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“Oh yes, I remember Clifford. I seem to always feel him near somehow.”
– Jon Hendricks
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The Chabauty-Coleman method

The Chabauty-Coleman method is an effective method for bounding the
number of rational points on a curve of genus g ≥ 2. It does not work for
all higher genus curves unlike Faltings’ theorem, but it gives bounds that
can be helpful for explicitly determining the number of points.

Let C be a curve defined over Q with good reduction at a prime p > 2g .
This means that viewed as a curve over Qp, it can be extended to Zp such
that the fiber over p is smooth. Let MWR = rank(J(Q)) be the
Mordell-Weil rank of C . Computing MWR is now an industry among
number theorists.

Theorem: (Coleman) If MWR < g and p > 2g then

#C (Q) ≤ #C0(Fp) + 2g − 2.

In the case p ≤ 2g , there’s a small error term.
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Stoll’s improvement

The Chabauty-Coleman method does give a bound on the number of
rational points, but it doesn’t tell you anything about their height. If the
bound says that there are at most 5 points, and you’ve found 4, you don’t
know if there’s an additional point. So you never know when to give up
your search. It’s important to get the bound as small as possible.

The bound was lowered by Stoll in the case that MWR is even smaller
than g − 1:

Theorem: (Stoll) If MWR < g then #C (Q) ≤ #C0(Fp) + 2 MWR .
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Idea of proof of Chabauty-Coleman:

First, work p-adically. If C has a rational point x0 , use it for the
base-point of the Abel-Jacobi map C → J. If MWR < g by an argument
involving p-adic Lie groups, we can suppose that that J(Q) lies in an
Abelian subvariety AQp ⊂ JQp with dim(AQp) ≤ MWR < g .

We might expect C (Qp) to intersect AQp in finitely many points. In fact,
there is a 1-form ω on JQp that vanishes on A, hence on the images of all
points of C (Q) under the Abel-Jacobi map. Pull back ω to CQp . By
multiplying by a power of p, can suppose that ω does not vanish on the
central fiber C0.
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Idea of proof of Chabauty-Coleman (cont’d)

We should view a curve over Zp as a family of curves over a disc with
generic fiber being the curve over Qp and the central fiber being its
reduction over Fp. Each rational point of C (Qp) is a zero of ω. Think of
zeroes of ω degenerating and slamming together as we approach the
central fiber. Each residue class x̃ ∈ C0(Fp) is the reduction of a tube ]x̃ [
of Qp-points. The vanishing behaviour of the restriction of ω near x̃ tells
us about the zeroes of ω in ]x̃ [.
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Outline of Coleman’s proof (cont’d)

To make this insight precise, Coleman defines a function η : C (Qp)→ Qp

by a p-adic integral,

η(x) =

∫ x

x0

ω

that vanishes on points of C (Q).
By a Newton polytope argument for any residue class x̃ ∈ C0(Fp),

#(η−1(0) ∩ [x̃ [) ≤ 1 + ordx̃(ω|C0).

Summing over residue classes x̃ ∈ C0(Fp), we get

#C (Q) ≤ #η−1(0) =
∑

x̃∈C0(Fp)

(1 + ordx̃(ω|C0))

= #C0(Fp) + deg(ω)

= #C0(Fp) + 2g − 2.
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Proof of Stoll’s improvement

Stoll improved the bound by picking a good choice of ω vanishing on
C (Q) for each residue class.

Let Λ ⊂ Γ(JQp ,Ω
1) be the 1-forms vanishing on J(Q). For each residue

class x̃ ∈ C0(Fp), let

n(x̃) = min{ordx̃(ω|C0)|0 6= ω ∈ Λ}.

Let the Chabauty divisor on C0 be

D0 =
∑
x̃

n(x̃)(x̃).

So each ω ∈ Λ vanishes on D0

Coleman integration works between points in the same tube, so by
summing over residue classes, one gets

#C (Q) ≤ #C0(Fp) + deg(D0).
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Proof of Stoll’s improvement (cont’d)

Now, we just need to bound deg(D0). Every ω ∈ Λ extends (up to a
multiple by a power of p) to a regular 1-form vanishing on D0.

