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Inclusion/exclusion

Let k be a field. Let V ⊂ kn+1 be an (r + 1)-dim linear subspace not
contained in any coordinate hyperplane. Would like to use
inclusion/exclusion to express [V ∩ (k∗)n+1] as a linear combination of
[V ∩ LI ]’s where LI is the coordinate subspace given by

LI = {xi1 = xi2 = · · · = xil = 0}

for I = {i1, i2, . . . , il} ⊂ {0, . . . , n}.

Example: Let V be a generic subspace (intersecting every coordinate
subspace in the expected dimension). Then

[V ∩ ((k∗)n+1)] = [V ∩L∅]−
∑
i

[V ∩ Li ] +
∑
I
|I |=2

[V ∩LI ]−
∑
I
|I |=3

[V∩LI ] + . . . .

If you’re fancy, you can say that this is a motivic expression.
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Flats

In general, you may have to be a little more careful as there may be
I , J ⊆ {0, . . . , n} with V ∩ LI = V ∩ LJ . Need to make sure we do not
overcount.

Definition: A subset I ⊂ {0, . . . , n} is said to be a flat if for any J ⊃ I ,
V ∩ LJ 6= V ∩ LI .

The rank of a flat is

ρ(I ) = codim(V ∩ LI ⊂ V ).

We can now write for some choice of νI ∈ Z,

[V ∩ (k∗)n+1] =
∑

flats I

νI [V ∩ LI ].

Fact: (−1)ρ(I )νV is always positive.
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Characteristic Polynomial

Definition: The characteristic polynomial of V is

χV (q) =
r+1∑
i=0

 ∑
flats I
ρ(I )=i

νI

 qr+1−i

≡ µ0q
r+1 − µ1q

r + · · ·+ (−1)r+1µr+1

We can think of χ as an evaluation of the classes [V ∩ LI ] of the form

[V ∩ LI ] 7→ qr+1−ρ(I )

so the characteristic polynomial is the image of [V ∩ (k∗)n+1] under this
evaluation.

Example: In the generic case subspace case, we have

χV (q) = qr+1 −
(
r + 1

1

)
qr +

(
r + 1

2

)
qr−1 − · · ·+ (−1)r+1

(
r + 1

0

)
.
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Rota-Heron-Welsh Conjecture

Rota-Heron-Welsh Conjecture (in the realizable case) (Huh-k ’11):
χV (q) is log-concave.

Definition: A polynomial with coefficients µ0, . . . , µr+1 is said to be
log-concave if for all i ,

|µi−1µi+1| ≤ µ2
i .

(so log of coefficients is a concave sequence.)

Note: Log concavity is a more robust form of unimodality...

Definition: A polynomial with coefficients µ0, . . . , µr+1 is said to be
unimodal if the coefficients are unimodal in absolute value, i.e. there is a j
such that

|µ0| ≤ |µ1| ≤ · · · ≤ |µj | ≥ |µj+1| ≥ · · · ≥ |µr+1|.
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Motivation:Chromatic Polynomials of Graphs

Original Motivation: Let Γ be a loop-free graph. Define the chromatic
function χΓ by setting χΓ(q) to be the number of colorings of Γ with q
colors such that no edge connects vertices of the same color.

Fact: χΓ(q) is a polynomial of degree equal to the number of vertices with
alternating coefficients.

Read’s Conjecture ’68 (Huh ’10): χΓ(q) is unimodal.
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Graphs and Subspaces

The connection between graphs and subspaces is as follows

C1(Γ)
∂ // C0(Γ)

induces

C 0(Γ)
d // C1(Γ).

So dC 0(Γ) ⊆ C 1(Γ). It can be shown

χΓ(q) = qc · χdC0(Γ)(q).

In fact, Huh proved the Rota-Heron-Welsh conjecture when the
characteristic of k is 0.
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Matroids

We may abstract the linear space to a rank function

ρ : 2{0,...,n} → Z

satisfying

1 0 ≤ ρ(I ) ≤ |I |
2 I ⊂ J implies ρ(I ) ≤ ρ(J)

3 ρ(I ∪ J) + ρ(I ∩ J) ≤ ρ(I ) + ρ(J)

4 ρ({0, . . . , n}) = r + 1.

