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Abstract
We consider the problem of modifying L2-based approximations so that they “con-
form” in a better way to Weber’s model of perception: Given a greyscale background 
intensity I > 0 , the minimum change in intensity �I perceived by the human visual 
system (HVS) is �I∕Ia = C , where a > 0 and C > 0 are constants. A “Weberized 
distance” between two image functions u and v should tolerate greater (lesser) dif-
ferences over regions in which they assume higher (lower) intensity values in a man-
ner consistent with the above formula. In this paper, we modify the usual integral 
formulas used to define L2 distances between functions. The pointwise differences 
|u(x) − v(x)| which comprise the L2 (or Lp ) integrands are replaced with measures 
of the appropriate greyscale intervals �a(min{u(x), v(x)}, max{u(x), v(x)}] . These 
measures �a are defined in terms of density functions �a(y) which decrease at rates 
that conform with Weber’s model of perception. The existence of such measures is 
proved in the paper. We also define the “best Weberized approximation” of a func-
tion in terms of these metrics and also prove the existence and uniqueness of such an 
approximation.
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1 Introduction

In this paper, we present a method of modifying, or “Weberizing,” L2-based 
approximations so that they conform as much as possible to Weber’s model of 
perception. The term “Weberized” has been used in some recent papers which 
have incorporated Weber’s model into classical image processing methods, 
namely, total variation (TV) restoration Shen (2003) and Mumford-Shah segmen-
tation Shen and Jung (2006).

By Weber’s model of perception we mean the following: Given a greyscale 
background intensity I > 0 , the minimum change in intensity �I perceived by the 
human visual system (HVS) is related to I as follows,

where a > 0 and C is constant, or at least roughly constant over a significant range 
of intensities I. The case a = 1 corresponds to the standard Weber model—often 
referred to as “Weber’s law”—which is employed in practically all applications 
Wandell (1995). Even in this standard case however, different values of the con-
stant C may hold over different regions of intensity space Li et al. (2014). There are 
also situations in which other values of a, in particular a = 0.5 , may apply—see, for 
example, Michon (1966). These complications are beyond the scope of this paper 
which focuses on the model in Eq. (1).

Weber’s law, a = 1 in Eq.  (1), has been incorporated in a variety of imaging 
applications over the years. A couple of applications have already been men-
tioned Shen (2003); Shen and Jung (2006). The method of homomorphic filtering 
Oppenhein et al. (1968) incorporates the logarithmic transform of images, which 
is a special case of the generalized Weber metrics obtained from our approach, 
as will be shown below. The logarithmic image filter Pinoli (1997), motivated 
in part by the problem of how to perform various operations on images (includ-
ing addition and subtraction) in accordance with perceptual characteristics of the 
HVS, is naturally consistent with Weber’s law. In some situations, however, e.g., 
luminance and contrast discrimination Cornsweet and Pinsker (1965); Kingdom 
and Whittle (1996) and duration discrimination Halpern and Darwin (1982), the 
need to employ a-values different from 1, i.e., a departure from “Weber’s law”, 
has been recognized.

It is also well known that traditional L2-based distance measures such as mean 
squared error (MSE) and peak signal-to-noise ratio (PSNR) perform poorly in terms 
of characterizing image quality  (Girod 1993; Wang and Bovik 2009). The struc-
tural similarity (SSIM) measure Wang et al. (2004); Wang and Li (2011), which is 
acknowledged to demonstrate superior performance in comparison with these meth-
ods, has a “Weberized” component, namely, the luminance term, denoted as S1(�, �) , 
which characterizes the similarity between the mean values, �̄ and �̄ , of image 
patches/blocks � and � , respectively. The fact that S1(�, �) may be expressed as a 
function of the ratio �̄∕�̄ (or �̄∕�̄ ) accounts for its Weberized form, with a = 1 . Here 

(1)
�I

Ia
= C,
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we mention that our Weberized approaches operate at the pixel level as opposed to 
mean values of blocks.

The basis of our entire program to Weberize metrics is as follows. Eq.  (1) 
implies that the HVS will be less (more) sensitive to a given change in inten-
sity �I in regions of an image at which the local image intensity I(x) is higher 
(lower). As such, a Weberized distance between two functions u and v should 
tolerate greater/lesser differences over regions in which they assume higher/lower 
intensity values. The degree of toleration will be determined by the exponent a.

In this paper, we Weberize the L2 metric by employing measures that are sup-
ported on the (positive) range space ℝg = [A,B] of the functions to reformulate 
the integrals which normally define the L2 distance between two functions. Some 
of the main ideas of range-based measures have appeared in Li et al. (2018) and 
Li et al. (2019) and have been discussed in much more detail in Li (2020). Here, 
we present some more mathematical details involved in the proof of existence 
of the range space measures. We also present the theoretical basis of the best 
approximation problem for Weberized measures and prove the existence and 
uniqueness of best Weberized approximations.

At this point, it is important to mention that another method has been devised 
to Weberize L2-based metrics, namely, the use of intensity-dependent weight 
functions that are inserted into the distance integral. This method was first intro-
duced in Kowalik-Urbaniak et  al. (2014) for the standard Weber model, i.e., 
a = 1 in Eq.  (1), and then analyzed in more detail in Kowalik-Urbaniak (2014). 
The extension of this weight function method to the generalized case a > 0 has 
recently been reported along with a proof of the existence and uniqueness of 
associated best Weberized approximations Urbaniak et al. (2020).

2  Mathematical preliminaries

The basic mathematical ingredients of our formalism are listed below. 

1. The base (or pixel) space X ⊂ ℝ
n on which our signals/images are supported. 

Here, without loss of generality since our discussion is purely theoretical, we sim-
ply consider the one-dimensional case X = [0, 1] ⊂ ℝ . The extension to higher-
dimensional cases is rather straightforward. We also mention that our discussion 
easily extends to the discrete case encountered in practice, where X is comprised 
of pixels or voxels—for example, X = {1, 2,… , n1} × {1, 2,… , n2} , in which 
case the images are n1 × n2 arrays of numbers.

2. The (greyscale or intensity) range space For an A > 0 , ℝg = [A,B] , where B < ∞ . 
Once again, our discussion can be extended to the discrete case, e.g., N bit-per-
pixel digital images for which ℝg = {0, 1,… , 2N − 1}.

3. Set of (signal/image) functions F(X) = {u ∶ X → ℝg | u measurable } . From our 
definition of the greyscale range ℝg , u ∈ F(X) is positive and bounded almost 
everywhere, i.e., 0 < A ≤ u(x) ≤ B < ∞ for almost every x ∈ X . A consequence 
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of this boundedness is that F(X) ⊂ Lp(X) for all p ≥ 1 , where the Lp(X) function 
spaces are defined in the usual way. In this paper, we shall be using the L2 metric, 

 It is important to mention that because of the restrictions on the range val-
ues, F(X) is not a linear space: For u, v ∈ F(X) , it does not follow that 
c1u + c2v ∈ F(X) for all c1, c2 ∈ ℝ . Moreover, the zero function is not an ele-
ment of F(X) . As will be seen below, the restriction to nonnegative range values 
is necessary because of the form of the weight functions used in our Weberized 
distance integrals.

The following result, which establishes some additional properties of the space F(X) 
in which we are working, is proved in Li (2020).

Theorem 1 The set F(X) is bounded, closed and convex.

