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“Oh yes, I remember Clifford. I seem to always feel him near somehow.”
– Jon Hendricks

Eric Katz (Waterloo) Rank functions April 4, 2012 1 / 29



Linear systems on curves and graphs

Let K be a discretely valued field with valuation ring O and residue field k.
Let C be a curve with semistable reduction over K. In other words, C can
be completed to a family of curves C over O such that the total space is
regular and that the central fiber C0 has ordinary double-points as
singularities. Think: extending a family of curves over a punctured disc
across the puncture while allowing mild singularities.

Let D be a divisor on C , supported on C (K). Would like to bound the
dimension of H0(C ,O(D)) by using the central fiber.
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Baker-Norine linear systems on graphs

The Baker-Norine theory of linear systems on graphs gives such bounds.
Let the multi-degree deg of a divisor D to be the formal sum

deg(D) =
∑
v

deg(O(D)|Cv )(v)

where Cv are the components of C0.

Baker-Norine define a rank r(deg(D)) in terms of the combinatorics of the
dual graph Γ of C0.

The bound obeys the specialization lemma:

dim(H0(C ,O(D)))− 1 ≤ r(deg(D)).

These bounds are particularly nice in the case where all components of C0

are rational (the maximally degenerate case).
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Non-maximal degeneration case

The Baker-Norine theory is not ideal for the non-maximally degenerate
case for the following reasons:

1 The bound is not very sharp,

2 The canonical divisor of the dual graph Γ does not have much to do
with the canonical bundle KC of C ; unclear what Riemann-Roch says
in this case.

In fact, we have the following examples of things going haywire:

1 If C has good reduction, Γ is just a vertex and so
r(deg(D)) = deg(D). Lots of other pathological cases.

2 deg(KC ) = KΓ +
∑

v (2g(Cv )− 2)(v).
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Amini-Caporaso approach

Amini-Caporaso have a combinatorial approach to handle this case by
inserting loops at vertices corresponding to higher genus components.
Their approach obeys the specialization lemma and the appropriate
Riemann-Roch theorem.

Their bound is sharper than the Baker-Norine bound and in their theory,
one has

deg(KC ) = KΓ

where KΓ is the canonical divisor of the weighted dual graph Γ.

Today, I’ll give an approach that incorporates the geometry of the
components. The approach I’ll explain was developed independently by
Amini-Baker.
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Our approach: extending linear equivalence

Our definition of rank is inspired by the following question:

Let D1,D2 be divisors on C supported on C (K). Let D1,D2 be their
closures on C,

Question: Are the generic fibers D1,D2 linearly equivalent?

Try to construct a section s with (s) = D1 − D2.
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Extension hierarchy for linear equivalence problem

We apply a certain extension hierarchy to this question. The steps have
technical names which are inspired by the Néron model. The steps should
be reminiscent of how one thinks about tropical lifting.

1 Try to construct s0 on the central fiber such that
(s0) = (D1)0 − (D2)0.

1 numerical: Is there an extension L of O(D1 − D2) to C that has degree
0 on every component of the central fiber?

2 Abelian: For each component Cv of the central fiber, is there a section
sv on Cv of L|Cv with (sv ) = ((D1)0 − (D2))|Cv ?

3 toric: Can the sections sv be chosen to agree on nodes?

2 Use deformation theory to extend the glued together section s0 to C.

We will concentrate on the first step.
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The rank hierarchy

This hierarchy lets us define new rank functions following Baker-Norine.
We say a divisor D on C has i-rank ≥ r if for any effective divisor E in
C (K) of degree r , steps (1)− (i) are satisfied for D = D, E = E :

1 numerical: there is a divisor ϕ =
∑

v av Cv supported on the central
fiber such that

deg(O(D − E)(ϕ)|Cv ) ≥ 0

for all v .

2 Abelian: For each component Cv of the central fiber, there is a
non-vanishing section sv on Cv of O(D − E)(ϕ)|Cv .

3 toric: The sections sv be chosen to agree across nodes.
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New rank functions

So we have rank functions rnum, rAb, rtor.

1 rnum(D) depends only on the multi-degree of D, that is deg(D|Cv ) for
all v

2 rAb, rtor depend only on D0.