By a semi-continuity argument together with Clifford’s theorem, one gets

dim Λ ≤ dim H0(C0,Ω
1
C0
− D0) ≤ g − deg(D0)

2
.

Since dim Λ = g −MWR, deg(D0) ≤ 2 MWR.

Therefore, we get

#C (Q) ≤ #C0(Fp) + 2 MWR .
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Bad reduction case

Now, the above argument breaks down in the bad reduction case because
if C0 is reducible, even if replace Ω1

C0
by KC0 , H0(C0,KC0 − D0) goes

completely haywire with 1-forms vanishing on components. However,

Theorem: (K-Zureick-Brown ’12) Let C by a regular minimal model for C
over Zp. Suppose MWR < g then

C (Q) ≤ #Csm
0 (Fp) + 2 MWR

These are the Stoll bounds. The bad reduction case of Coleman’s bound
was proved independently by Lorenzini-Tucker and McCallum-Poonen.
The bad reduction case of the Stoll bound was proved for hyperelliptic
curves by Stoll and the general case was posed as a question in a paper of
McCallum-Poonen.

Since C is a regular minimal model, the total space is regular, but there are
no conditions of the types of singularities on the central fiber. They can be
worse than nodes.
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A natural framework

If you adapt Stoll’s proof and try to apply semi-continuity arguments, you
end up in the following situation:
Let C be a regular minimal model of a curve C over a valuation field K
with residue field k. Let L be a line-bundle on C (think Ω1

C ). Let D0 be a
divisor on C sm

0 (k). Let

|L|D0 = {D ∈ |L|
∣∣ D0 ⊂ D}

where D ⊂ C is a divisor of a section of L and D denotes its closure in C.

Definition: We say the rank r(L,−D0) is greater than or equal to r if for
any rank r effective divisor E supported on C (K), |L(−E )|D0 6= ∅.

One can prove by a specialization argument similar to Matt Baker’s
specialization lemma that if Λ ⊂ H0(C , L) is a linear subspace such that
for every s ∈ Λ, (s) ⊃ D0, then dim Λ ≤ r(L,−D0) + 1.

Question: Can we prove a Clifford bound r(Ω1
C ,−D0) ≤ g − deg(D0)

2 − 1?
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Bounding r(L,−D0)

Problem: It is really hard to work with |L|D0 directly. It’s a rigid analytic
subspace of projective space and it’s not even clear if its rank has nice
properties. Working with it requires developing a missing theory of rigid
analytic/algebraic compatibility.

Solution: Instead, we’ll bound r(L,−D0) in terms of more tractable ranks
involving separate obstructions to finding a section of L whose zero locus
contains D0 in its closure.

Reduction step: We can suppose that C is a semistable model. All rational
points of C specialize to smooth points of C0 and they are not messed up
too badly by the operations in semistable reduction. This does require a
technical lemma.
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Extension hierarchy for sections

We apply a certain extension hierarchy to this question. This is very
closely related to tropical lifting. The steps have technical names which
are inspired by the Néron model. The steps should be reminiscent of how
one thinks about tropical lifting. Let D0 be a divisor supported on smooth
points of C0(Fp).

1 Try to construct a rational section s0 on the central fiber whose
vanishing behaviour is controlled by D0.

(a) numerical: Is there an extension L of L to C such that L|C0 (D0) has
non-negative degree?

(b) Abelian: For each component Cv of the central fiber, is there a section
sv on Cv of L|Cv (D0)?

(c) toric: Can the sections sv be chosen to agree on nodes?

2 Use deformation theory to extend the glued together section s0 to C.

We will concentrate on the first step.
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The rank hierarchy

This hierarchy lets us define new rank functions following Baker-Norine.
We say a pair (L,D0) where L is a line-bundle on C and D0 is a divisor on
Csm

0 has i-rank ≥ r if for any effective divisor E0 on Csm
0 (k) of degree r ,

steps (1)− (i) are satisfied: for an extension L of L,

1 numerical: there is a divisor ϕ =
∑

v avCv supported on the central
fiber such that deg(L(ϕ)|Cv (D0 − E0)) ≥ 0 for all v .