3  Metrics on F(X) defined in terms of intensity‑based measures

In this paper, we consider a range-dependent (or greyscale-dependent, intensity-
dependent) metric on the space F(X) to be described below. The idea for this metric 
comes from Forte and Vrscay (1995), in which the authors considered metrics on 
function spaces involving level sets.

Consider two functions u, v ∈ F(X) and define the following subsets of the base 
space X = [a, b]:

so that X = Xu ∪ Xv . A generic situation is sketched in Fig. 1.
The distance D between u and v will be defined as an integration over verti-

cal strips of width dx and centered at x ∈ [a, b] . The contribution of each strip 
will not, in general, be determined by the usual lengths of the strips, i.e., the 
quantities |u(x) − v(x)| , but rather the sizes of the intervals (u(x), v(x)] ⊂ ℝg and 
(v(x), u(x)] ⊂ ℝg as assigned by a non-atomic measure � that is supported on the 

(2)d2(u, v) = ‖u − v‖2 =

�

∫X

[u(x) − v(x) ]2 dx

�1∕2

, u, v ∈ F(X) .

(3)Xu = {x ∈ X | u(x) ≤ v(x)} Xv = {x ∈ X | v(x) ≤ u(x)} ,

Fig. 1  Sketch of two functions 
u(x), v(x) ∈ F(X) with strips of 
width dx that will contribute to 
the distance D(u, v;�) . A density 
function �(y) over the greyscale 
range ℝg = [A,B] is sketched at 
the left
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range interval ℝg = [A,B] . We shall refer to � as the intensity-based measure 
on ℝg . The measures of the two intervals shown in the figure will be denoted as 
�(u(x), v(x)] and �(v(x), u(x)] , respectively. The distance between u and v associated 
with the measure � is now defined as follows,

Theorem 2 Let � ∈ B(ℝg) , the set of Borel measures on ℝg such that � is nonatomic 
on ℝg . Then D(u, v;�) defined in Eq. (4) is a metric on F(X).

Proof The only nontrivial property to show is the triangle inequality. To show this, 
consider the cumulative distribution function (CDF) associated with � on ℝg:

so that F(a) = 0 and F(b) = 1 . Since � is assumed to be nonatomic, F(y) is a continu-
ous and nondecreasing function on ℝg . Then from Eq. (4), and for any u, v,w ∈ F(X)

,

The proof is complete.   ◻

In the applications considered in this paper, we shall be employing meas-
ures which are defined by continuous, non-negative density functions �(y) for 
y > 0 . Given a measure � with associated density function � , then for any interval 
(y1, y2] ⊂ ℝg,

where P�(y) = �(y) . The metric D(u, v;�) in Eq. (4) then becomes

(4)D(u, v;�) = ∫Xu

�(u(x), v(x)] dx + ∫Xv

�(v(x), u(x)] dx .

(5)F(y) = ∫
y

0

d� , y ∈ ℝg = [A,B] ,

(6)

D(u, v;�) = �X

|F(u(x)) − F(v(x))| d�

= �X

|F(u(x)) − F(w(x)) + F(w(x)) + F(v(x))| d�

≤ �X

|F(u(x)) − F(w(x))| d� + �X

|F(w(x)) − F(v(x))| d�

= D(u,w;�) + D(w, v;�) .

(7)� (y1, y2] = ∫
y2

y1

�(y) dy = P(y2) − P(y1) ,

(8)D(u, v;�) = ∫X

|P(u(x)) − P(v(x))| dx .
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Special Case � = mg , uniform Lebesgue measure on ℝg . Here, �(y) = 1 so that 
P(y) = y in Eq. (8). This is the measure on ℝg employed in most, if not almost all, 
function metrics, e.g., the standard Lp metrics. The associated metric is

the L1 distance between u and v.
The following Lp-type generalizations of the metric D in Eq. (8) may be defined 

in terms of the CDF of the measure � : For p ≥ 1 , and u, v ∈ F(X),

That Dp is a metric on F(X) for p ≥ 1 can easily be shown by using the method 
employed in the Proof of Theorem 2. Later in this paper, we shall be particularly 
interested in the case p = 2.

4  Measures/density functions which accommodate Weber’s models 
of perception

As discussed in Li et  al. (2018), the constancy of the Lebesgue density function 
�(y) = 1 implies that all greyscale intensity values are weighted equally in the com-
putation of distances between image functions. However, Weber’s model of per-
ception in Eq.  (1) suggests that for a > 0 , the density function �a(y) defining the 
intensity-based measure �a should be a decreasing function of intensity y: As the 
intensity value increases, the HVS will tolerate greater differences between u(x) 
and v(x) before being perceived. How the density function �a(y) will capture this 
decrease in perception is based on the following observation Kowalik-Urbaniak 
et al. (2014).

Special case a = 1 : Let � be the measure on ℝg with density function �(y) = 1∕y . 
Let I ∈ ℝg . From Weber’s standard law, a = 1 in Eq.  (1), the minimum change in 
perceived intensity at I is �I = CI . Note that

which is independent of I. (We have assumed that I + �I ∈ ℝg .) This perceptual 
invariance result may be viewed graphically in terms of an “equal area” condi-
tion over ℝg involving the density function �(y) . To see this, let I1, I2 ∈ ℝg . From 
Weber’s standard law, a = 1 in Eq. (1), the minimum changes in perceived intensity 
at I1 and I2 are �I1 = CI1 and �I2 = CI2 , respectively, so that

(9)D(u, v,mg) = ∫X

�u(x) − v(x)� dx = ‖u − v‖1 ,

(10)Dp(u, v;�) =

[

∫X

|P(u(x)) − P(v(x))|p d�

]1∕p

.

(11)�([I, I + �I]) = ∫
I+�I

I

1

y
dy = ∫

I+CI

I

1

y
dy = ln(1 + C) ,

(12)∫
I1+�I1

I1

1

y
dy = ∫

I2+�I2

I2

1

y
dy = ln(1 + C) .
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In Fig. 2 below, the areas of the regions lying above the intervals [I1, I1 + �I1] and 
[I2, I2 + �I2] and below the graph of the density function �(y) are equal.

For the case a = 1 , the density function �(y) = 1∕y decreases in an “appropriate 
manner” in order to produce this equal area situation. We say that the measure � , 
or its density function �(y) = 1∕y , conforms to or accommodates Weber’s stand-
ard law in the case a = 1 . The metric D in Eq. (8) defined by this measure is

These observations lead us to propose the following “equal area” definition for 
Weber’s generalized model of perception, i.e., a ≠ 1.

Definition For a given a > 0 , suppose that Weber’s model of perception in Eq. (1) 
holds for a particular value of C > 0 for all values of I ≥ A . (See Note 3 below.) 
We say that a measure �a(y) defined by the density function �a(y) conforms to or 
accommodates this Weber model if the following condition holds for all I ≥ A,

for some constant K, where �I = CIa is the minimum change in perceived intensity 
at I according to Eq. (1).

We view Eq. (14) as a generalized perceptual invariance property of inten-
sity-based measures which conform to Weber’s model. Once again, it admits a 
graphical interpretation in terms of equal areas enclosed by the density curve 
�a(y) as shown in Fig. 2.

Notes

1. As shown earlier, in the special case, a = 1 , i.e., Weber’s standard model, 
�1(y) = 1∕y and �(I, I + �I) = ln(1 + C) Li et al. (2018).

(13)D(u, v, �) = ∫X

| ln u(x) − ln v(x)| dx .

