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What is Tropical Geometry?

What is Tropical Geometry?

Answers:

1 Usual answer: geometry over the tropical semifield.

2 My answer: the combinatorial study of degenerations and
stratifications of algebraic varieties.

I will not precisely define all the terms in my answer but I will give you an
example of it.
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Why the word ’tropical’?

Q: Why ’tropical’ geometry?

A: The tropical semifield was named in honor of Brazilian computer
scientist Imre Simon (1943-2009) by French computer scientists.

Problems with that:
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Why the word ’tropical’?

Q: Why ’tropical’ geometry?

A: The tropical semifield was named in honor of Brazilian computer
scientist Imre Simon (1943-2009) by French computer scientists.

Problems with that:

1 Simon was Hungarian-born.

2 Simon worked in São Paulo which is south of the tropic of Capricorn
and so, in fact, was not tropical.
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Tropical semifield

I begin with tropical algebraic geometry where the algebraic varieties are
piecewise-linear objects.

The tropical semifield is

T = (R ∪ {∞},⊕,⊙)
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Tropical semifield

I begin with tropical algebraic geometry where the algebraic varieties are
piecewise-linear objects.

The tropical semifield is

T = (R ∪ {∞},⊕,⊙)

a⊕ b = min(a, b)

a⊙ b = a + b

3⊕ 5 = 3, 3⊙ 5 = 8.

Note: No additive inverses, thus ‘semi’
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Tropical semifield

I begin with tropical algebraic geometry where the algebraic varieties are
piecewise-linear objects.

The tropical semifield is

T = (R ∪ {∞},⊕,⊙)

a⊕ b = min(a, b)

a⊙ b = a + b

3⊕ 5 = 3, 3⊙ 5 = 8.

Note: No additive inverses, thus ‘semi’ and ∞ (not 0) is the additive

identity.

Eric Katz (University of Waterloo) Lifting Tropical Curves September 4, 2012 4 / 34



Tropical polynomials

Can define tropical polynomials:

x⊙2 ⊕ 1⊙ x ⊕ 3
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Tropical polynomials

Can define tropical polynomials:

x⊙2 ⊕ 1⊙ x ⊕ 3

which means
min(2x , x + 1, 3)

The zero-locus of the polynomial is the set of points where the minimum

is achieved by at least two terms.
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Tropical polynomials

Can define tropical polynomials:

x⊙2 ⊕ 1⊙ x ⊕ 3

which means
min(2x , x + 1, 3)

The zero-locus of the polynomial is the set of points where the minimum

is achieved by at least two terms. In this case, at x = 1 and x = 2.
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Tropical hypersurfaces

Can define tropical polynomials in several variables.
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Tropical hypersurfaces

Can define tropical polynomials in several variables.
For example,

x ⊕ y ⊕ 0

The zero locus is given by three rays

1 x = y ≤ 0

2 x = 0 ≤ y

3 y = 0 ≤ x .
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x ⊕ y ⊕ 0

The zero locus is given by three rays

1 x = y ≤ 0

2 x = 0 ≤ y

3 y = 0 ≤ x .
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Valuation-theoretic approach

There is an algebraic approach to tropical geometry due to Kapranov.
Let K = C{{t}} = C((t)), the field of formal Puiseux series. It is the
algebraic closure of the field of formal Laurent series.
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x =
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n=k

ant
n
N , an ∈ C, ak 6= 0

(formal power series with bounded denominator).
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Valuation-theoretic approach

There is an algebraic approach to tropical geometry due to Kapranov.
Let K = C{{t}} = C((t)), the field of formal Puiseux series. It is the
algebraic closure of the field of formal Laurent series.
Elements of K are of the form

x =

∞
∑

n=k

ant
n
N , an ∈ C, ak 6= 0

(formal power series with bounded denominator).
Let K∗ = K \ {0}. K has non-Archimedean valuation v : K∗ → Q ⊂ R

given by

x 7→
k

N
.

