) ≤ �B and (1 − �)A ≤ (1 − �)v(x) ≤ (1 − �)B

(4)A ≤ �u(x) + (1 − �)v(x) ≤ B for a.e. x ∈ X ,

(5)d2W (u, v) =

[

∫X

g(u(x), v(x))[u(x) − v(x)]2 dx

]1∕2
,
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This, of course, leads to the question of properties that should be satisfied by the 
weight function g as well as possible functional forms that it could assume. As dis-
cussed in Kowalik-Urbaniak et al. (2014), for d2W to satisfy the properties of a met-
ric, g(u, v) should be symmetric in its arguments, i.e., g(u, v) = g(v, u) . Furthermore, 
for the d2W to be Weberized, it is desirable that g(u,  v) be decreasing in each of 
its arguments. These requirements are satisfied by the family of weight functions, 
g(u, v) = |uv|−q , where q > 0 , resulting in weighted L2 metrics of the form,

The appearance of both functions in the denominator, however, complicates matters 
when we consider the approximation problem u ≃ v where v is a linear combination 
of basis functions – see Sect.  4. As discussed in Kowalik-Urbaniak et  al. (2014), 
a simplification is achieved if we consider g to be a function of only one intensity 
function. In that paper, for the special case a = 1 , we considered two unsymmetric 
weight functions, g1(u(x), v(x)) = u(x)−2 and g2(u(x), v(x)) = v(x)−2 to produce two 
integral distance functions, denoted as �(u, v) and �(v, u) , either of which could be 
bounded above and below by the other. The distance function �(u, v) , used for the 
approximation problem u ≃ v , was shown to conform to Weber’s model for a = 1 . 
Referring the reader to Kowalik-Urbaniak et al. (2014) for details, we now proceed 
to the first major contribution of this paper, the construction of distance functions 
which conform to Weber’s model for any a > 0 , based upon a rather straightforward 
extension of the result in Kowalik-Urbaniak et al. (2014).

First of all, for an a > 0 , consider the nonsymmetric weight function 
g1(u(x), v(x)) = u(x)−2a so that the weighted L2 distance in Eq. (5) becomes

Now consider the nonsymmetric weight function g2(u(x), v(x)) = v(x)−2a so that the 
weighted L2 distance in Eq. (5) becomes

Note that in general, �a(u, v) ≠ �a(v, u) , which implies that �a is not a metric in the 
strict mathematical sense of the term. This is once again the price paid for employ-
ing weight functions g(u, v) which are not symmetric in the functions u and v. We 
could, of course, employ both �(u, v) and �(v, u) to construct a bona fide metric 
but this will not be necessary because of the following result, which may be easily 
derived from the fact that u and v are in F(X).

Theorem 2  Let u, v ∈ F(X) , once again recalling the assumption that the greyscale 
range ℝg = [A,B] is bounded away from zero, i.e., A > 0 . Then for �a(u, v) and 
�a(v, u) defined in Eqs. (7) and (8) respectively,

(6)d2W,q(u, v) =

[

∫X

1

u(x)qv(x)q
[u(x) − v(x)]2 dx

]1∕2
, q > 0 u, v ∈ F(X) .

(7)�a(u, v) =

[

∫X

1

u(x)2a
[u(x) − v(x)]2 dx

]1∕2
.

(8)�a(v, u) =

[

∫X

1

v(x)2a
[u(x) − v(x)]2 dx

]1∕2
.
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where d2 denotes the L2 metric – see Eq. (2) – from which it follows that

Comments on Theorem 2:

1.	 From Eq. (10) it is sufficient to consider only one of the two distance functions, 
�a(u, v) or �a(v, u) , in any theoretical treatment or application. As in Kowalik-
Urbaniak et al. (2014), we shall let u denote a reference function and v and 
approximation to it, in which case the error of the approximation u ≃ v is given 
by �a(u, v) in Eq. (7).