(14)�a(I, I + �I) = ∫
I+�I

I

�a(y) dy = K ,

Fig. 2  Graphical interpretation 
of the “equal area” invariance 
result in Eq. (12). Area of A = 
Area of B 
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2. We may also include the special case a = 0 , i.e., an absence of Weber’s model, 
in the above definition. In this case �0(y) = 1 so that � = mg , Lebesgue measure 
on ℝg . Here, �I = CI0 = C so that �(I, I + �I) = �(I, I + C) = C.

3. As mentioned earlier, Weber’s model in Eq. (1) is valid only over a limited range 
of intensities. The requirement that Eq. (14) be true for all I > A is imposed to 
help establish the asymptotic behaviour of the density functions �a(y) for large y.

From Notes 1 and 2 above, it is natural to conjecture that for a > 0 in general, 
�a(y) = 1∕ya or at least approaches 1∕ya asymptotically as y → ∞ . It is easy to 
show that equality does not hold for a ≠ 1 . Nevertheless, the conjectured asymp-
totic behaviour does hold in the case 0 < a < 1 as we discuss in Sect. 4.2 below.

The following result, although seemingly trivial, will have some important 
consequences. It is proved in Li (2020).

Theorem  3 For given values of a > 0 and C > 0 , let �a(y) satisfy the invariance 
condition in Eq. (14). Then ∫

∞

A

�a(y) dy = ∞.

Proof A sketch of the proof is as follows. Let y0 = A , and yn+1 = yn + Cya
n
 for n ≥ 0 . 

It is not difficult to show that yn → ∞ as n → ∞ . Furthermore, from Eq. (14),

which completes the proof.   ◻

This result establishes that the asymptotic property �a(y) ∼ 1∕ya as y → ∞ can-
not hold for a > 1.

In preparation for the main result of this section of the paper, let g(y) be a contin-
uous function on [A,∞) and consider its particular antiderivative defined as follows,

Clearly, G(A) = 0 . Furthermore, suppose that for fixed values of a > 0 and C > 0 , 
g(y) satisfies the invariance property in Eq. (14). It follows that G(x) satisfies the fol-
lowing equation,

For convenience, we define

and divide both sides of Eq. (17) by K to obtain the equation,

(15)∫
yn

A

�a(y) dy = nK → ∞ as n → ∞ ,

(16)G(x) = �
x

A

g(y) dy x ≥ A > 0 .

(17)G(x + Cxa) − G(x) = K , x ≥ A .

(18)f (x) = x + Cxa

(19)H(f (x)) − H(x) = 1 ,
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where H(x) = K−1G(x) . Eq. (19) is known as Abel’s equation, a well known func-
tional equation Targonski (1981).

Abel’s equation in (19) is said to be solvable if, given the function f(x), a con-
tinuous solution H(x) satisfies it for all x ∈ X ⊂ ℝ . Note that if H(x) is a solution 
to (19), then so is H(x) + C , where C ∈ ℝ is a constant.

Very briefly, the existence of a continuous solution to Abel’s equation depends 
on some properties of the function f(x), in particular its iteration dynamics. To 
see this, let us rewrite Eq. (19) as

and then replace x with f(x)—assuming that f (x) ∈ X—to obtain

where f 2(x) = f (f (x)) . Repeating this procedure n times – again assuming that the 
iterates f k(x) lie in X—yields

It follows that for a continuous solution to (19) to exist, the function f cannot have a 
periodic point, i.e., a point p such that there exists an n ≥ 1 for which f n(p) = p . (A 
fixed point f (p) = p is a particular example of a periodic point.) For if such a peri-
odic point exists then from Eq. (22),

which has no solution, implying that H(p) is undefined.
Another important point is that the space X cannot be compact. For example, sup-

pose that X is the interval [a, b]. Then for an x0 ∈ X , all iterates f n(x0) ∈ X , n ≥ 0 . 
There must exist a subsequence xnk = f nk (x0) , k ≥ 0 , which converges to a limit point 
x̄ ∈ X . Assuming that f is continuous, f (x̄) = x̄ , i.e., x̄ is a fixed point of f. From the 
discussion in the previous paragraph, it follows that H(x̄) is undefined. (This is why 
the equal-area condition in Eq. (14) is formulated over [A,∞) and not [A, B].)

In our case, the dynamics of iteration of the function f(x) in Eq.  (18)—which 
arises from the generalized Weber’s model of perception—is such that solutions to 
Abel’s equation in (19) are guaranteed. This will be discussed in more detail in the 
proof of Theorem 5 below. From the relationship between H(x) and G(x) in Eq. (16), 
this implies the existence of a density function g(x) which satisfies the equal area 
condition of Eq. (14). Our analysis of Eq. (19), however, provides no insight into the 
nature of this density function. For example, is it continuous? Is it unique?

In order to answer these questions, we consider the following linear functional 
equation in g(x) for x ≥ A,

Although this equation may be obtained by formally differentiating both sides of 
Eq.  (17), we consider Eq.  (17) to be obtained by formally antidifferentiating both 
sides of Eq. (24).

(20)H(f (x)) = H(x) + 1

(21)H(f 2(x)) = H(f (x)) + 1 = H(x) + 2 ,

(22)H(f n(x)) = H(x) + n , n ≥ 1 .

(23)H(p) = H(p) + n , n ≥ 1 ,

(24)g(x + Cxa)(1 + aCxa−1) − g(x) = 0 .
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Equation (24) is a special case of the following family of linear functional equa-
tions studied by Belitskii and Lyubich in Belitskii and Lyubich (1988),

where X is the topological space over which the equation is being considered. In our 
case, X = [A,∞) , f (x) = x + Cxa (cf. Eq. 18), P(x) = f �(x) = 1 + aCxa−1 , Q(x) = −1 
and �(x) = 0 . In Belitskii and Lyubich (1988), it is shown that if the Abel equation 
associated with Eq. (25), namely,

has a continuous solution �(x) , then Eq. (25) is said to be totally solvable, i.e., it has 
a continuous solution �(x) for every continuous function �(x) . Note that Eq. (26) is 
identical to Eq. (19) examined earlier.

The following definitions are required for the Theorem which follows.

Definition 1 A metric space X is said to be countable at infinity if there exists a 
covering,

where the Ki are compact.

Definition 2 Let X be a metric space and f ∶ X → X . A compact set U ⊂ X is said to 
be wandering (under the action of f) if there exists a number N > 0 such that

for all n,m ∈ ℕ such that |n − m| ≥ N . Here f n denotes the n-fold composition of f 
with itself.

The following Theorem, which is presented as Corollary 1.6 in Belitskii and 
Lyubich (1988), will establish the solvability of Eq. (26) and total solvability of 
Eq. (25).

Theorem 4 Assume that the space X is locally compact and countable at infinity 
and that f ∶ X → X is injective. Then the following statements are equivalent: 

1. Any nondegenerate Eq. (25) is totally solvable.
2. Abel’s Eq. (26) is solvable.
3. Under the action of f, every compact set in X is wandering.

We now use the above result to derive the main results of this section of the paper.

(25)P(x)�(f (x)) + Q(x)�(x) = �(x) , x ∈ X ,

(26)�(f (x)) − �(x) = 1 , x ∈ X ,

(27)X =

∞⋃

i=1

Ki ,

(28)f n(K)
⋂

f m(K) = � (null set)
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Theorem  5 Let X = [A,∞) , a > 0 and C > 0 . Then for f (x) = x + Cxa , 
P(x) = 1 + aCxa−1 and Q(x) = −1 , the functional equation in (25) is totally solv-
able, implying that a continuous solution exists for the special case � = 0 , namely 
Eq. (24).