Non-Archimedean: v(x + y) ≥ min(v(x), v(y)), v(xy) = v(x) + v(y).
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Tropicalization

The Cartesian product (K∗)n is called an algebraic torus. (In complex
case, (C∗)n is the natural analog of (S1)n.) An algebraic variety in (K∗)n

is the common zero locus of a system of Laurent polynomials in n

variables with coefficients in K.
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Tropicalization

The Cartesian product (K∗)n is called an algebraic torus. (In complex
case, (C∗)n is the natural analog of (S1)n.) An algebraic variety in (K∗)n

is the common zero locus of a system of Laurent polynomials in n

variables with coefficients in K.
Tropicalization is a procedure that takes subvarieties of an algebraic torus
to polyhedral complexes. The tropicalization of a variety X ⊂ (K∗)n is
defined to be

Trop(X ) = v(X ) ⊂ Rn

where the closure is topological.
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Tropicalization

The Cartesian product (K∗)n is called an algebraic torus. (In complex
case, (C∗)n is the natural analog of (S1)n.) An algebraic variety in (K∗)n

is the common zero locus of a system of Laurent polynomials in n

variables with coefficients in K.
Tropicalization is a procedure that takes subvarieties of an algebraic torus
to polyhedral complexes. The tropicalization of a variety X ⊂ (K∗)n is
defined to be

Trop(X ) = v(X ) ⊂ Rn

where the closure is topological.
Question: Why is this even reasonable?
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Tropicalization of a line

Let f (x , y) = x + y + 1. Let X = V (f ), the classical zero-locus of f .
What is the tropicalization of X?
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What is the tropicalization of X?

For x + y + 1 = 0, the coefficient of the lowest power of t must be 0. Say
that power is tr . Now, where can that lowest power come from?
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Tropicalization of a line

Let f (x , y) = x + y + 1. Let X = V (f ), the classical zero-locus of f .
What is the tropicalization of X?

For x + y + 1 = 0, the coefficient of the lowest power of t must be 0. Say
that power is tr . Now, where can that lowest power come from?

If it comes from x = atr + . . . then the coefficient of tr in x must be
cancelled by the coefficient of lowest power in y or in 1. So, if it comes
only from y then y = (−a)tr + . . . and we have v(x) = v(y) < v(1)
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For x + y + 1 = 0, the coefficient of the lowest power of t must be 0. Say
that power is tr . Now, where can that lowest power come from?

If it comes from x = atr + . . . then the coefficient of tr in x must be
cancelled by the coefficient of lowest power in y or in 1. So, if it comes
only from y then y = (−a)tr + . . . and we have v(x) = v(y) < v(1)

In general, must have the minimum of {v(x), v(y), v(1) = 0} be achieved
at least twice. So tropicalization must be contained in
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Tropicalization of a line

Let f (x , y) = x + y + 1. Let X = V (f ), the classical zero-locus of f .
What is the tropicalization of X?

For x + y + 1 = 0, the coefficient of the lowest power of t must be 0. Say
that power is tr . Now, where can that lowest power come from?

If it comes from x = atr + . . . then the coefficient of tr in x must be
cancelled by the coefficient of lowest power in y or in 1. So, if it comes
only from y then y = (−a)tr + . . . and we have v(x) = v(y) < v(1)

In general, must have the minimum of {v(x), v(y), v(1) = 0} be achieved
at least twice. So tropicalization must be contained in

and, in fact, is equal by a theorem due to Kapranov.
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Kapranov’s theorem

Theorem (Kapranov) If f is a Laurent polynomial in x1, . . . , xn with
support set A ⊂ Zn,

f =
∑

ω∈A

aωx
ω

trop(f ) =
⊕

ω∈A

v(aω)⊙ x⊙ω.