2.	 The distance functions, �a(u, v) and �a(v, u) , and Theorem 1 above, are generaliza-
tions of the special case a = 1 examined in Kowalik-Urbaniak et al. (2014).

3.	 In the special case a = 1 , the leftmost inequality in Eq. (10) is an improvement 
over the one which originally appeared in Kowalik-Urbaniak et al. (2014).

We now make the following important observation, a generalization of Example 1 in 
Kowalik-Urbaniak et al. (2014).

Example 1  Consider the “flat” reference image u(x) = I , where I ∈ ℝg . For an a > 0 , 
let v(x) = I + �I be the constant approximation to u(x), where 𝛥I = CIa > 0 is the 
minimum perceived change in intensity corresponding to I, according to Weber’s 
model in Eq. (1). The L2 distance between u and v is

A simple computation shows that the weighted L2 distance in Eq. (7) is

Note that the L2 distance in Eq. (11) increases with the intensity level I which is 
expected since �I increases with I. However, the weighted L2 distance in Eq. (12) 
remains constant. As such, we claim that �a(u, v) accommodates, or “conforms 
to”, Weber’s model of perception for a > 0 : Perturbations �I of image intensities I 
according to Eq. (1) yield the same distance measure, independent of I.

(9)
1

Ba
d2(u, v) ≤

{
�a(u, v)

�a(v, u)

}
≤ 1

Aa
d2(u, v) ,

(10)
(
A

B

)a

�a(u, v) ≤ �a(v, u) ≤
(
B

A

)a

�a(u, v) .

(11)d2(u, v) = K ⋅ �I = KCIa , where K =

[

∫X

dx

]1∕2
.

(12)�a(u, v) = K
�I

Ia
= KC .
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4 � Best approximation in terms of Weberized distance functions 
�

a
(u, v)

In what follows, we let {�k}
∞
k=1

 denote a set of real-valued functions that form a 
complete basis of L2(X) . Now let u ∈ F(X) ⊂ L2(X) denote the reference signal/
image function to be approximated. We are interested in best approximations to u 
having the form,

for n ≥ 1 . As is well known, in the special case that the {�k} functions com-
prise an orthonormal basis, the best L2 approximation to u in the subspace 
Vn = span {�1,⋯ ,�n} is the minimizer of the L2 distance ‖u − v‖2 over all v ∈ Vn . 
It is uniquely defined by the Fourier coefficients of u in the {�k} basis, i.e.,

Here, however, we wish to find the “best Weberized” approximation to u, i.e., 
for a given n ≥ 1 and a > 0 , find the expansion in Eq.  (13) which minimizes the 
weighted L2 distance �a(u, vn).

Technically, it should be guaranteed that the approximation function vn(x) in 
Eq.  (13) lies in the space F(X) , i.e., A ≤ vn(x) ≤ B for a.e. x ∈ X . To address this 
complication we define, for each n ≥ 1 , the following feasible parameter set Cn ∈ ℝ

n

,

By definition, Cn ⊂ Cn+1 for n ≥ 1 . The subsets Cn depend on the choice of basis 
set {�k}

∞
k=1

 . In what follows, we assume that the �k functions satisfy some rather 
generic conditions: 

1.	 𝜙1(x) = K > 0 , a constant, for all x ∈ X.
2.	 There exists a constant M > 0 , such that |�k(x)| ≤ M for all k ≥ 2 . (In the case of 

an unnormalized sine/cosine basis, M = 1.)

Theorem 3  For all n ≥ 1 , the subsets Cn ⊂ ℝ
n are compact and convex.

Proof  For any n ≥ 1 , we have the condition that A ≤ vn(x) ≤ B for all x ∈ X , or

(13)u ≃ vn =

n∑

k=1

ck�k ,

(14)ck = ⟨u,�k⟩ = �X

u(x)�k(x) dx, 1 ≤ k ≤ n .

(15)Cn =

{
� = (c1,⋯ , cn) ∈ ℝ

n
||||
vn(x) =

n∑

k=1

ck�k(x) ∈ F(X)

}
.