Proof First of all, the space X = [A,∞) ⊂ ℝ is locally compact and countable at 
infinity. (For example, let Ki = [iA, (i + 1)A] for i ≥ 1 .) Secondly, f (x) = x + Cxa > x 
for all x > 0 which implies that f ∶ X → X . More precisely, f ∶ [A,∞) → [f (A),∞) . 
Thirdly, f �(x) = 1 + aCxa−1 > 0 for all x > 0 which implies that f(x) is strictly 
increasing for all x > 0 . Therefore f is injective. From these properties, Theorem 4 
is applicable to our problem. We now show that Statement No. 3 holds for the map-
ping f ∶ X → X.

Since f (x) > x for all x ∈ X , it follows that the iteration sequence defined by 
xn+1 = f (xn) is strictly increasing. (Consequently f cannot have any periodic points 
in X.) Moreover, since xn+1 − xn = Cxa

n
 , it follows that xn → ∞ as n → ∞ . Finally, 

note that f �(x) > 0 for x > 0 which implies that f(x) is increasing on X = [A,∞).
Define the intervals In = [f n(A), f n+1(A)] for n ≥ 0 . It follows that f ∶ In → In+1 

for n ≥ 0 —a kind of “Bernoulli right-shifting” of the intervals.
Now let K ⊂ X be compact. Let L ≥ 0 and M > L be, respectively, the largest and 

smallest integers so that K ⊂ ∪M
n=L

In and K ∩ f M+1(A) = � . From this construction, 
K ∩ f M−L(K) = � from which it follows that f n(K) ∩ f m(K) = � for all n,  m such 
that |n − m| ≥ M − L > 1 . Therefore K is wandering. Since K is arbitrary, Statement 
No. 3 in Theorem 4 is satisfied. Therefore Abel’s equation (26) is solvable and the 
functional equation in (25) is totally solvable.   ◻

Theorem 6 For given values of a > 0 and C > 0 , there exists a continuous function 
�a(y) defined on [A,∞) which satisfies Eq. (14).

Proof From Theorem 5, there exists a continuous function g which satisfies Eq. (24) 
and which we shall rewrite as follows,

where, as before, f (x) = x + Cxa . For any I ≥ A , integrate both sides of Eq.  (29) 
from x = A to x = I to produce the following result,

Now rewrite the LHS of the above equation as follows,

Subtracting the first definite integral from both sides of the equation yields

(29)g(f (x))f �(x) = g(x) , x ≥ A ,

(30)∫
f (I)

f (A)

g(x) dx = ∫
I

A

g(x) dx .

(31)∫
I

f (A)

g(x) dx + ∫
f (I)

I

g(x) dx = ∫
I

A

g(x) dx .
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for any I ≥ A . This is precisely the equal area condition of Eq. (14) with �I = CIa . 
Therefore, the Weber density function �a(y) in Eq. (14) is given by the solution g(y) 
to Eq. (24).   ◻

4.1  Some comments on Theorem 6 and the nonuniqueness of Weberized density 
functions

The reader will note that in Theorems 5 and 6 there is no mention of uniqueness 
of solutions. Indeed, if g(x) is a solution to Eq. (29) then cg(x) is also a solution, 
where c ∈ ℝ is an arbitrary constant. g(x) = 0 is the trivial solution. These are 
consequences of the fact that Eq. (24), the original form of Eq. (29), is a linear, 
homogeneous functional equation in g. Different nonzero values of c will result in 
different values of the constant K in Eq. (14).

In light of the above point one might hope, in the usual desire to establish 
uniqueness, that the solution to Eq. (29) be unique, at least up to a multiplicative 
constant. Unlike the situation for differential equations, however, linear, homoge-
neous functional equations can admit an infinity of “different,” i.e., linearly inde-
pendent, solutions. As mentioned earlier, it is the function f(x) which determines 
the existence and uniqueness of solutions. In our case, where f (x) = x + Cxa with 
a > 0 and C > 0 fixed, an infinity of linearly independent solutions actually exists. 
We now discuss this matter a little further.

Given a solution g(x), let us assume the existence of a second solution 
h(x) = g(x)u(x) , where u(x) is to be determined. Substitution into (29) yields

From Eq. (29), it follows that

This is the homogeneous functional equation corresponding to Abel’s equation in 
(26). We now employ a method similar to the one outlined in Section 3.3 of Small 
(2007) (top of Page 61) to show that an infinite number of solutions of Eq. (34) can 
be constructed.

As in the Proof of Theorem  5, define the intervals In = [f n(A), f n+1(A)] for 
n ≥ 0 , where f (x) = x + Cxa for x ≥ A . Recall that f ∶ In → In+1 for n ≥ 0 . Fur-
thermore f is bijective. Now let u(x) be defined as follows for x ≥ A : 

1. Let q(x) be any continuous function on I0 = [A, f (A)] such that q(A) = q(f (A)) . 
From the continuity of q and the compactness of I0 , there exists an M > 0 such 
that |q(x)| ≤ M for all x ∈ I0 . Define u(x) = q(x) for x ∈ I0.

2. We now iterate the following procedure for n = 1, 2, 3,… : Let u(x) be defined on 
In as follows, 

(32)∫
f (I)

I

g(x) dx = ∫
f (A)

A

g(x) dx = K constant ,

(33)g(f (x))u(f (x))f �(x) = g(x)u(x) , x ≥ A .

(34)u(f (x)) = u(x) , x ≥ A .
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 In other words, the values of u(x) on In are obtained from the values of u(x) on 
In−1 . It follows that |u(x)| ≤ M for all x ≥ A.

By construction, u satisfies Eq.  (34) for all x ≥ A : Simply replace x with f(x) 
in Eq.  (35) to see this. Furthermore, u is continuous at all x > A . Therefore 
h(x) = u(x)g(x) is a continuous function on [A,∞) which satisfies Eq. (29).

Finally, if g1 and g2 are solutions of Eqs.  (29) or (24), then for any pair 
c1, c2 ∈ ℝ (or ℂ ), the linear combination c1g1 + c2g2 is also a solution. In other 
words, the solutions to this linear, homogeneous functional equation form a vec-
tor space (which is reminiscent of differential equations). Because of the flexibil-
ity in the choice of u, this vector space has infinite dimensionality.

In closing this section, we remark that the nonuniqueness of solutions is not 
a problem since our asymptotic method, outlined in the next section, produces a 
family of positive, monotonically decreasing solutions that are perfectly suited for 
our applications.

4.2  Asymptotic behaviour of Weber density functions �a(y)

We first remind the reader that only in the cases a = 0 and a = 1 is �a(y) is known 
exactly: Up to multiplicative factors, �0(y) = 1 and �1(y) = 1∕y . For all other 
a-values, we must resort to asymptotic analysis to determine at least the leading 
behaviour of the density functions. The determination of the asymptotic behav-
iour of �a(y) is centered on the equal area property in Eq. (14). Here we summa-
rize our work and its results.

In our first efforts, as reported in Li et  al. (2018), we employed a “reverse 
technique” by assuming that �a(y) = 1∕ya in Eq. (14) and determining the asymp-
totic behaviour of �I = Cf (I) as I → ∞ such that Eq.  (14) be satisfied for all 
I ≥ A > 0 . Differentiation with respect to I yields a differential equation for f(I). 
For 0 < a < 1 , f (I) ∼ Ia as I → ∞ , in accordance with Weber’s model in Eq. (1), 
thus yielding the following result.