2 Abelian: For each component Cv of the central fiber, there is a
non-vanishing section sv on Cv of L(ϕ)|Cv (D0 − E0).

3 toric: The sections sv be chosen to agree across nodes.
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New rank functions

So we have rank functions rnum, rAb, rtor.

rnum(L,D0) depends only on the multi-degree of L and D0, that is
deg(LCv (D0)) for all v . It does not depend on the geometry of the
components. It is, in fact, identical to the Baker-Norine rank. In fact, a
divisor on a graph is the same thing as a multi-degree.

rAb depends on the geometry of the components and the location of the
points of D0, but not the location of the nodes. This is identical to the
rank function independently introduced by Amini-Baker.

The rank functions rAb, rtor are sensitive to the residue field k since bigger
k allows for more divisors E . But they eventually stabilize.

Eric Katz (Waterloo) Rank functions January 9, 2013 14 / 19



New rank functions

So we have rank functions rnum, rAb, rtor.

rnum(L,D0) depends only on the multi-degree of L and D0, that is
deg(LCv (D0)) for all v . It does not depend on the geometry of the
components. It is, in fact, identical to the Baker-Norine rank. In fact, a
divisor on a graph is the same thing as a multi-degree.

rAb depends on the geometry of the components and the location of the
points of D0, but not the location of the nodes. This is identical to the
rank function independently introduced by Amini-Baker.

The rank functions rAb, rtor are sensitive to the residue field k since bigger
k allows for more divisors E . But they eventually stabilize.

Eric Katz (Waterloo) Rank functions January 9, 2013 14 / 19



New rank functions

So we have rank functions rnum, rAb, rtor.

rnum(L,D0) depends only on the multi-degree of L and D0, that is
deg(LCv (D0)) for all v . It does not depend on the geometry of the
components. It is, in fact, identical to the Baker-Norine rank. In fact, a
divisor on a graph is the same thing as a multi-degree.

rAb depends on the geometry of the components and the location of the
points of D0, but not the location of the nodes. This is identical to the
rank function independently introduced by Amini-Baker.

The rank functions rAb, rtor are sensitive to the residue field k since bigger
k allows for more divisors E . But they eventually stabilize.

Eric Katz (Waterloo) Rank functions January 9, 2013 14 / 19



New rank functions

So we have rank functions rnum, rAb, rtor.

rnum(L,D0) depends only on the multi-degree of L and D0, that is
deg(LCv (D0)) for all v . It does not depend on the geometry of the
components. It is, in fact, identical to the Baker-Norine rank. In fact, a
divisor on a graph is the same thing as a multi-degree.

rAb depends on the geometry of the components and the location of the
points of D0, but not the location of the nodes. This is identical to the
rank function independently introduced by Amini-Baker.

The rank functions rAb, rtor are sensitive to the residue field k since bigger
k allows for more divisors E . But they eventually stabilize.

Eric Katz (Waterloo) Rank functions January 9, 2013 14 / 19



Specialization lemma

These rank functions satisfy a specialization lemma:

Theorem: We have the following inequalities:

r(L,−D0) ≤ rtor(L,−D0) ≤ rAb(L,−D0) ≤ rnum(L,−D0).

We have examples where the inequalities are strict.

So now, we have ways to bound r(ΩC ,−D0).
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Clifford Bounds

The appropriate bound would follow from an analogue of Clifford’s
theorem: let D0 be an effective divisor supported on points of Csm

0 (k); then
we have

r(Ω1,−D0) ≤ g − deg(D0)

2
− 1.

Let KC be the relative dualizing sheaf of our semistable model C. This is
characterized by being the natural extension of the canonical bundle on C
to C.

Now, the multi-degree of its restriction to the central fiber is (considered
as a divisor on the dual graph Γ),

deg(KC0) =
∑
v

(2g(Cv )− 2 + deg(v))(v) = KΓ +
∑
v

2g(Cv )(v)

where KΓ =
∑

v (2g(Cv )− 2)(v) is the Baker-Norine canonical divisor.