(16)A ≤
n∑

k=1

ck�k(x) ≤ B .
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We start with the case n = 1 . From the assumption that �1(x) = K , it follows that

Therefore C1 = [A∕K,B∕K] which is compact.
We now consider the case n = 2 , i.e.,

If we set c2 = 0 , the above inequality becomes (17), implying that C2 lies between 
the hyperplanes c1 = A∕K and c1 = B∕K . We now examine nonzero values of c2 . 
First of all, the minimum value of c1�1(x) is A, in which case the inequality in (18) 
becomes

Now consider the case when c2 > 0 . Since the maximum value of �2(x) is M, it fol-
lows from (19) that

Now consider the case when c2 < 0 . Since the minimum value of �2(x) is −M , it fol-
lows from (19) that

In summary, we have that

These inequalities are also obtained when one considers the case where c1�1(x) 
achieves its maximum value of B in (18).

We may now proceed in a recursive manner. Consider the inequalities satisfied by 
vn+1 , written as follows,

The minimum and maximum values of the expression in brackets, namely vn(x) , are 
A and B, respectively. As in the case n = 2 , this leads to the following result,

This shows that the above inequality holds for all cn , n ≥ 2 . Therefore, the sets Cn are 
bounded for n ≥ 1.

To show that Cn is closed, let {�j}∞j=1 ⊂ Cn be a convergent sequence with limit � , 
i.e., for 1 ≤ k ≤ n , lim

j→∞
cjk = dk . Now define

(17)A ≤ c1K ≤ B ⟹
A

K
≤ c1 ≤ B

K
.

(18)A ≤ c1�1(x) + c2�2(x) ≤ B .

(19)0 ≤ c2�2(x) ≤ B − A .

(20)0 ≤ c2 ≤ B − A

M
.

(21)0 ≥ c2 ≥ A − B

M
.

(22)
A − B

M
≤ c2 ≤ B − A

M
.

(23)A ≤ [c1�1(x) +⋯ cn�n(x)] + cn+1�n+1(x) ≤ B .

(24)
A − B

M
≤ cn+1 ≤ B − A

M
.



2357

1 3

The use of intensity‑dependent weight functions to “Weberize”…

and

Since {�j}∞j=1 ⊂ Cn , we have that

Since �j → � as j → ∞,

Therefore, taking the limit j → ∞ in Eq. (27), it follows that

This implies that f ∈ Cn , thus proving that Cn is closed. Since Cn ⊂ ℝ
n is both 

closed and bounded, it is compact (Bolzano-Weierstrass).
Finally, to show that Cn is convex, let � and � be any two elements of Cn , implying 

that

Now for any � ∈ [0, 1] , multiply the first set of inequalities by � and the second by 
(1 − �) and then add them to obtain the following inequality,

This implies that � = �� + (1 − �)� ∈ Cn for any � ∈ [0, 1] which, in turn, implies 
that Cn is convex. 	� ◻

We now use the subsets Cn ⊂ ℝ
n to define the following subsets Sn ⊂ F(X) for 

n ≥ 1,

Definition 1  For each n ≥ 1 , let �n ∶ Cn → Sn be defined as follows. For a given 
� = (a1,⋯ , an) ∈ Cn , define

(25)fj(x) =

n∑

k=1

cjk�k(x) , ∀j ≥ 1 ,

(26)f (x) =

n∑

k=1

dk�k(x) .

(27)A ≤ fj(x) ≤ B , ∀ j ≥ 1 .

(28)lim
j→∞

[fj(x) − f (x)] = lim
j→∞

n∑

k=1

(cjk − dk)�k(x) = 0 a.e. x ∈ X .

(29)A ≤ f (x) ≤ B a.e. x ∈ X .

(30)A ≤
n∑

k=1

ck�k(x) ≤ B and A ≤
n∑

k=1

dk�k(x) ≤ B a.e. x ∈ X .

