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The de Broglie-Bohm causal theory of quantum mechanics is applied
to the hydrogen atom in the fully spin-dependent and relativistic
framework of the Dirac equation, and in the nonrelativistic but spin-
dependent framework of the Pauli equation. Eigenstates are chosen
which are simultaneous eigenstates of the energy H, total angular mo-
mentum M, and z component of the total angular momentum M,. We
find the trajectories of the electron, and show that in these eigenstates,
motion is circular about the z-axis, with constant angular velocity. We
compute the rates of revolution for the ground (n = 1) state and the
n = 2 states, and show that there is agreement in the relevant cases
between the Dirac and Pauli results, and with earlier results on the
Schrédinger equation.
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pretation of quantum mechanics, relativistic quantum theory.

1. INTRODUCTION

In Bohm’s original causal interpretation of quantum mechanics [2], the
motion of a quantum particle is determined by its Schrodinger wave
function 9, which acts as a kind of guidance wave [6]. If the wave
function is written as

%(x,t) = R(x,t)e 50O/, 1)
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where R and S are real-valued, then the trajectory of the partlde is
determined by the guidance relation

p=VS. (2)

The momentum is related to the well-known Schrédinger current j as
follows,

m,
=) 3
P=- (3)

where p = ¢Tp = R?. Comprehensive discussions of the de Broglie-
Bohm causal interpretation can be found in [3] and [10].

It is quite natural to examine the hydrogen atom, one of the
simplest quantum systems, in terms of the de Broglie-Bohm theory.
Indeed, as originally discussed in [2 { the Schrédinger guidance relation
(2) pred1cts that p = O for all real eigenstates, including the ground
and all higher s hydrogenic states. However, as Holland [11] pointed
out, Eq. (2) is valid only for spinless particles. For particles with spin,
the condition of Lorentz covariance on the law of motion implies that
the momentum of a particle with spin s must be given by

p=VS+Vliogp xs, (4)

where p = 11 [9, 11]. Only in this way can the theory be embedded in
a relativistic formulation. Indeed, in papers [7, 8, 9], it was shown that
in order for it to be consistent with Dirac theory, the Schrédinger equa-
tion must be regarded as describing an electron in a definite eigenstate
of spin. In these papers, the current vector associated with (4),

. 1 1
j= EpVSHL HVP X 8, (5)

was referred to as the Pauli current, the nonrelativistic limit of the
Dirac current.

The guidance law (4) no longer implies that p = 0 for real
eigenstates so it is natural to ask how it applies to the hydrogen atom.
In [5], we showed that for an electron in a spin eigenstate with s, = &1,
the spin-dependent term in (4) will be responsible for a motion in a
plane perpendicular to the z-axis and along a contour of constant p
value. For the case of an electron in a Schrodinger energy/angular
momentum eigenstate, ¥, this implies circular motion about the
z-axis.

In this paper, we examine de Broglie-Bohm trajectories for an
electron in a hydrogen atom as described by the Pauli and Dirac equa-
tions using appropriate (spin-dependent) currents. The electron is as-
sumed to be in a Pauli or Dirac eigenstate of energy and total angular
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momentum. Note that, in general, this does not imply that the elec-
tron is in a spin eigenstate of known s, value. We also show that under
appropriate nonrelativistic limits, the angular rotation rates for Dirac
trajectories become those of Pauli trajectories. In the cases that the
electron is in a spin eigenstate (e.g., 1s, 2s, 2po), the Pauli rotation
rates agree with the Schrédinger trajectories obtained in [5]. The re-
sult is a coherent application of de Broglie-Bohm theory to relativistic
and nonrelativistic hydrogen atom eigenstates.

For both the Dirac and Pauli cases, the Schrédinger guidance
formula in (4) can be generalized using the relationship (3) where j is
the appropriate (Dirac/Pauli) current and p = 91. First, consider the
Dirac equation,

., 0

zhaw = (—ep+ PE, + - (cp+ eA)). (6)
Here, ¢ = (11, %2,%3,14) is a four-component wave function, ¢ and A
are the scalar and vector potentials, Fy and p are the rest mass energy
and momentum operators, e is the electric charge, and « and 3 are the
Dirac operators. In this study, A = 0 and the current is given by

j = C’(/)Ta'lﬁ = (jxajy)jz)v (7)

where the « are the 4 x 4 Dirac matrices,

Qo
o = ) (8)

o0

and the o are the 2 x 2 Pauli matrices.