Theorem 7 For 0 < a < 1 , the density function �a(y) which accommodates Weber’s 
model of perception according to Eq. (14) is, to leading order, �a ∼ 1∕ya as y → ∞.

This result is actually sufficient for the construction of our Weberized met-
rics since, as we discuss in Section 5, only the leading-order terms of the density 
function �a(y) are used. Nevertheless, later work was devoted to the determination 
of more terms in the asymptotic expansion of �a(y) using the integral in Eq. (14). 
The asymptotic results in the next section were presented in Li et al. (2019) along 
with a few details on how they were derived. A complete analysis is presented in 
Li (2020).

(35)u(x) = u(f −1(x)), ∀x ∈ In .
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Finally, the functional equation approach described in the previous section was 
motivated by the desire to go one step further and establish a mathematical proof 
for the existence of density functions �a(y).

4.2.1  Asymptotic behaviour as y → ∞

Case 1 For a given a ∈ (0, 1) and C > 0 , the asymptotic expansion of the Weber 
density function �a(y) satisfying Eq. (14) has the form,

The first three terms of this expansion are

Case 2 In the case a > 1 , it follows from Theorem 3 that the leading behaviour of 
�a(y) cannot be of the form 1∕ya . This case is difficult, and only the first two terms of 
the asymptotic expansion are known. For a given a > 1 and C > 0,

This result is interesting in that the leading-order term is independent of a, unlike 
the situation for a ∈ [0, 1].

4.2.2  Asymptotic behaviour as y → 0+

There is a reciprocity with regard to the integrals involved in the previous analysis 
of y → ∞ and those involved in the case y → 0+ . It is quite straightforward to show, 
for example, that an analysis of the asymptotic limit x → 0+ for the case 0 < a < 1 
employs the same equations as those used in the analysis of x → ∞ for the case 
a > 1 . For this reason, we simply state the two major results below:

where the second result is the truncation of an asymptotic expansion having the 
same form as in Eq. (36), with the same coefficients An.

(36)�a(y) =

∞∑

n=0

An

ya+n(1−a)
as y → ∞ .

(37)�a(y) =
1

ya
+

1

2
aC

1

y
−

1

12
aC2(2a − 1)

1

y2−a
+⋯ .

(38)�a(y) ≃
1

y ln y
−
(
lnC

a

)
1

y (ln y)2
as y → ∞ .

0 < a < 1 ∶ 𝜌a(y) ≃ −
1

y ln y
−
(
lnC

a

)
1

y (ln y)2
as y → 0+ ,

a > 1 ∶ 𝜌a(y) =
1

ya
+

1

2
aC

1

y
−

1

12
aC2(2a − 1)

1

y2−a
+⋯ as y → 0+ ,
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4.3  Some comments on these asymptotic results

The asymptotic analysis of the density functions �a(y) in the case y → 0+ is more of 
a theoretical exercise since we are working with the range space ℝg = [A,B] with 
lower cutoff intensity level A > 0 . Indeed, the validity of Weber’s model for low 
intensity values is also questionable. We are more interested in the high-intensity 
region and expect that the behaviour of �a(y) is well described by the asymptotic 
formulas for y → ∞ . In fact, as was done in Li et al. (2018), we consider only the 
leading-order behaviour of the asymptotic expansions: Although it would be an 
interesting mathematical exercise, the inclusion of subdominant terms would most 
probably be “overkill” in practice, especially in light of the fact that Weber’s model 
is, in itself, an approximation.

At this point, the reader may be wondering how these asymptotic results can be 
reconciled with our earlier comments on Theorem  6 as well as the discussion in 
Sect. 4.1 regarding the nonuniqueness of solutions to the functional equation in (24), 
hence density functions satisfying the “equal area condition” in Eq. (14). For a > 0 , 
our asymptotic method produces a density function �a(y) which is continuous and 
decreasing and which satisfies Eq. (24) since it satisfies Eq. (17). As mentioned ear-
lier, any constant multiple of this density function also satisfies the equal area condi-
tion in Eq. (14) for a different value of the constant K. Up to a multiplicative con-
stant, the asymptotic expansions presented in Sects. 4.2.1 and 4.2.2 are unchanged. 
This one-parameter family of density functions is perfectly suited and sufficient for 
the construction our Weberized metrics in Section 5.

As discussed in Sect. 4.1, other (continuous) solutions to the functional equation 
in (24) may be produced by multiplying the �a(y) density functions by a continuous 
and nonconstant function u(y) which is the solution to Abel’s homogeneous equation 
in (34). From the construction of u(y) for y ≥ A in Sect. 4.1, it follows that u(y) is 
bounded for all y ≥ A , i.e., there exists an M ≥ 0 such that |u(y)| ≤ M for all y ≥ A . 
It then follows that the density function u(y)�a(y) will, up to a multiplicative con-
stant, also behave asymptotically according to the formulas of Sects. 4.2.1 and 4.2.2.

5  Generalized Weber metrics and the best approximation problem

We now consider the problem of finding best approximations—to be defined 
below—to a given “reference” or “target” function u ∈ F(X) with respect to the met-
rics defined by measures � which conform to Weber’s model of perception. We shall 
refer to such metrics as “generalized Weber metrics”. These metrics will have the 
form of the Dp metrics in Eq. (10). At this point, we make three important choices: 

1. Because of its special differentiability properties, we shall be using the p = 2 
metric in Eq. (10).
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2. For simplicity, we use only the leading-order term of the asymptotic expansion 
for the Weber-conforming density function �a(y) in the case 0 ≤ a ≤ 1 , i.e., we 
define 

3. In what follows, we consider only the cases 0 ≤ a ≤ 1 . For a > 1 , the dominant 
asymptotic behaviour of �a(y) is 1∕(y ln y) which is independent of a. We can, in 
principle, work with this density function—it would imply that we work with the 
modified target function ln(ln u(x)) . There is, however, no evidence that Weber’s 
model is valid for a > 1.

With these comments in mind, our L2-type generalized Weber metrics will have the 
following forms,

The following results, which establish the equivalence of these metrics with the L2 
metric, were derived in Li et al. (2019) as consequences of the Mean Value Theorem.

Theorem  8 For ℝg = [A,B] , 0 < A < B < ∞ , and 0 < a ≤ 1 , the metrics D2,a 
defined in Eq. (40) are equivalent to the usual d2 metric on X ⊂ ℝ . More precisely, 
for u, v ∈ F(X) , 

1. For 0 < a < 1 : 1 − a

Ba
d2(u, v) ≤ D2,a(u, v) ≤ 1 − a

Aa
d2(u, v).

2. For a = 1 : 1
B
d2(u, v) ≤ D2,1(u, v) ≤ 1

A
d2(u, v).

We now show that the metrics D2,a also conform to Weber’s model of percep-
tion in another manner, namely the one exhibited by the Weberized distance func-
tions �a in Urbaniak et al. (2020) which were constructed using intensity-dependent 
weight functions. Consider the “flat” reference image u(x) = I , where I ∈ ℝg . For an 
a ∈ (0, 1] , let v(x) = I + �I be the constant approximation to u(x), where �I = CIa 
is the minimum perceived change in intensity corresponding to Weber’s model in 
Eq. (1). The L2 distance between u and v is

We now compute the generalized Weber distances between u and v. 

(39)�a(y) =
1

ya
for 0 ≤ a ≤ 1 .