(31)A ≤
n∑

k=1

[�ck + (1 − �)dk]�k(x) ≤ B a.e. x ∈ X .

(32)Sn =

{
v ∶ X → ℝg

||||
v(x) =

n∑

k=1

ck�k(x) for � ∈ Cn

}
.
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By construction, vn ∈ Sn . We denote vn as �n(�).

Theorem 4  For each n ≥ 1 , the mapping �n ∶ Cn → Sn is a homeomorphism.

Proof  Very briefly, the linear independence of the basis functions, {�1,⋯ ,�n} , 
implies that �n is a bijection. From the equivalence of the Da and d2 metrics in Sn , 
we may use the d2 metric to easily show that for �, � ∈ Cn,

where the elements of the symmetric (and nonsingular) overlap matrix � are 
sij = ⟨�i,�j⟩ . Continuity of �n and �−1

n
 follows. 	�  ◻

Corollary  For each n ≥ 1 , the subset Sn ⊂ F(X) is compact and convex.

The Sn will play the role of approximation spaces in our best Weberized 
approximation problem. Let us recall that for any n ≥ 1 , the subset Sn ⊂ F(X) 
is not a linear space because of the restrictions involved in the definition of the 
set F(X) . The Sn are clearly subsets – but not subspaces – of the approximation 
spaces Vn = span {�1,⋯ ,�n} that are normally used in best L2 approximation.

Our “best Weberized” approximation problem will now be defined as follows.

Definition 2  For a given a > 0 and a given n ≥ 1 , we define the best Weberized 
approximation vn ∈ Sn to u ∈ F(X) as

where the weighted L2 distance function �a(u, v) corresponding to Weber’s model 
for a > 0 is defined in Eq. (7). The existence and uniqueness of this best approxima-
tion will be established below.

The existence of a solution vn to Eq. (35) is guaranteed by the following result.

Theorem  5  For a fixed u ∈ F(X) and a > 0 , consider the function h ∶ F(X) → ℝ 
defined as h(v) = �a(u, v) for v ∈ F(X) . Then:

1.	 h(v) is a continuous function of v.
2.	 h(v) is a convex function of v.

Proof  From Eq. (7), h(v) = ‖u−a(u − v)‖2 , where ‖ ⋅ ‖2 denotes the standard L2 norm 
– see Eq.  (2). The continuity and convexity of h(v) trivially follow from, respec-
tively, the continuity and convexity of the L2 norm.

(33)vn(x) =

n∑

k=1

an�n(x) for all x ∈ X .

(34)d2(�n(�),�n(�)) = [(� − �)T�(� − �)]1∕2 ,

(35)vn = argmin
v∈Sn

�a(u, v) ,
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For each n ≥ 1 , it follows from the continuity of h ∶ F(X) → ℝ and the com-
pactness of Sn that a solution to Eq. (35) exists.

We now establish the uniqueness of the solution vn to Eq.  (35). We use the 
facts that (i) F(X) ⊂ L2(X) and (ii) L2(X) is a strictly normed space Lebedev 
et al. (2003), i.e., if

then y = �x and � ≥ 0 , where ‖ ⋅ ‖2 denotes the L2 norm.

Theorem 6  Let u ∈ F(X) . Then for a given n ≥ 1 and a > 0 , the solution to Eq. (35) 
is unique.

Proof  If u ∈ Sn , then there is only one minimizer, vn = u . Now suppose that u ∉ Sn 
and that there are two minimizers of �a(u, v) , namely vn,1, vn,2 ∈ Sn with vn,1 ≠ vn,2 . 
Thus,

Recalling the definition of h(v) in Theorem 6, we have that

which may be expressed in terms of the L2 norm as follows,

where p(x) = u(x)−a . Since Sn is convex, wn =
1

2
(vn,1 + vn,2) ∈ Sn so that

But

From (40) and (41) it follows that ‖pu − pwn‖2 = d which may be expressed as 
follows,

Now using the fact that L2(X) is a strictly normed space and making the following 
identifications in Eq. (36),

(36)‖x + y‖2 = ‖x‖2 + ‖y‖2 , x ≠ 0 ,

(37)𝛥a(u, vn,1) = 𝛥a(u, vn,2) = min
v∈Sn

𝛥a(u, v) = d > 0 .