If the particle is in a potential such that e¢ < mc?, then there
exist stationary states for which the average velocity v is nonrelativis-
tic, and E ~ E;, = mc?. In this case, the latter two components of
the 4-component Dirac state are smaller in magnitude than the first
two components by a factor of 7/c. The Dirac equation may then be
reduced to the Pauli equation involving the two components 1; and

o

., O 1 . eh

h— = —(—ih A)? —o0 - - .

th 2m( thV +e )z,/)+2m0' By — eV (9)
Here ¢ = (41, ¢2) is a two-component Pauli spinor wave function. Once
again, we assume that A = 0 so that the associated Pauli current is
given by (3]

R
2m

§=ia+is = 5= (VY YV 4 5=V x (Ylov).  (10)
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Note that if one assumes that the system is in an eigenstate of the spin
operator, then (10) and (3) together reduce to (4).

In the case of the Schrodinger equation for hydrogen, it is usually
assumed that spin interactions are negligible so that the wave function
can be written as a product of spatial- and spin-dependent terms, i.e.,

¥ = Y(r,1)xs (11)

As is well known, the spatial hydrogenic energy Schrédinger eigenfunc-
tions,

wn,l,m("') 67 ¢) = Rn,l(r)iflm(ga ¢)a (12)

solutions to the (spinless) time-independent Schrodinger equation, are
also simultaneous eigenstates of the orbital angular momentum oper-
ator L2, with eigenvalues h24(¢ + 1), and the operator L,, with eigen-
values fim.

In the Pauli equation, where spin-orbit interactions are ex-
cluded, the orbital angular momentum operator L? commutes with
the hamiltonian. This is not the case for the Dirac equation. For both
the Pauli and Dirac equations, however, each component of M, the to-
tal angular momentum operator, commutes with the Hamiltonian H,
implying that M? commutes with H as well. For this reason, it is con-
ventional to choose eigenstates of H, M? and M,, with eigenvalues E,,,
I2j(j + 3) and hm, respectively.

There is one further subtlety: Although the orbital angular mo-
mentum does not commute with the hamiltonian in the Dirac case, it
can be shown that £ is ‘almost’ a good quantum number (see [1]). That
is to say, eigenstates can be found for which

L% = 2L + 1)y + h*w, (13)

where the spinor w is negligible. (Itslarge components actually vanish.)
Hence for both the Dirac and Pauli cases considered in this paper,
eigenstates are presented in terms of quantum numbers n, £, j and
m for purposes of comparison, even though ¢ is not strictly a good
quantum number in the Dirac case.

Finally, in the following discussions, the time-dependent phase
factor e~*Ent/? that accompanies the eigenfunctions in the solution of
the time-dependent Pauli and Dirac equations will be ignored since it
contributes nothing to the associated currents.

2. PAULI EIGENSTATES

In this section we examine the Pauli current (10) for some hydrogen
atom eigenstates. These eigenstates, two-component solutions to the
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Pauli equation, are given by [1]

. L o . VEm+E Yy 1(6,4)
nlj=b+im = £
2™ o+ 1 ~VEmtE Yy 1(6,9)
1 \/l—m+§i )/l’m_%(ﬁ’ ¢)

1[)”’ = —l,m = —R'ne(r)
£j=E—3 V2 +1 Verm+l Yl,m+%(0’¢)

(14)

Here, the R,(r) are the standard radial wave functions for the hydro-
gen atom and the Y., 1 (6, ¢) are the spherical harmonics.! We use
spherical polar coordinates in which r is the radius, ¢ is the angle mea-
sured counterclockwise from the z-axis and 6 is the angle measured
down from the z-axis.

As mentioned earlier, the wave functions given in (14) are
eigenfunctions of L? (the orbital angular momentum) with eigenvalue
K20(€+1), M? (the total angular momentum) with eigenvalue A25(j+1)
and M, with eigenvalue m#. In general, however, they are not eigen-
states of s,, the projection of spin along the z-axis.

The eigenfunctions can be classified as follows:

e For each n value, ¢ can assume the values £ =0,1,...,n — 1.

e For each £ value, m can assume the values m = —¢+ 1/2,—¢ +
3/2,..,6—1/2.

e For each 7f the above there are two possibilities, j = £+ 1/2 and
j=£-1/2.