Note: Item (3) abstracts

codim(((V ∩ LI ) ∩ (V ∩ LJ)) ⊂ (V ∩ LI∩J)) ≤

codim((V ∩ LI ) ⊂ (V ∩ LI∩J)) + codim((V ∩ LJ) ⊂ (V ∩ LI∩J)).

This is one of the definitions of matroids.
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Rota-Heron-Welsh Conjecture

For matroids, νI and hence χ(q) can be defined combinatorially by Möbius
inversion without reference to any linear space. This leads us to

Rota-Heron-Welsh Conjecture ’71: For any matroid, χ(q) is log-concave.

This is still open, but I’ll explain some approaches to it at the end of the
talk.
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Outline of Proof

Our proof is very close to Huh’s original proof. We replace singularity
theory in the original proof with some toric intersection theory.

Step 1: Use the reduced characteristic polynomial.

From the fact χ(1) = 0, we can set

χ(q) =
χ(q)

q − 1
.

The log-concavity of χ implies the log-concavitiy of χ.

Coefficients of χ have a combinatorial description:

χV (q) = µ0qr − µ1qr−1 + · · ·+ (−1)rµrq0.

Then
µi = (−1)i

∑
flats I
ρ(I )=i

06∈I

νI .
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Outline of Proof

Step 2: Identify µi with intersection numbers.

We will define a r -dimensional variety Ṽ ⊂ Pn × Pn called the total
transform.

Lemma µi = deg((p∗1c1(O(1)))r−i (p∗2c1(O(1)))i ∩ [Ṽ ]).
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Outline of Proof

Step 3: Apply Khovanskii-Teissier inequality.

Let X be a complete irreducible r -dimensional variety, and let α, β be nef
divisors on X .

Then
ai = (αiβr−i ) ∩ [X ]

is a log-concave sequence.
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Total Transform

We have P(V ) ⊂ Pn.

Let Crem : Pn 99K Pn be the generalized Cremona transform

[X0 : X1 : · · · : Xn] 7→ [
1

X0
:

1

X0
: · · · :

1

Xr
].

Caution: This is indeterminate on coordinate subspaces. It is a rational
map.

Let Ṽ ⊂ Pn × Pn be the closure of the graph of P(V ).

Then Ṽ → P(V ) is an iterated blow-up of P(V ) at subvarieties of the
form P(V ∩ LI ).
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Intersection Theory computation

We will need to show

Lemma µi = deg((p∗1c1(O(1)))r−i (p∗2c1(O(1)))i ∩ [Ṽ ]) where pj : Pn × Pn

are the projections.

Now, it seems plausible that these intersection numbers should have
something to do with the reduced characteristic polynomial since you are
blowing up coordinate subspaces which makes it harder for varieties to
intersect on them. I do not have a wholly geometric proof of this fact.

Set α = p∗1c1(O(1)), β = p∗2c1(O(1)).

We will call α the truncation operator and β the cotruncation operator.
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Toric Varieties

A toric variety Y (∆) is a certain abstract algebraic variety with a
(C∗)n-action associated to a rational polyhedral fan ∆ ⊂ Rn. Toric
varieties are normal and have a dense (C∗)n-orbit. In fact, they are
characterized by those properties.

If ∆ is a complete fan then Y (∆) is complete.

Y (∆) has a stratification by torus orbits which are indexed by cones in ∆.
For σ ∈ ∆(k) (the set of codimension k cones in ∆), we let V (σ) denote
the closure of the corresponding orbit. It is a k-dimensional subvariety of
Y (∆).
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Intersection Theory on Toric Varieties

I will need to review intersection theory on complete toric varieties. The
theorem that makes intersection theory combinatorial is

Theorem (Fulton-MacPherson-Sottile-Sturmfels) Let Y (∆) be a complete
toric variety. Let c ∈ Ak(Y (∆)). Then c is determined by c([V (σ)]) for
all σ ∈ ∆(k).