(40)

0 ≤ a < 1 ∶ D2,a(u, v) =

�

�X

�
u(x)−a+1 − v(x)−a+1

�2
dx

�1∕2

= ‖ua+1 − va+1‖2

a = 1 ∶ D2,1(u, v) =

�

�X

[ln u(x) − ln v(x)]2 dx

�1∕2

= ‖ ln u − ln v‖2 .

(41)d2(u, v) = K ⋅ �I = KCIa , where K =

[

∫X

dx

]1∕2

.
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1. Case 1 0 < a < 1 . Then 

 where K is given in Eq. (41). The third line in the derivation was obtained by 
using the following result from Taylor’s theorem, 

2. Case 2 a = 1 . Then 

The L2 distance in Eq. (41) increases with intensity level I. On the other hand, for the 
cases 0 < a < 1 , the Weberized distances are, to leading order, constant as I → ∞ and 
constant for all I in the case a = 1.

That the Weberized distance is constant only to leading order for the case 0 < a < 1 
may be explained by the fact that only the leading order term 1∕ya of the density func-
tion �a(y) was used in the definition of the Weberized measure D2,a . It would be inter-
esting to see if the inclusion of higher order terms of the asymptotic expansion for �a(y) 
would yield constancy to higher order in I.

5.1  Best approximations

In what follows, we let {�k}
∞
k=1

 denote a set of real-valued functions that form a com-
plete basis of L2(X) . Now let u ∈ F(X) ⊂ L2(X) denote the fixed reference signal/image 
function to be approximated. We are interested in best approximations to u having the 
following standard form,

for n ≥ 1.

(42)

D2,a(u, v) =

[

∫X

[I−a+1 − (I + �I)−a+1]2 dx

]1∕2

= I−a+1

[

∫X

[

1 −
(

1 +
CIa

I

)−a+1
]2

dx

]1∕2

∼ I−a+1
[

∫X

[
(1 − a)CIa−1

]2
dx

]1∕2

as I → ∞

= (1 − a)KC as I → ∞ ,

(43)f (x) = (1 + x)� = 1 + �x + O(x2) as x → 0+ .

(44)

D2,1(u, v) =

[

∫X

[ln I − ln(I + �I)]2 dx

]1∕2

=

[

∫X

[ln I − ln(I + CI)]2 dx

]1∕2

= K ln(1 + C) .

(45)vn(x) =

n∑

k=1

ck�k(x) , n = 1, 2,… ,
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For purposes of comparison, let us recall that in the classical case, i.e., 
when u ∈ L2(X) , the (unique) best approximation of u in the subspace 
Vn = span {𝜙1,… ,𝜙n} ⊂ L2(X) is given by

In the special case that the �k-basis is orthonormal we have, from the Projection 
Theorem, that the coefficients ck are the Fourier coefficients of u, i.e.,

In the present study, however, where the function u to be approximated is an ele-
ment of the space F(X) defined earlier, we face the complication that the approxima-
tion functions vn(x) defined in Eq. (45) must also lie in F(X) , i.e., A ≤ un(x) ≤ B for 
a.e. x ∈ X . For each n ≥ 1 , we therefore define the following feasible parameter set, 
Cn ⊂ ℝ

n,

By definition, Cn ⊂ Cn+1 for n ≥ 1 . Clearly, the subsets Cn depend on the choice of 
basis set {�k}

∞
k=1

 . In what follows, we assume that the �k satisfy some rather generic 
conditions: 

1. 𝜙1(x) = K > 0 , a constant, for all x ∈ X.
2. There exists a constant M > 0 such that |�k(x)| ≤ M for all k ≥ 2 . (In the case of 

an sine/cosine basis with no normalization constants, M = 1.)
3. For each k ≥ 2 , there exists at least one x̄ ∈ X for which 𝜙k(x̄) = 0.

The following theorem is proved in Li (2020).

Theorem 9 For all n ≥ 1 , the subsets Cn ⊂ ℝ
n are compact and convex.

We now use the subets Cn ∈ ℝ
n to define the following subsets Sn ⊂ F(X) for 

n ≥ 1,

Definition 3 For each n ≥ 1 , let �n ∶ Cn → Sn be defined as follows. For a given 
� = (a1,… , an) ∈ Cn , define

(46)vn = arg min
v∈Vn

d2(u, v) .

(47)ck = ⟨u,�k⟩ , 1 ≤ k ≤ n .

(48)Cn =

{

� = (c1,… , cn) ∈ ℝ
n
|
|
|
|
vn(x) =

n∑

k=1

ck�k(x) ∈ F(X)

}

.

(49)Sn =

{

v ∶ X → ℝg

|
|
|
|
v(x) =

n∑

k=1

ck�k(x) for � ∈ Cn

}

.

(50)vn(x) =

n∑

k=1

an�n(x) for all x ∈ X .
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By construction, vn ∈ Sn . We denote vn as �n(�).

Theorem 10 For each n ≥ 1 , the mapping �n ∶ Cn → Sn is a homeomorphism.

Proof Very briefly, the linear independence of the basis functions {�1,… ,�n} 
implies that �n is a bijection. From the equivalence of the Da and d2 metrics in Sn , 
we may use the d2 metric to easily show that for �, � ∈ Cn,

where the elements of the symmetric (and nonsingular) overlap matrix � are 
sij = ⟨�i,�j⟩ . Continuity of �n and �−1

n
 follows.   ◻

Corollary For each n ≥ 1 , the subset Sn ⊂ F(X) defined in Eq. (49) is compact and 
convex.

The subsets Sn , n ≥ 1 , will play the role of approximation spaces in our best 
Weberized approximation problem. Let us recall that for any n ≥ 1 , the subset 
Sn ⊂ F(X) is not a linear space because of restrictions, stated earlier, that must be 
satisfied by a function u ∈ F(X) . (The Sn are subsets of the approximation spaces 
Vn = span {�1,… ,�n} used in the classical best L2 approximation problem.)

Our “best Weberized” approximation problem using intensity-based measures 
may now be defined as follows.

Definition 4 For a given Weber measure �a with density function �a and a given 
n ≥ 1 , we define the best approximation vn ∈ Sn to u ∈ F(X) as follows,

where the metrics D2,a are defined in Eq. (40). The existence and uniqueness of such 
a best approximation will be proved below.

The existence of a solution vn to Eq. (52) is guaranteed by the following result.

Theorem 11 For a fixed u ∈ F(X) and a > 0 , consider the functional h ∶ F(X) → ℝ 
defined as h(v) = D2,a(u, v) for v ∈ F(X) . Then h(v) is a continuous function of v.

Proof From Eq.  (40), h(v) = ‖Pa(u) − Pa(v)‖2 , where Pa(u) = u−a+1 for 0 ≤ a < 1 
and P1(u) = ln u , and ‖ ⋅ ‖2 denotes the L2 norm on X—see Eq. (2). The continuity 
of h(v) follows trivially from the continuity of both the L2 norm and the function Pa .  
 ◻

For each n ≥ 1 , it follows from the continuity of h ∶ F(X) → ℝ and the com-
pactness of Sn that a solution to Eq. (52) exists. In order to establish uniqueness of 
the solution vn to Eq. (52), we define the following sets of functions. For a fixed 
a ∈ (0, 1] and an n ≥ 1 , let

(51)d2(�n(�,�n(�))) = [(� − �)T�(� − �)]1∕2 ,

(52)vn = arg min
v∈Sn

D2,a(u, v) ,
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Theorem 12 Let a ∈ (0, 1] be fixed. Then for all n ≥ 1 , the subsets Tn ⊂ L2(X) are 
convex.