(38)h(vn,1) = h(vn,2) = d ,

(39)‖pu − pvn,1‖2 = ‖pu − pvn,2‖2 = d > 0 ,

(40)�a(u,wn) = h(wn) = ‖pu − pwn‖2 ≥ d .

(41)

‖pu − pwn‖2 =
����
pu −

1

2
(pvn,1 + pvn,2)

����2
≤����

1

2
(pu − pvn,1)

����2
+
����
1

2
(pu − pvn,2)

����2
≤1

2
��pu − pvn,1

��2 +
1

2
��pu − pvn,2

��2
=d .

(42)
‖‖‖‖
pu −

1

2
(pvn,1 + pvn,2)

‖‖‖‖2
=
‖‖‖‖
1

2
(pu − pvn,1)

‖‖‖‖2
+
‖‖‖‖
1

2
(pu − pvn,2)

‖‖‖‖2
.
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it follows that y = �x for some � ≥ 0 , i.e.,

Taking norms, we have

From Eq. (39), � = 1 which, from Eq. (44), implies that vn,1 = vn,2 . This contradicts 
the original assumption that the two minimizers are unequal. Therefore there can be 
at most one minimizer of �a(u, v) in Sn . 	�  ◻

For the practical problem of finding best approximations, it is more convenient 
to work with the squared distance function,

where � = (c1, c2,⋯ , cn) . Here, the weight function is g(x) = u(x)−2a but the alge-
braic expressions presented below apply to any weight function g(x).

The squared distance function f (�) is a quadratic form in the expansion coef-
ficients ck , 1 ≤ k ≤ n , i.e.,

where the elements of the n × n matrix � and the n-vector � are given by

and

The optimization problem in Eq.  (35) may then be replaced by the following 
problem,

the solution of which yields the best Weberized approximation �n(�) = vn ∈ Sn,

(43)x =
1

2
(pu − pvn,1) , y =

1

2
(pu − pvn,2) ,

(44)pu − vn,1 = �(pu − pvn,2) .

(45)‖pu − vn,1‖2 = �‖pu − pvn,2‖2 .

(46)[�a(u, vn)]
2 = ∫X

g(x)

[
u(x) −

n∑

k=1

ck�k(x)

]2

dx =∶ f (�) ,

(47)f (�) = �
T
�� + 2�T� + d ,

(48)aij = �X

g(x)�i(x)�j(x) dx, bj = �X

g(x)u(x)�j(x) dx, 1 ≤ i, j ≤ n

(49)d = ∫X

g(x)u(x)2 dx .

(50)� = (a1,⋯ , an) = argmin
�∈Cn

f (�) ,

(51)vn(x) =

n∑

k=1

ak�k(x) .
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Since f (�) is a continuous function of its arguments ck , 1 ≤ k ≤ n , it achieves a mini-
mum value on the compact set Sn , implying the existence of a solution to (50). The 
uniqueness of this solution is guaranteed by Theorems 4 and 6.

If, for an n ≥ 1 , the minimum of f (�) is achieved at an interior point of the 
feasible set Sn , the best approximation vn can be found by solving the following 
linear system of equations,

which results from the stationarity conditions,

(Note that in the special case g(x) = 1 , the matrix � = � , the n × n identity matrix, 
and the solution reduces to the Fourier coefficients in Eq. (14).)