This accounts for all eigenfunctions listed in (14).
From (10), the two contributions to the velocity are given by

_da _ _h @'Yy —9pVyl)  h Im(ypivy) (15)
T p T 2med Yty Cme Yl

'We use the following convention for the relevant functions, for consistency with

[1]:

1 .
Yem (0, ¢) = —\/T_ngm(cos 9)6""4’,
_ j2uU4+1(f-m)! 1 2\m/2 2 1\t
Pen(@) =\ =5~ Grmypzm %) GErm @~V m20,

Pp-m(z) = (=1)"Pem(z), m <O0.
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and
b _ B Vxs
Vp = p - 2me d)Tl/} 3 (16)
where
s =loy (17)

is the ‘spin vector’ and m, is the mass of the electron. In order to deter-
mine trajectories for the above hydrogen eigenstates we must compute
the velocities v, and v, for the wave functions given in (14).

We first examine the velocity v, arising from the Schrédinger
current j,. Writing

(%1 (9, ¢)

2€ + 1)2(07 ¢)
the term Im{¢TV¢} can be shown to be
1 9 2N A 1 2 8’1)1 0’()2
1 81)1 8’(12
TSlneR’nZ( 1 8¢ +U2 ) ¢} (lg)

In the above, the only nonzero term comes from the é, component:

1
kav =im =+ )|vk|2 k=1,2, (20)
o0
so that (15) yields
_h 1 |vg)2 — o1 |2\ .
Ve = mersing (m *3 o1 |2 + |v2’2))e¢. (21)

It remains to compute j, and the corresponding velocity v, with
reference to (16). To do this, we first find the three components of the

spin vector s = w’fm,b:

Yloy = o Rue(r)* (2Refuien}, Am{viva}, for — [oaf?).  (22)

2€+1

From the form of the wave functions (14),

IRe(vivs) = 261N, No Pl 2 (0) P 3(6) cos ¢ (23)
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and
2Im(vive) = 2¢; c2N1N2P£m_% (O)Peer% (6) sin ¢, (24)

where the ¢; are given in (14) and the N; are the normalization con-
stants of the relevant spherical harmonics. For simplicity of notation,
define

1 et L
a=c NP2, b=c,NoaP 2, (25)
If we write
1
oy = ——R? 26
then the vector w can be expressed in Cartesian form as
(wg, wy, w,) = (2abcos ¢, 2absin ¢, a® — b?). (27)

We may also express w in spherical polar form, i.e.,

Wy = T, 8in 6, cos ¢,
Wy = 7, 8in §, sin ¢, (28)

w, = s cos b,

where the orientation of the spin vector s = 9ty is given by the
angles 6, and ¢,. (See also [1f], p- 62-63 for a brief discussion of the
spin vector.) A comparison of (28) with (27) suggests that we might
let 7, = a® + b2, ¢, = ¢ and then compute 8, in terms of § using the
relations

a? — b? sinf. = 2ab
e T I

However, this is consistent with the definition of spherical coordinates
only if 2ab > 0 since §, is restricted to the interval [0,7]. When this
condition is not met, i.e., 2ab < 0, then the polar coordinates for w are
given by 7, = a® + b%, ¢, = ¢ + 7 and

a? — b? . 2ab 2ab
a? + b’ sind = al | - (30)

In either of the above cases, the spin vector s lies in a plane
defined by the position vector r and the z axis, which is in agreement
with [1]. After some manipulation, we find that

cosf, = (29)

cosf, =

S = $,:€, + 3¢€g, (31)
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where
232

a‘—b 2ab
Sp = SCOS9(ﬁ) + ssiné (—2—2> ,
a?+b aZ+b (32)

2 2

. 2ab
Sp = —ssmﬁ(m) + scosf (m) .

(Here é,, ég and &4 are the spherical polar unit vectors at the position
of the electron.) Evolution of the position coordinates as the particle
follows the trajectory implies that the spin vector precesses about the
z-axis. This was originally described by Holland [10].