The rank functions rAb, rtor are sensitive to the residue field k since bigger
k allows for more divisors E . But they eventually stabilize.
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Specialization map

To show that rAb and rtor only depend on D0, we need to introduce the
specialization (a.k.a. reduction) map

ρ : C (K) → Csm
0 (k)

x 7→ {x} ∩ C0(k).

Note that K-points always specialize to smooth points of the central fiber.
The specialization map is surjective so any divisor E0 of C0 supported on
Csm

0 (k) extends to a divisor E supported on C (K) with

ρ(E ) = E0.

Therefore, we need only check effective divisors E0 supported on Csm
0 (k).
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A natural question inspired by number theory

Our approach was designed to give an approximate answer to the following
natural question motivated by number theory. Let D be a divisor on C
supported on C (K). Let F0 be a divisor on C sm

0 (k). Let

|D|F0 = {D ′ ∈ |D|
∣∣ F0 ⊂ D ′}.

Definition: We say the rank r(D,F0) is greater than or equal to r if for
any rank r effective divisor E supported on C (K), |D − E |F0 6= ∅.

Question: Can we bound r(D,F0) in terms of C0, deg(D) and F0?

It’s unclear what kind of object |D|F0 is. It’s a rigid analytic subspace of
projective space and it’s not even quite clear if its rank has nice properties.
Working with it requires developing a missing theory of rigid
analytic/algebraic compatibility. But it is very natural to consider as we
shall see.
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Numerical rank and Baker-Norine rank

But rnum(D) is not new. In fact, it is the Baker-Norine rank of deg(D).
What is called here a multi-degree is what Baker and Norine call a divisor
on a graph.

One observes that for ϕ =
∑

v av Cv , treated as a function on V (Γ), we
have

deg(ϕ) = ∆(ϕ)

where ∆ is the graph Laplacian.

Also after possible unramified field extension of K for any multi-degree,
E =

∑
av (v), there is a divisor E on C with deg(E ) = E .

Consequently, unpacking the definition of rnum, we see that it says
rnum(D) ≥ r if and only if for any multi-degree E ≥ 0 with deg(E ) = r ,
there is a ϕ : V (Γ)→ Z with

D − E + ∆(ϕ) ≥ 0.
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Specialization lemma

These rank functions satisfy a specialization lemma. For D, a divisor
supported on C (K), set

rC (D) = dim H0(C ,O(D))− 1.

Then
rC (D) ≤ rtor(D) ≤ rAb(D) ≤ rnum(D).

We have examples where the inequalities are strict.
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Proof of Specialization lemma

The proof is essentially the same as Baker’s specialization lemma.

First by definition, we have

rtor(D) ≤ rAb(D) ≤ rnum(D),

so it suffices to show rC (D) ≤ rtor(D).

One can characterize rC (D) by saying rC (D) ≥ r if and only if for any
effective divisor E of degree r supported on C (K) that

H0(C ,O(D − E )) 6= {0}.

Consequently, there’s a section s of O(D − E ). The section can be
extended to a rational section of O(D − E) on C. The associated divisor
can be decomposed as

(s) = H − V

where H is the closure of a divisor in C and V is supported on C0.
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Proof of Specialization lemma (cont’d)

Consequently, we can write

ϕ ≡ V =
∑
v

av Cv .

Now, s can be viewed as a regular section of O(D − E)(ϕ). Set sv = s|Cv .
These are the desired sections on components.

It follows that rtor(D) ≥ r .
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Clifford’s theorem for rAb

Let KC0 be the relative dualizing sheaf of the central fiber. This is
characterized by being the natural extension of the canonical bundle on C
to C, restricted to the central fiber. Note
deg(KC0) =

∑
v (2g(Cv )− 2 + deg(v))(v) = KΓ +

∑
v 2g(Cv )(v).

(No longer as much of a) Question: Is Riemann-Roch true for rAb and rtor?

ri (D0)− ri (KC0 − D0) = 1− g + deg(D0)?

Yes for rAb! By Amini-Baker.

Theorem: (Clifford-Brown-K) Let D0 be a divisor supported on smooth
k-points of C0 then

rAb(KC0 − D0) ≤ g − deg D0

2
− 1.