To completely understand the cohomology class c , you only need to
evaluate it on very special cycles.
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Minkowski Weights

Definition A Minkowski weight of codimension k is a function

c : ∆(k) → Z

such that for all τ ∈ ∆(k+1),∑
σ⊃τ

c(σ)uσ/τ = 0 in N/Nσ

where uσ/τ ∈ N/Nτ (positive integrally) spans (σ + Nτ )/Nτ .

Theorem (Fulton-Sturmels) Ak(Y (∆)) ∼= MWk(∆).

The Minkowski weight condition ensures that c is constant on
linear-equivalence classes (this is a more sensitive algebraic geometric
analog of homological equivalence).
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Intersection theory set-up

We will let Y (∆) be the closure of the graph of

Crem : Pn 99K Pn.

To compute αr−iβi ∩ [Ṽ ], we will find a Poincare-dual c ∈ An−r (Y (∆)) to
[Ṽ ].

Then
deg(αr−iβi ∩ [Ṽ ]) = deg(αr−iβi ∪ c).
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Finding the Poincare-dual

To find the Poincare-dual, we use the following

Lemma Let X ⊂ Y (∆) be an r -dimensional subvariety that intersects
every orbit closure V (τ) of Y (∆) in the expected dimension. Define

c : ∆(r) → Z

by
c(σ) = deg(X · V (σ)).

Then c ∩ [Y (∆)] = [X ].

So c acts like a Poincare-dual to X . If you’re a tropical person, Trop(X ) is
the union of closures of cones on which c is non-zero. The weight on σ in
Trop(X ) is c(σ).

Eric Katz (Waterloo) Log-concavity February 18, 2013 19 / 30



Flags of flats

I need some notation to describe the dual to Ṽ .
Definition: A flag of flats is a chain

F = {∅ ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fk ⊂ {0, . . . , n}}
where each Fi is a flat.

We will suppress ∅, {0, . . . , n} below. A flag is said to be full if it has
k = r .

Let e1, . . . , en be a basis for Rn. Set

e0 = −e1 − · · · − en.

For a flat F , set
eF =

∑
i∈F

ei .

For a flag of flats F , let

σF = Span+(eF1 , . . . , eFk
).
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Ardila-Klivans class

Ṽ ⊂ Y (∆) has a well-understood Poincare-dual described by
Ardila-Klivans based on work of Sturmfels and collaborators on Bergman
fans.

Definition Let c ∈ An−r (Y (∆)), the Ardila-Klivans class be defined to be
non-zero only on r -dimensional cones of the form σF for F a full flag of
flats. The value (weight) on σF is 1.

This is indeed the operational Poincare-dual:

c ∩ [Y (∆)] = [Ṽ ].
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α, β as operators

We will view α∪, β∪ as operators MWk(∆)→ MWk+1(∆).

For any class d ∈ A∗(Y (∆)), to give a description of α ∪ d , β ∪ d , I only
need to tell you its values on the appropriate dimensional cones.
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α∪: the truncation operator

α∪ is like intersecting with a generic hyperplane. It replaces Ṽ with

Ṽ ∩ H where H is a generic hyperplane. It lowers the possible codimension
of the flats that V can intersect.

Top-dimensional cones on which α ∪ c are non-zero are σF for which

F = {F1 ⊂ F2 ⊂ · · · ⊂ Fr−1}

where ρ(Fj) = j . All weights are 1.

This is still an Ardila-Klivans class of a linear subspace. So we can iterate.

Top-dimensional cones on which αr−i ∪ c are non-zero are σF for which

F = {F1 ⊂ F2 ⊂ · · · ⊂ Fi}

where ρ(Fj) = j . All weights are 1.
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β∪: the cotruncation operator

β∪ is more mysterious. Its action can be computed using intersection
theory and Weisner’s theorem.

β ∪ c is non-zero on cones of the form σF for

F = {F2 ⊂ · · · ⊂ Fr}
for ρ(Fj) = j . The weight on such a cone is νF2 . So β∪ removes smallest
rank flats.