From the above result we find that

Vi

h Vxs h Os¢ Os,\.
" 2m, vl T 2mrs (so T or 08 )e¢. (33)

In other words, as was the case for v, in (21), the contribution to the
velocity from v, is again only in the é, direction. Therefore, for all
eigenstates of the form in (14), the motion of the electron is in the é,
direction, i.e. rotational motion about the z axis. This is in qualitative
agreement with the Schrodinger results.

The total speed in the é,4 direction is given by v = v, + w, i.e.,

v= h (m+ 1(|U2|2 — MIZ)) + L (s +7‘889 6Sr)
 mersiné 2 v1]2 + |vaf? omrs \ ¢ '

or 08
(34)

In what follows it will be useful to understand the relationship

between the velocities for positive and negative (corresponding) values
of m. Recall that for j = £ + %,

1 N /4€+m+§I Yl,m—% (0, (f))

1/’n,e, j=f+Lim = Rne(r) (35)
J=t+3 V2 +1 —/t-m+% Yé,m+% (9, (]5)
and
1 .
nm = —_"Péme"nd,a Pﬂy—m(x) = (__1)mPem(a;), (36)

Ver

Also, from the derivation above, the spin vector s is proportional to

w = (2Re{v{va}, 2Im{vive}, o |* — |ual?). (37)
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When m is replaced by —m, we have (denoting the new term with a
superscript (-) and the old with (+))

- 1 i(-m~3 ;
'U§ )= \/m}/l,—-m—% = /g_m+%ﬁ(—1)m+%]3&m+%e1( m é)¢:’l}2(+).

Similarly, (38)

1
2
1 . .
= ——\/£+m+§r—%(—l)m"%P&m_%e‘l(m“%W — —111(+)- (40)

o7 = =Py (39)

Therefore,

(forl* = foa) ) = — (o * = Joa?) (41)
and, furthermore,

(vv2) 7 = 0§ (i) = (—vfun)P. (42)
All three components of w change sign when m is replaced with —m

the other eigenvalues are left unchanged), so that the spin vector in
26) changes sign. Therefore,

___ b L (Joa|* = w5y,
Va mersine(m+ 2((|v1|2 + |v2|2)(-) €¢ Ve (43)
and
(—)_ h VXS(—) - +)
Ve S om gt (44)

Thus, both v, and v, change sign when m changes sign, so
that the overall velocity simply changes direction. This simplifies the
computation of the rates of revolution. A similar proof holds for the
case j =4 — 1.

Before concluding this section, we mention that in their treat-
ment of the Pauli equation using Euler angles, Bohm and Schiller [4]
(p. 80) deduced that the electron in a hydrogen atom eigenstate would
execute circular motion about the principal axis with constant angular
velocity. However, no angular velocities were computed in the paper.
In the next section we compute the angular velocities for the first few
Pauli hydrogen eigenstates.
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Quantum Number n, £, j, m | Rotation rate d¢/dt
1,0,%,+1 + A
2,0,3, %3 tom (e +1)
2,1,8,43 T
2,1,%, +3 2506 -5
21,443 s eargrnts

Table 1. Angular rates of revolution for Pauli eigenstates

2.1. Angular Velocities for n = 1 and n = 2 Pauli Eigenstates

We have computed explicitly the rates of revolution d¢/dt for the
first few Pauli hydrogen eigenstates following the procedure described
above. In each case, one computes the velocity v,, followed by the spin
vector s = 'y, finding s, and sy from (32). Then v, is computed
to give the total velocity v. Since, for all cases, v points in the é,
direction, the angular velocity d¢/dt is given by

@_ v
dt  rsind’

(45)

The results of our computations are presented in Table 1.

The first three results presented in Table 1 correspond to wave
functions that are also eigenstates of s, because of the special coupling
of spin and orbital angular momentum vectors. As expected, these
rates of revolution agree with those computed in [5] for, respectively,
the 1s, 2s and 2p, Schrédinger eigenstates. However, the final two
states in Table 1 are not spin eigenstates. As such, they have no ana-
logue in the Schrodinger case so that no comparisions of rates can be
made.
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3. DIRAC EIGENSTATES

We now consider the 4-component Dirac eigenstates for hydrogen. Fol-
lowing [1], they are given as follows: For j = £ + £,