If all components are rational, then deg(KΓ) = 2g − 2 and the
Baker-Norine’s Clifford bounds for rnum are sufficient.
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Clifford Bounds (cont’d)

In general, we have
Theorem: (Clifford-Brown-Amini-Baker-K) Let D0 be a divisor supported
on smooth k-points of C0 then

rAb(KC0 − D0) ≤ g − deg D0

2
− 1.

Note: The weird attribution is so I can get “Clifford Brown” in a talk.

Amini and Baker proved the Riemann-Roch theorem for rAb in the
framework of metrized complexes of curves. From this, the Clifford bounds
follow. They use a version of reduced divisors.

Our proof uses the Baker-Norine version of Clifford’s theorem, classical
Clifford’s theorem, and a general position argument. We cook up a divisor
E0 of degree at most g − deg D0

2 such that for any ϕ, there is some
component Cv such that the line bundle L(ϕ)|Cv (D0 − E0) on Cv has no
non-zero sections.
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Further Questions

1 Because Clifford’s bounds are usually strict, in any given case, one
can probably do better by bounding the Abelian rank by hand. Is
there a general statement that incorporates the combinatorics of the
dual graph?

2 What can we say about the number of rational points specializing to
different components of the central fiber?

3 What about rtor? Does that help us improve the bounds?

4 What about passing from the special fiber to the generic fiber? This
should give even better bounds. We can use deformation-theoretic
obstructions from tropical lifting here. Probably really need to
understand the bad reduction analogue of the Coleman integral which
is the Berkovich integral.

5 r(L,−D0)?

Eric Katz (Waterloo) Rank functions January 9, 2013 18 / 19



Further Questions

1 Because Clifford’s bounds are usually strict, in any given case, one
can probably do better by bounding the Abelian rank by hand. Is
there a general statement that incorporates the combinatorics of the
dual graph?

2 What can we say about the number of rational points specializing to
different components of the central fiber?

3 What about rtor? Does that help us improve the bounds?

4 What about passing from the special fiber to the generic fiber? This
should give even better bounds. We can use deformation-theoretic
obstructions from tropical lifting here. Probably really need to
understand the bad reduction analogue of the Coleman integral which
is the Berkovich integral.

5 r(L,−D0)?

Eric Katz (Waterloo) Rank functions January 9, 2013 18 / 19



Further Questions

1 Because Clifford’s bounds are usually strict, in any given case, one
can probably do better by bounding the Abelian rank by hand. Is
there a general statement that incorporates the combinatorics of the
dual graph?

2 What can we say about the number of rational points specializing to
different components of the central fiber?

3 What about rtor? Does that help us improve the bounds?

4 What about passing from the special fiber to the generic fiber? This
should give even better bounds. We can use deformation-theoretic
obstructions from tropical lifting here. Probably really need to
understand the bad reduction analogue of the Coleman integral which
is the Berkovich integral.

5 r(L,−D0)?

Eric Katz (Waterloo) Rank functions January 9, 2013 18 / 19



Further Questions

1 Because Clifford’s bounds are usually strict, in any given case, one
can probably do better by bounding the Abelian rank by hand. Is
there a general statement that incorporates the combinatorics of the
dual graph?

2 What can we say about the number of rational points specializing to
different components of the central fiber?

3 What about rtor? Does that help us improve the bounds?

4 What about passing from the special fiber to the generic fiber? This
should give even better bounds. We can use deformation-theoretic
obstructions from tropical lifting here. Probably really need to
understand the bad reduction analogue of the Coleman integral which
is the Berkovich integral.

5 r(L,−D0)?

Eric Katz (Waterloo) Rank functions January 9, 2013 18 / 19



Further Questions

1 Because Clifford’s bounds are usually strict, in any given case, one
can probably do better by bounding the Abelian rank by hand. Is
there a general statement that incorporates the combinatorics of the
dual graph?

2 What can we say about the number of rational points specializing to
different components of the central fiber?

3 What about rtor? Does that help us improve the bounds?

4 What about passing from the special fiber to the generic fiber? This
should give even better bounds. We can use deformation-theoretic
obstructions from tropical lifting here. Probably really need to
understand the bad reduction analogue of the Coleman integral which
is the Berkovich integral.

5 r(L,−D0)?

Eric Katz (Waterloo) Rank functions January 9, 2013 18 / 19



Thanks!
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