Example 2  Consider the following step function on X = [0, 1],

We use the following set of functions,

which form an orthonormal basis in the space of functions L2[0, 1] . In Fig.  1 are 
presented plots of the best Weberized approximations vn to u using n = 5 , n = 10 
and n = 20 basis functions for the cases a = 0.25, 0.5,⋯ , 2.0 . The best L2 approxi-
mations, un , which actually correspond to the case a = 0 , are also shown for com-
parison. As expected, the best Weberized approximations vn yield better approxima-
tions of u(x) than un over [0, 0.5] and poorer approximations over [0.5, 1]. Also as 
expected, the degree of “betterness” over [0, 0.5] and “worseness” over [0.5, 1] of 
the Weberized approximations increases with the Weber exponent a since the weight 
function g(u) = u−2a decreases more rapidly with increasing a.

Example 3  Consider a general u ∈ F(X) on X ⊂ ℝ . For a given a ≥ 0 , the best con-
stant approximation, u ≃ ca , to u on X is obtained by minimizing the following 
squared distance function, cf. Eq. (46),

The global minimum point of this function is easily found to be as follows,

(52)�� = � ,

(53)
�f

�ck
= 0 , 1 ≤ k ≤ n .

(54)u(x) =

{
2, 0 ≤ x ≤ 1∕2,

4, 1∕2 < x ≤ 1.

(55)�1(x) = 1, �k(x) =
√
2 cos((k − 1)�x), k ≥ 2 ,

(56)[�a(u, c)]
2 = ∫X

1

u(x)2a
[u(x) − c]2dx = f (c) .
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In the case a = 0 , i.e., a lack of the Weber effect, c0 is the mean value of u on X, as 
expected.

5 � Concluding remarks

In this paper, we have described a method to provide “best Weberized” approxi-
mations to signals and images using intensity-dependent weight functions. These 
weight functions decrease with intensity value so that (i) regions where the target 
function has lower (higher) values will be weighted more (less) in the weighted L2 
distance integral, (ii) the behaviour of the weighting function is in accordance with 
Weber’s model of perception �I = CIa for a > 0 . Up to a multiplicative constant, we 
have employed the functions g(u) = u−2a for u ∈ [A,B].

This approach may seem rather ad hoc, but it does yield approximations that 
behave in a “Weberized” manner. Moreover, the computation of these approxi-
mations via the linear system in Eq.  (52) is much more convenient than what 
is required for the measure-based method discussed in Li (2020); Li et  al. (2018, 
2019). Whether there is any relationship between the approximations yielded by this 
method and those of the measure-based method for a given value of a is still an open 
question.

Our intensity-dependent approach may be adapted to perceptual models with 
differing Weber exponents over different intensity ranges – it is simply a matter of 
defining the weight function g(u) in a piecewise manner.

Here we also mention that our approach is not restricted to Weber’s model of per-
ception. The weight function can be tailored to any desired type of behaviour over 
the range space ℝg = [A,B] . For example, one may wish, for some reason, to assign 
more weight to the middle of the greyscale interval [A, B] than at the endpoints. One 
possible way to accomplish such a weighting is by using a logistic-type quadratic 
function of the target function u over [A, B], i.e.,

for appropriate values of the positive constants C and D.
In the more general case, let us assume that the weight function is sufficiently 

“nice”, i.e., at least continuous on [A, B], so that it achieves minimum and maximum 
values on [A, B], to be denoted as gmin and gmax , respectively, Then inequalities in 
Theorem 2 are modified as follows,

(57)ca =

[

∫X

u(x)1−2adx

][

∫X

u(x)−2adx

]−1
.

(58)g(u(x)) = C(u(x) − A)(B − u(x)) + D ,

Fig. 1   Best Weberized approximations v
n
 to step function in Eq.  (54) for a = 0.25, 0.50⋯ , 2.0 along 

with best L2 approximation ( a = 0 ) for comparison using cosine basis functions in Eq. (55). Top: n = 5 
basis functions used. Middle: n = 10. Bottom: n = 20

▸
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and

Once again, we see that it is sufficient to consider only one distance function, �(u, v) , 
given by

which may be viewed as the error of the best Weberized approximation u ≃ v . Eqs. 
(46) to (52) still apply in this case, assuming that our modified function g(u(x)) is 
employed.
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