L+m+3
b1 = 90\ 72 Yem40,9),
{—m+1
s = —g(r) "ﬁ}’em%(g’d’)’
(46)

o [e-mtd
VY3 = —if(r) %3‘2‘1@4-1,";—%(9"]5)’

oy Je+m+ 3
g = —if(r) —277‘n_'}_3—21’2+1,m+%(9’ )

and, for j =£— 1,

f— 1
b =90 Y3 0,9),
£+m+13
Y2 = 9N 7 Yemey (63,
20+ 1 (@)
[¢+m—1L
s = —if(r) %r'n:_"'l—zyed,m—%(e"ﬁ)’
f—m—1
O R AN (X))

The Yy, are the usual spherical harmonics and f(r) and g(r) are the
normalized radial Dirac eigenfunctions (see [1] p. 69). Recall that
even though £ is not a good quantum number, the eigenstates are writ-
ten in terms of ¢ because it is ‘almost’ a good quantum number, and
also because these solutions to the Dirac equation are built from the
corresponding Pauli eigenstates. (For a complete discussion, see [1].)

3.1. Trajectories for Generic Dirac Eigenstates

In this section, we show that Bohm trajectories for Dirac hydrogen
share common features. First, the components of the Dirac current in
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(7) may be expressed in terms of the components of the wave function
as follows,

% Jz = 2Re{ylts} + 2Re{jtfs},
= 2Im{y{a} — 2n{pls), (48)
% j. = 2Re{withs} — 2Re{wjs}.

We now compute these components using the hydrogenic wave func-
tions given in (46) and (47). Starting with the z component, we find

that in the j = £+ 3 case,

¢ 3
wIwe,:—z’f(T)g(r)\/ S (6.6 Vs 109

(49)
and
£
¢2'¢]4 - zf(r)g(r) 22—{- 1 \/ .;_;:L_.; 2}/Zm-+~ (0 ¢) Y;?—H m+ (0 ¢)
(50)

Both 1/)1¢3 and ¢2¢4 are imaginary since the phases of the spherical
harmonics cancel, implying that 7, = 0. This is also the case for
j=£— ; Therefore in all cases, motion of the electron is constrained
to planes of constant z. While this is a simple result, it applies to
all hydrogen eigenstates of the forms (46) and (47) and is therefore of
general interest.

We find the other components of the current in a similar fashion.

For the j = £+ % case,

1, )
e = 2sin ¢f(7”)9(7")( (B SIENEETTE) SRR TRy

+VEEREY L:’E’I'gﬁpl,m+l/2pl+1,m—1/2)~

We define F'(cosf) to be the quantity in brackets, so that

(51)

= 2sin ¢ f(r)g(r)F(cos6). (52)
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Because of its similarity in form, j, also has the F(cos ) term:

%jy = —2cos ¢ f(r)g(r)F(cosb). (53)

From (3) and (7), the motion of the electron in a plane of constant z
is given by the following system of DEs:

b J= _ 2cf(r)g(r)F(cosf)sin¢

B 101%0 Bl 'l/)“/) ’ (54)
j= Jy _ —2cf(r)g(r)F(cosf)cos ¢
Py Phep '
From the polar forms of z and y, we have
T+ yy = %(ﬁ +1%) =0. (55)

In other words, the motion is circular about the z-axis.
A similar proof applies to the j = £ — -;- case. For the sake of
the computations in the next section, the components of the current

for this case are j, =0,

1. .
EJm = —2sin ¢f(7’)g(7") (\/ L‘;’Z—ﬂe\/ e——zngl:_lleljl,m—l/ZPZ—l,m-l»—lﬂ

+ VA AR Py 2 Prom /2) (56)
= —-2sin¢f(r)g(r)G(cos )

and
% Jy = 2cos $(r)g(r)G(cosb), (57)

where G(cos 6) is the term in brackets in (56). Once again we find that
motion about the z-axis is circular.

In summary, we have shown that electron trajectories associated
with Dirac hydrogen eigenstates are circular, as was the case for Pauli
eigenstates. In the next section, we compute some rates of revolution
for these trajectories and their nonrelativistic limits.