For i < r , βi ∪ c is non-zero on cones of the form σF for

F = {Fi+1 ⊂ · · · ⊂ Fr}
for ρ(Fj) = j . The weight on such a cone is (−1)i+1νFi+1

.

To prove this, we iterated the following formula for νF : for any a ∈ F ,

νF = −
∑

a/∈F ′lF

νF ′

where Al B means that A ⊂ B and ρ(A) = ρ(B)− 1.
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β∪: the cotruncation operator (cont’d)

So αr−iβi−1 ∪ c is non-zero on cones σF for

F = {Fi}

with weight (−1)iνFi+1
.

Apply β to αr−iβi−1 ∪ c , get a weight on origin equal to∑
06∈Fi

(−1)iνFi
= µi .

This is the degree of the intersection product

deg(αr−iβi ∩ [Ṽ ]).

Q.E.D.
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General Rota-Heron-Welsh Conjecture

Why doesn’t this prove the general conjecture for matroids? The
intersection theory was entirely combinatorial.

We used algebraic geometry to establish the Khovanskii-Teissier inequality.
If it could be established combinatorially for Ardila-Klivans classes, then
we could prove the general conjecture.

We have an approach to the general conjecture.
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Okounkov bodies for matroids

Khovanskii-Teissier can also be established using Okounkov bodies. If V is
a k-dimensional variety, F is a flag of irreducible subvarieties on V , and L
is a line-bundle on V , then the Okounkov body ∆F (L) ⊂ Rk is a convex
set.

Okounkov bodies obey Minkowski subadditivity: if ∆F (L),∆F (M) 6= ∅
then

∆F (L) + ∆F (M) ⊆ ∆F (L⊗M).

If L is big line-bundle then the volume of the Okounkov body is equal (up
to a normalizing factor) to the degree of L.

These facts together with the Brunn-Minkowski inequality establish the
Khovanskii-Teissier inequality.

Problem: Okounkov bodies are often non-polyhedral, mysterious, sensitive
invariants.
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Okounkov bodies for surfaces associated to matroids

Lucky coincidence Log-concavity only requires understanding three
consecutive intersection numbers of the form αr−iβi ∩ [Ṽ ]. These can be
computed on the (almost-)surface αr−i−1βi−1 ∩ [Ṽ ]. On surfaces,
Okounkov bodies are not so bad.

Let S = αr−i−1βi−1 ∩ [Ṽ ] which we pretend is a surface. Now we can try
to examine the Okounkov body ∆F (β) where the flag F is given by a
curve in class α and a generic point on the curve.

The Okounkov body only cares about the Zariski decomposition of β − tα
for t ≥ 0. The Zariski decomposition is a certain way of writing a divisor
as the sum of a nef and effective divisor.

Problem: nef divisors are not really visible in tropical geometry. We do not
have enough curves to test nefness.

Lazy solution: Maybe we could just use curves corresponding to rays of
tropicalization. Then nef is very different from ample and a lot of things
break. Still, this gives a combinatorial Okounkov body.
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Okounkov bodies for surfaces associated to matroids

Then the log-concavity conjecture reduces to the following bigness
conjecture for combinatorial Okounkov bodies:

Area(∆F (β)) ≥ 1

2
β2?

This is true for realizable matroids by a sort of specialization lemma. The
specialization lemma says that the combinatorial Okounkov body contains
the classical Okounkov body. Computing the volume of the classical
Okounkov body requires the Riemann-Roch for surfaces.

I have no idea what sort of invariant the combinatorial Okounkov body is.
If it has an easy combinatorial structure, maybe we can establish the
bigness conjecture by hand. I’m going to have an undergrad do some
(thousands of) examples.
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Thanks!

Huh, June and K, Log-concavity of characteristic polynomials and the
Bergman fan of matroids. arXiv:arXiv:1104.2519

Huh, June. Milnor numbers of projective hypersurfaces and the chromatic
polynomial of graphs. arXiv:1008.4749
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