Proof In what follows, we consider a fixed value of the Weber exponent a ∈ (0, 1] . 
(The case a = 0 is trivial.) For any n ≥ 1 , suppose that u, v ∈ Sn , i.e.,

for �, � ∈ Cn . From the definition of the subset Tn , the functions U = Pa(u) and 
V = Pa(v) are elements of Tn . If Tn is convex then for any � ∈ [0, 1],

We now show that for each � ∈ [0, 1] , there exists a function w� ∈ Sn such that 
Pa(w�) = W� , which implies that W� ∈ Tn . For the case 0 ≤ a ≤ 1 , this means that

where b = −a + 1 . For the case a = 1 , this means that

Here we consider the case 0 < a < 1 : The proof for the case a = 1 proceeds in a 
similar fashion. From Eq. (56) and the fact that u, v ∈ Sn ⊂ F(X) , it is easy to show 
that A ≤ w�(x) ≤ B for a.e. x ∈ X , which implies that w� ∈ F(X).

If, for any n ≥ 1 , w� ∈ Sn it admits the following expansion,

Substitution of this expansion into Eq. (56) yields the following equation,

We now prove, using induction, that for each n ≥ 1 , a unique solution to Eq.  (59) 
exists, i.e., a unique set of coefficients, ck(�) , 1 ≤ k ≤ n . Note the following “bound-
ary values” for the coefficients ck(�):

Case n = 1 : In this case, the only basis function used in the expansion is �1(x) = K . 
Substitution into (59) followed by division of both sides by Kb yields the result,

(53)Tn ∶= {Pa◦u | u ∈ Sn} .

(54)u(x) =

n∑

k=1

ak�k(x) , v(x) =

n∑

k=1

bk�k(x) ,

(55)W� = �U + �V ∈ Tn .

(56)[w�(x)]
b = �[u(x)]b + (1 − �)[v(x)]b , ∀x ∈ X ,

(57)lnw�(x) = � ln u(x) + (1 − �)v(x) , ∀x ∈ X .

(58)w�(x) =

n∑

k=1

ck(�)�k(x) .

(59)

[
n∑

k=1

ck(�)�k(x)

]b

= �

[
n∑

k=1

ak�k(x)

]b

+ (1 − �)

[
n∑

k=1

bk�k(x)

]b

, ∀x ∈ X .

(60)ck(0) = bk , ck(1) = ak , 1 ≤ k ≤ n .
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This implies the existence of w� for n = 1 which, in turn, implies that T1 is convex. 
(The uniqueness of such a w� follows from Theorem 10.)

Case n = 2 : Equation (59) becomes

Since this equation must be satisfied for all x ∈ X , let x = x̄ ∈ X which is a zero of 
�2(x) , i.e., 𝜙2(x̄) = 0 . (Recall that the existence of at least one zero for the �k(x) , 
k ≥ 1 , is assumed.) Setting x = x̄ in (62) produces the same equation as obtained in 
the case n = 1 . After division by Kb , Eq. (62) becomes Eq. (61), implying that we 
have the same solution for c1(�) as in the case n = 1.

To find c2(�) let x = p ∈ X such that �2(p) = P for any nonzero P ∈ Range (�2) . 
Setting x = p in Eq. (62) yields

Since c1(�) is known, we may solve for c2(�) . This proves the existence of w� 
for n = 2 . Hence T2 is convex. (Once again, the uniqueness of w� follows from 
Theorem 10.)

We now assume that a solution to Equation (59) exists for n = N > 1 and prove 
that a solution exists for n = N + 1 . For n = N + 1 , Eq. (59) becomes

If we set x = x̄ ∈ X , where 𝜙n+1(x̄) = 0 , then the above equation becomes Eq. (59) 
in the case n = N and x = x̄ for which a solution is assumed to exist. Therefore, 
we know ck(�) for 1 ≤ k ≤ N . Now set x = p ∈ X such that �N+1(p) = P ≠ 0 where 
P ∈ Range (�N+1) in Eq.  (64). The result is an equation which allows cN+1(�) to 
be expressed in terms of the known coefficients ck(�) , 1 ≤ k ≤ N . This proves the 
existence of w� for n = N + 1 . Hence TN+1 is convex. By induction, for the case 
0 < a < 1 , Tn is convex for all n ≥ 1.

The same inductive proof may be used for the case a = 1 involving the logarithm 
function—see Eq. (57).   ◻

Comments

1. For each n ≥ 1 , the coefficients ck(�) , 1 ≤ k ≤ n , perform a nonlinear interpola-
tion between the coefficients ak and bk . This is seen in Eq. (61) for the special 
case c1(�).

2. It is interesting that the coefficients ck(�) , 1 ≤ k ≤ N , of w� ∈ SN are used in the 
expansion for w� ∈ SN+1 even though the �k basis is not necessarily orthonormal. 

(61)c1(�)
b = �ab

1
+ (1 − �)bb

1
⟹ c1(�) =

[
�ab

1
+ (1 − �)bb

1

]1∕b
.

(62)
[c1(�)�1(x) + c2(�)�2(x)]

b = �[a1�1(x) + a2�2(x)]
b + (1 − �)[b1�1(x) + b2�2(x)]

b .

(63)[c1(�)K + c2(�)P]
b = �[a1K + a2P]

b + (1 − �)[b1K + b2P]
b .

(64)

�[c1(�)�1(x)+⋯ + cN(�)�n(x) + cN+1�n+1(x)]
b

= �[a1�1(x) +⋯ + aN�n(x) + aN+1�n+1(x)]
b

+ (1 − �)[b1�1(x) +⋯ + bN�n(x) + bN+1�n+1(x)]
b .
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We simply “build up” the functions w� ∈ Sn in the same way as is done in Hilbert 
space using an orthonormal basis and the Projection Theorem.

We now establish the uniqueness of the solution vn to Eq. (52) using the facts that 
(i) Tn ⊂ L2(X) and (ii) L2(X) is a strictly normed space Lebedev et  al. (2003), 
i.e., if

then y = �x and � ≥ 0 , where ‖ ⋅ ‖2 denotes the L2 norm.

Theorem 13 Let u ∈ F(X) . Then for a given n ≥ 1 and a ∈ (0, 1] , the solution to 
Eq. (52) is unique.

Proof If u ∈ Sn , then there is only one minimizer, vn = u . Now suppose that u ∉ Sn 
and that there are two minimizers of D2,a(u, v) , namely, vn,1, vn,2 ∈ Sn with vn,1 ≠ vn,2 . 
Thus,

Recalling the definition of h(v) in Theorem 11, we have that

which may be expressed in terms of the L2 norm as follows,

where Pa(u) = u−a+1 for 0 < a < 1 and P1(u) = ln u . Since vn,1, vn,2 ∈ Sn , it follows 
from Eq. (53) that Pa(vn,1),Pa(vn,2) ∈ Tn . Since Tn is convex (Theorem 12), the fol-
lowing function,

lies in Tn . From Theorem 10, there exists a unique wn ∈ Sn such that Pa(wn) = Wn . 
Furthermore,

But

(65)‖x + y‖2 = ‖x‖2 + ‖y‖2 , x ≠ 0 ,

(66)𝛥2,a(u, vn,1) = 𝛥2,a(u, vn,2) = min
v∈Sn

𝛥2,a(u, v) = d > 0 .