Finally, note that if m changes from positive to negative, both
F(cos®) and G(cosf) simply undergo an overall sign change. This
means that the angular rotation simply changes direction, but main-
tains the same functional form for m = i%, as was the case for the
Pauli trajectories.
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3.2. Angular Velocities for n = 1 and n = 2 Dirac Eigenstates

We find the angular rate of revolution in general from (54) using the
relation

y = (rsinfcos ¢)¢. (58)
From (54), it follows that

dp  2cf(r)g(r)F cos(6)
dt ~ oYtyrsinfcosd

Although this equation is deceptively simple in appearance, the func-
tions f(r), g(r) — and therefore 9!y — are quite complicated in form.
Since we already know the qualititative motion, explicit computations
of the rates of revolution for the general case, beyond the result given
in (59), are not particularly enlightening.

However, it is enlightening is to examine the nonrelativistic lim-
its of (59) and compare the results to the values computed from the
Pauli equation. If the de Broglie-Bohm picture is to give a coherent ac-
count of the hydrogen atom, these results must agree. In what follows,
we examine the nonrelativistic limits of (59) for then =1 and n =2
eigenstates. Note that we compute only the positive m value since the
angular velocity simply changes sign for negative m.

(59)

3.2.1. n=1

In the ground state, we have [1]

2\ 32 1+ ¢ .
— —p1/2 71—1
9(r) (a) 2I'(2v + 1)8 AL

(60)
1——61
_ — = —6
f(r) 7! 9,
where
a2 —1/2 [1—‘61
fom '\/ — 2 = 2 == 1 — 5 =

T 1 a“, 1 T/a’ €1 ( + ’)’%) ) 1+61’

(61)

o is the fine structure constant, and a is the Bohr radius. The ground
state wave function is given by

W= =0, = —mifeosd, Y= ——ifsinge.
(62
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This gives

1 1
= i = — 2\ o2 = ]
p=9YY 47r(1 +6%)g” and F(cosb) - sin 6. (63)

Substitution into (59) yields, after cancellation,

dé

oc
dt=(

)1+6T

2
- (64)

In the nonrelativistic limit, ¢ — oo, which implies that o = €2/hc — 0
and y; — 1. Furthermore, this implies that ¢, — 1 and § — 0. In
order to determine the behaviour of é¢, we expand €, as

2
o
— 65
=) (65)
so that

T7e 1% ® ¢oo (66)

Therefore § — La. Substitution into (64) yields

d¢ 1 e?
7 = (67)
which, when written in terms of the Bohr radius a, becomes
/0] h
= = ) 68
dt  me.ar (68)

This is the angular rotation rate for the ground state Dirac wave func-
tion. It is in agreement with the Schrddinger rate given by Holland [10],
and it is also in agreement with the rate found for the Pauli equation
in Table 1.

3.2.2. n=2
L 28 (n=2 £=0, j=} m=}
As in the 1s case, we have the wave function

Y= —\/%, Y2=0, Y3= —ﬁif cosl, ¥y = —\/%_Wifsinﬂew,
(69)
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where the functions f(r) and g(r) are suitably modified for the
n = 2 case. Again, their exact functional form is not relevant,
but the relationship between f and g is important; here, rather
than (61), we have

2r
T — = 2
P2 Nza’ N2 (1+71)v

€2 = 1+ (+——)> “1/2 b=y/+—24
2= 1+m ' N 1+e '

and the number A is given by

_ Crn+1)(V2 +2) — (N2+1)pg
S P yy A A P ()

(70)

After some cancellation, substitution of the wave function into
(59) gives, as in (64),

dp 2, &
d_f = ()1 +c<52' (72)

Once again, we examine how the quantities in (70) behave in the
nonrelativistic limit ¢ — oo. In this case,

1 o
~l—= z
62 2(1+71) ) (73)
so that
1—62 (o7
1+ e —)Z (74)

From the properties 1 — 1, hence N; — 2, the limit of A in (70)
is

(75)
This implies that

dc — ac——ll——& (76)
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and (72) becomes
d¢ _ e*(4— ps)
dt  2hr(2 - p2)’

which can be rewritten as

dp 1
dt ~ 2mear (1 = — 1) ' (78)

This is the angular rotation rate for the 2s Schrédinger state given
in [5] and is also in agreement with the Pauli result of Table 1.