Proof uses the Baker-Norine version of Clifford’s theorem, classical
Clifford’s theorem, and a general position argument.
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Proof of Clifford’s theorem

The theorem follows by Amini-Baker’s Riemann-Roch theorem which uses
a version of reduced divisors, but we give another proof...

To prove Clifford’s theorem, given D0 supported on Csm
0 (k), we must cook

up a divisor E0 of degree at most g − deg D0
2 such that for any ϕ, there is

some component Cv such that the line bundle

O(D0 − E0)(ϕ)|Cv

on Cv has no non-zero sections.

The idea is to choose E0 to vandalize any possible section on any
component as efficiently as possible. Now, we need only look at ϕ such
that

deg(O(D0 − E0)(ϕ)|Cv ) ≥ 0

for all Cv . Up to addition of a multiple of the central fiber, there are
finitely many such ϕ.
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Proof of Clifford’s theorem (cont’d)

To vandalize efficiently, we need the following general position principle:
We make an unramified field extension of K to ensure that k is infinite.
Now we can choose an effective degree n divisor P0 on C sm

v (k) such that
for any ϕ,

h0(Cv ,O(D0 − E0 − P0)(ϕ)|Cv ) = max(0, h0(Cv ,O(D0 − E0)(ϕ)|Cv )− n).

Now if Cv has deg(O(D0 − E0)(ϕ)|Cv ) ≤ 2g − 1, by ordinary Clifford’s
theorem,

h0(Cv ,O(D0 − E0)(ϕ)|Cv ) ≤ d

2
+ 1.

Such components can be vandalized with fewer points of E0 than expected.

One keeps track of these components and vandalizes their sections. If
necessary, one also uses Baker-Norine’s version of Clifford’s theorem to add
points to E0 to ensure that there are always such components Cv . The
numbers work out correctly.
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Application: Chabauty-Coleman method

The Chabauty-Coleman method is an effective method for bounding the
number of rational points on a curve of genus g ≥ 2. It does not work for
all higher genus curves unlike Faltings’ theorem, but it gives bounds that
can be helpful for explicitly determining the number of points.

Let C be a curve defined over Q with good reduction at a prime p > 2g .
This means that viewed as a curve over Qp, it can be extended to Zp such
that the fiber over p is smooth. Let MWR = rank(J(Q)) be the
Mordell-Weil rank of C . Computing MWR is now an industry among
number theorists.

Theorem: (Coleman) If MWR < g then #C (Q) ≤ #C0(Fp) + 2g − 2.

In the case p ≤ 2g , there’s a small error term.

Theorem: (Stoll) If MWR < g then #C (Q) ≤ #C0(Fp) + 2 MWR .

This improvement is important! A sharper bound means less searching for
a rational point that may not exist.
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Outline of Coleman’s proof

First, work p-adically. If C has a rational point x0 , use it for the
base-point of the Abel-Jacobi map C → J. Applying Chabauty’s argument
involving p-adic Lie groups, can assume that that J(Q) lies in an Abelian
subvariety AQp ⊂ JQp with dim(AQp ) ≤ MWR. Then there is a 1-form ω
on JQp that vanishes on A, hence on the images of all points of C (Q)
under the Abel-Jacobi map. Pull back ω to CQp . By multiplying by a
power of p, can suppose that ω does not vanish on the central fiber C0.

Coleman defines a function η : C (Qp)→ Qp by a p-adic integral,

η(x) =

∫ x

x0

ω

that vanishes on points of C (Q).
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Outline of Coleman’s proof (cont’d)

Let ρ : C (Qp)→ C0(Fp) be the specialization map

ρ(x) = {x} ∩ C0(Fp),

By a Newton polytope argument for any residue class x̃ ∈ C0(Fp),

#(η−1(0) ∩ ρ−1(x̃)) ≤ 1 + ordx̃(ω|C0).

Summing over residue classes x̃ ∈ C0(Fp), we get

#C (Q) ≤ #η−1(0) =
∑

x̃∈C0(Fp)

(1 + ordx̃(ω|C0))

= #C0(Fp) + deg(ω)

= #C0(Fp) + 2g − 2.
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Proof of Stoll’s improvement

Stoll improved the bound by picking a good choice of ω for each residue
class.