(67)h(vn,1) = h(vn,2) = d ,

(68)‖Pa(u) − Pa(vn,1)‖2 = ‖Pa(u) − Pa(vn,2)‖2 = d > 0 ,

(69)Wn =
1

2
(Pa(vn,1) + Pa(vn,2)) ,

(70)�2,a(u,wn) = h(wn) = ‖Pa(u) − Pa(wn)‖2 ≥ d .

(71)

‖Pa(u) − Pa(wn)‖2 =
�
�
�
�
Pa(u) −

1

2
(Pa(vn,1) + Pa(vn,2))

�
�
�
�2

≤ �
�
�
�

1

2
(Pa(u) − Pa(vn,1))

�
�
�
�2

+
�
�
�
�

1

2
(Pa(u) − Pa(vn,2))

�
�
�
�2

≤ 1

2
�
�Pa(u) − Pa(vn,1)

�
�2 +

1

2
�
�Pa(u) − Pa(vn,2)

�
�2

= d .
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From (70) and (71) it follows that ‖Pa(u) − Pa(wn)‖2 = d which may be expressed 
as follows,

Now using the fact that L2(X) is a strictly normed space and making the following 
identifications in Eq. (65),

it follows that y = �x for some � ≥ 0 , i.e.,

Taking norms, we have

From Eq.  (68), � = 1 which, from Eq.  (74), implies that Pa(vn,1) = Pa(vn,2) . From 
Theorem 10, this implies that vn,1 = vn,2 which contradicts the original assumption 
that the two minimizers are unequal. Therefore there can be at most one minimizer 
of �2,a(u, v) in Sn .   ◻

For the practical problem of finding best approximations in the cases a ∈ [0, 1] , it 
is more convenient to work with the squared distance function, expressed as a func-
tion of the expansion coefficients ck of vn,

where P�
a
(y) = �a(y) = 1∕ya and � = (c1,… , cn) . The optimization problem in 

Eq. (52) then becomes the following problem,

the solution of which yields the best approximation un ∈ Sn,

From Theorems 10 and 13, this solution exists and is unique.

Example 1 We consider the following step function on X = [0, 1].

(72)

‖
‖
‖
‖
Pa(u) −

1

2
(Pa(vn,1) + Pa(vn,2))

‖
‖
‖
‖2

=
‖
‖
‖
‖

1

2
(Pa(u) − Pa(vn,1))

‖
‖
‖
‖2

+
‖
‖
‖
‖

1

2
(Pa(u) − Pa(vn,2))

‖
‖
‖
‖2

.

(73)x =
1

2
(Pa(u) − Pa(vn,1)) , y =

1

2
(Pa(u) − Pa(vn,2)) ,

(74)Pa(u) − Pa(vn,1) = �(Pa(u) − Pa(vn,2)) .

(75)‖Pa(u) − Pa(vn,1)‖2 = �‖Pa(u) − Pa(vn,2)‖2 .

(76)

[D2,a(u, vn)]
2 = ∫X

[Pa(u(x)) − Pa(vn(x))]
2 dx

= ∫X

[

Pa(u(x)) − Pa

(
n∑

k=1

ck�k(x)

)]2

dx

=∶ g(�) ,

(77)� = (a1,… , an) = arg min
�∈Cn

g(�) ,

(78)un(x) =

n∑

k=1

ak�k(x) .
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Fig. 3  Best Weberized 
approximations vn to the step 
function u(x) in Eq. (79) for 
a = 0.25, 0.50,… , 2.0 along 
with best L2 approximation 
( a = 0 ) for comparison. The 
function u(x) was sampled at 
N = 1024 equidistant points on 
[0, 1] and an N = 1024-point 
DCT basis function set was 
used. Top: n = 5 basis functions 
used. Middle: n = 10 . Bottom: 
n = 20
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In Fig.  3 are shown plots of the function u(x) along with best approximations 
vn(x) for the cases a = 0 (best L2 ), a = 0.25, 0.5,… , 2.0 , using n = 5 (top), n = 10 
(middle) and n = 20 (bottom) basis functions. The basis functions �k used here 
were the 1D discrete cosine transform (DCT) basis functions used in the JPEG com-
pression method. The function u(x) was sampled at N = 1024 equidistant points, 
xi = i∕N , i = 0, 1, 2,… ,N . The approximations vn(x) were then found by minimiz-
ing the appropriate squared D2-distance function [�2,a(u, vn)]

2 in Eq.  (76) using a 
simple gradient-descent method.

The best Weberized approximations vn(x) for a > 0 are seen to provide bet-
ter approximations of u(x) than the a = 0 (best L2 ) approximation over the interval 
[0, 0.5] and poorer approximations over the interval [0.5, 1], as expected. Moreo-
ver, the degree of “goodness” over [0, 0.5] and “poorness” over [0.5, 1] of the best 
Weberized approximations increases with the Weber exponent a, also as expected 
since the density function �(y) = 1∕ya decreases more rapidly with increasing a.

Technically speaking, only the results 0 < a ≤ 1 presented in Fig. 3 correspond 
to the generalized Weber measures �a(y) = 1∕ya of Eq. (39) studied theoretically in 
this section. That being said, the results obtained by using D2,a distances for a > 1—
computed from the first formula in Eq. (40)—are also valid since Theorem 5 applies 
to these integrands as well. (The functions Pa(y) = y−a+1 are strictly decreasing 
over [A, B] and therefore invertible.) These results are noteworthy since the pattern 
of “Weberization” continues with increasing a. Moreover, the entire set of results 
presented in the figure for 0 < a ≤ 2 very closely resembles those obtained from 
the intensity-dependent weight function approach and presented in Urbaniak et al. 
(2020).

6  Concluding remarks

In this paper, we have provided further mathematical analysis of a method, intro-
duced in Li et al. (2018, 2019), which Weberizes the L2 metric by employing meas-
ures supported on the (positive) range space ℝg = [A,B] of the functions concerned. 
In particular, we have analyzed the best Weberized approximation associated with 
these metrics in more detail by defining appropriate spaces—Cn ∈ ℝn , Sn ∈ F(X) 
and Tn ∈ L2(X)—over which the optimization problem is defined. A proof of the 
existence and uniqueness of the best approximation vn for a given values of a ∈ (0, 1] 
and n, the number of basis functions employed, has been provided.

We claim that the “equal area condition” of Eq.  (14) represents a unique way 
of looking at Weber’s generalized model of perception. Not only is it interesting 
from a theoretical, i.e., mathematical, perspective but it also yields a concrete result, 
namely, a measure �a defined by a density function �a(y) which, in turn, defines a 
metric which “conforms” to Weber’s model. It would be most interesting to inves-
tigate whether such a condition, or suitable modification thereof, applies to other 

(79)u(x) =

{
2, 0 ≤ x ≤ 1

2
,

4,
1

2
< x ≤ 1 .
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models, not only in signal and image processing, but in applied mathematics in 
general.

Finally, we mention that our Weberized approach can, at least in principle, be 
used in any standard image processing problem, e.g., image denoising. For exam-
ple, in the case of total variation (TV) denoising, one approach would be simply to 
replace the L2 distance normally used in the fidelity term with a Weberized distance, 
i.e., given a noisy image ũ ∈ F(X) , find

for an appropriate value of the Weber exponent, a > 0 , where the Weberized metrics 
D2,a are defined in Eq. (40) and where ‖ ⋅ ‖TV denotes a total variation norm. We are 
currently investigating such approaches.
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