2. 2Py, (n=2, £=1, j=% m=3)

In this case the wave function is given by

P = \/ 3 gsm@e“” Yo =
(79)
= —zf\/ cos9sm06’¢,1/)4 = —zf\/ sm 2 g,

The functions f and g, and the relationship between them, will
be the same as in the above case, because only m has changed.
However, we now have ¢!y = 8% sin? §¢? in the limit as § — 0.
Therefore, the expression corresponding to (64) is

d¢p  —2cé

d  r
Substitution of the nonrelativistic limiting expressions from the
previous case yields

(77)

(80)

gk

dt  2mear’

(81)

This is the angular rotation rate for the 2p; Schridinger state
given in [5] and is also in agreement with the Pauli result in
Table 1.

This case is mmﬂar to the previous one although the functional
forms of f and g are different. We have

1 if
— 1¢ -
1 mg cosf, = \/4_9 sin f¢e Y3 = 7w

¢4 = 07
(82)
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and

d¢ _ 2, dc
= Pis (83)

and most of the definitions of (70) remain the same. In this case,
the term A is given by

(271 +1)No — (N — 1)pa

= . 84
G () py oy pe &
In the non-relativistic limit,
6 —
Ao 22 (85)
—P2
so that
d¢ h r
dt mgre (3 Za) ' (86)

In this case, no comparison can be made with any Schrédinger
state.

2Py (n=2, £=1, ]——, m=%)
This case is somewhat different. Here, the wave function is
i = L cosf, = — 1 sin fe’*?
1 mg ) 2 \/8—9 ’
1
= —if—=(3cos?0 1), oy =—i —smOcosBe“”
(87)
and
1
Pl = (4 cos® § + sin® 0)g° + 3 —((3cos?f —1)? (s8)

+3s1n 8 cos® ) f2.

Furthermore, the function F(cos) becomes

F(cosh) = % sin 0(8 cos? # — sin® 9). (89)
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Again, f = —dg, with

1 —¢ a2\ "2
5=\/1+€3, 63=(1+?) , m=Vi-a? (90)
2

and we find from (59) that

dp _ 20c(8cos*f —sin’ 6)

= . 91
dt  r(4cos?8 + sin9) (81
As ¢ — 00,
1o
€3~ 1 — 5(—)2, (92)

¢4

so that éc — 7. After substituting and rewriting «, we obtain

¢ _ _k (800s20—sin26)
dt ~ 2mear ‘4cos? 0 + sin® 6’

(93)

Once again, no comparison can be made with any Schrédinger
state.

In each case presented above, the nonrelativistic limit of the
Dirac angular velocity agrees with the corresponding Pauli result given
in Table 1. We expect this, since the Pauli equation is the nonrelativis-
tic limit of the Dirac equation. However, the results are not obvious,
since the expressions in (7) and (10) for, respectively, the Dirac and
Pauli currents are quite different.

4. CONCLUDING REMARKS

In this paper, we have determined the general features of de Broglie-
Bohm trajectories for energy/total angular momentum eigenstates of
the Pauli and Dirac hamiltonians for hydrogen. In all cases, the elec-
tron, assumed to be in an eigenstate of M,, the z-component of the
total angular momentum, M, is confined to a plane of constant z-value
and executes circular motion about the z-axis with a constant angular
velocity dg/dt. As well, we have outlined a procedure to compute these
angular velocities for general eigenstates and have explicitly computed
them for the n =1 and n = 2 Pauli and Dirac hydrogen eigenstates.
In the cases where the Pauli eigenstates are also eigenstates of
the s, operator, our results from the Pauli equation agree with earlier
computations of the trajectories of corresponding Schrédinger eigen-
states [5]. Furthermore, the nonrelativistic limits of the Dirac results
agree with the Pauli results. We have therefore shown that the de
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Broglie-Bohm causal picture can be applied coherently to the hydro-
gen atom, moving from the Schrédinger to the Pauli and ultimately to
the Dirac equation.

Finally, one may well wish to consider trajectories for Pauli or
Dirac wave functions other than those considered in this paper. For ex-
ample, it may be interesting to examine trajectories for particular linear
combinations of eigenstates. (In [5], we examined Bohm trajectories
for the familiar Schrodinger 2p, and 2p, orbitals used in descriptions of
chemical bonding. As well, we examined trajectories associated with a
time-varying linear combination of 1s and 2p, hydrogenic wave func-
tions that simulated an electronic transition induced by an oscillating
electric field.) The method of computing Bohm trajectories outlined in
Sections 2 and 3 can be extended in a straightforward manner to treat
such linear combinations, although the computations may well become
quite complicated.
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