Let Λ ⊂ Γ(JQp ,Ω
1) be the 1-forms vanishing on J(Q). For each residue

class x̃ ∈ C0(Fp), let

n(x̃) = min{ordx̃(ω|C0)|0 6= ω ∈ Λ}.
Let the Chabauty divisor on C0 be

D0 =
∑
x̃

n(x̃)(x̃).

Note that by Coleman’s argument,

#(η−1(0) ∩ ρ−1(x̃)) ≤ 1 + n(x̃).

By summing over residue classes, one gets

#C (Q) ≤ #C0(Fp) + deg(D0).
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Proof of Stoll’s improvement (cont’d)

Now, we just need to bound D0. Every ω ∈ Λ extends (up to a multiple by
a power of p) to a regular 1-form vanishing on D0.

By a semi-continuity argument, one gets

dim Λ ≤ dim H0(C0,KC0 − D0) ≤ g − deg(D0)

2
.

Since dim Λ = g −MWR, deg(D0) ≤ 2 MWR.

Therefore, we get

#C (Q) ≤ #C0(Fp) + 2 MWR .
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Bad reduction case

The bad reduction case of Coleman’s bound was proved independently by
Lorenzini-Tucker and McCallum-Poonen. The bad reduction case of the
Stoll bound was proved for hyperelliptic curves by Stroll and the general
case was posed as a question in a paper of McCallum-Poonen.

The set-up for the bad reduction case is where C is a regular minimal
model over Zp. This means that the total space is regular, but there are
no conditions of the types of singularities on the central fiber. They can be
worse than nodes.

Theorem:(Lorenzini-Tucker,McCallum-Poonen) Suppose MWR < g then

C (Q) ≤ #Csm
0 (Fp) + 2g − 2.

The reason why we only need to look at the smooth points is that any
rational point of C specializes to a smooth point of C0. Therefore, we
need only consider the residue classes in Csm

0 (Fp).
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Stoll bounds in the bad reduction case

Theorem: (Brown-K ’12) Suppose MWR < g then

C (Q) ≤ #Csm
0 (Fp) + 2 MWR

Now, we outline the proof which is formally similar to Stoll’s.

The first step is to go from a regular minimal model to a semistable
model. We can make finite ramified field extension Qp ⊂ K such that
C ′ = C ×Qp K has a semistable model C′. There is a map

C′ → C ×Zp O.

Now, C′sm
0 (k) may have many more points than C0(Fp). Fortunately, we

only need to consider points lying over Csm
0 (Fp). But over points of Csm

0 ,
C′0 → C0 is an isomorphism. We only need to look at ω near those points.
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Proof of Stoll bounds in bad reduction case (cont’d)

Produce the Chabauty divisor nearly as before: for x̃ ∈ Csm
0 (Fp), set

n(x̃) = min{ordx̃(ω|C0)
∣∣0 6= ω ∈ Λ}.

where each ω is normalized so that it does not vanish identically on the
component Cv containing x̃ .

Let the Chabauty divisor supported on C′0(k′) be

D0 =
∑

x̃∈Csm
0 (k)

n(x̃)(x̃).

Nearly all the Coleman machinery works in the bad reduction case. The
Coleman integral is now multivalued, but it is well-defined as long as one
integrates between points in the same residue class. Consequently,

#C (Q) ≤ #C0(Fp) + deg(D0).
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Proof of Stoll bounds in the bad reduction case (cont’d)

Since every ω in Λ vanishes on D0, we can use the proof of the
specialization lemma to show that

dim Λ ≤ rAb(KC0 − D0) + 1.

Then apply Clifford’s theorem for rAb to conclude

deg(D0) ≤ 2 MWR .

And that’s it!
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Further Questions

1 Because Clifford’s bounds are usually strict, in any given case, one
can probably do better by bounding the Abelian rank by hand. Is
there a general statement that incorporates the combinatorics of the
dual graph?

2 What can we say about the number of rational points specializing to
different components of the central fiber?

3 What about rtor? Does that help us improve the bounds?

4 What about passing from the special fiber to the generic fiber? This
should give even better bounds. We can use deformation-theoretic
obstructions from tropical lifting here. Probably really need to
understand the bad reduction analogue of the Coleman integral which
is the Berkovich integral.

5 r(D,F0)?
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Thanks!
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