Let Z (f ) ⊂ (K∗)n be the zero-locus of f . Then Trop(Z (f )) is equal to the
tropical zero-locus of trop(f ).
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Kapranov’s theorem

Theorem (Kapranov) If f is a Laurent polynomial in x1, . . . , xn with
support set A ⊂ Zn,

f =
∑

ω∈A

aωx
ω

trop(f ) =
⊕

ω∈A

v(aω)⊙ x⊙ω.

Let Z (f ) ⊂ (K∗)n be the zero-locus of f . Then Trop(Z (f )) is equal to the
tropical zero-locus of trop(f ).

So the valuation definition generalizes the min-plus definition in the case
of hypersurfaces. This lets you talk about the tropicalization of higher
codimensional subvarieties.
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Tropicalization of curves

Tropicalization map:

Trop : {curves C ⊂ (K∗)n} → {tropical graphs Σ = Trop(C ) ⊂ Rn}
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Tropicalization of curves

Tropicalization map:

Trop : {curves C ⊂ (K∗)n} → {tropical graphs Σ = Trop(C ) ⊂ Rn}

Tropical graphs are balanced, weighted, integral graphs
Integral: Each edge is a line-segment or a ray parallel to ~u ∈ Zn.
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Tropicalization of curves

Tropicalization map:

Trop : {curves C ⊂ (K∗)n} → {tropical graphs Σ = Trop(C ) ⊂ Rn}

Tropical graphs are balanced, weighted, integral graphs
Integral: Each edge is a line-segment or a ray parallel to ~u ∈ Zn.
Weighted: Each edge has a weight (multiplicity) m(E ) ∈ N.
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Tropicalization

Balanced: For v , a vertex of Σ and adjacent edges E1, . . . ,Ek in primitive
Zn directions, ~u1, . . . , ~uk then

∑

m(Ei )~ui = ~0.

Example:

m = 2

m = 1

m = 1
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An elliptic curve in the plane

All multiplicities are 1.
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An elliptic curve in space

All multiplicities are 1. Note that the cycle in the graph is contained in the
plane of the screen.
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More generally...

Tropicalizations of general subvarieties are balanced, weighted, integral
polyhedral complexes (by results of Bieri-Groves and Speyer).
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More generally...

Tropicalizations of general subvarieties are balanced, weighted, integral
polyhedral complexes (by results of Bieri-Groves and Speyer).

Can think of varieties in (K∗)n as families. Their coefficients are formal

Puiseux series and so are formal Laurent series in some C((t
1
N )). Set

u = t
1
N .
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More generally...

Tropicalizations of general subvarieties are balanced, weighted, integral
polyhedral complexes (by results of Bieri-Groves and Speyer).

Can think of varieties in (K∗)n as families. Their coefficients are formal

Puiseux series and so are formal Laurent series in some C((t
1
N )). Set

u = t
1
N .

Ignoring issues of convergence, if we fix a particular value of u, we get a
variety in (C∗)n. So by including all values of u in a punctured
neighborhood of u = 0, we get a family of varieties in (C∗)n over a
punctured disc. So in a certain sense we are tropicalizing a family of
varieties.
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Natural questions

Q: What does Trop(X ) know about X?
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Natural questions

Q: What does Trop(X ) know about X?

A: Some intersection theory, some topology of X , some of the Hodge
theory of X by K., Sturmfels-Tevelev, Hacking, Helm-K., K.-Stapledon,
Osserman-Payne.
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Osserman-Payne.
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polyhedral complexes?
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Natural questions

Q: What does Trop(X ) know about X?

A: Some intersection theory, some topology of X , some of the Hodge
theory of X by K., Sturmfels-Tevelev, Hacking, Helm-K., K.-Stapledon,
Osserman-Payne.

Q: How are tropicalizations special among balanced weighted integral
polyhedral complexes?

A: Today’s talk.
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Statement of lifting problem for curves

Lifting Problem: Which tropical (that is, balanced, weighted, integral)
graphs are tropicalizations of curves?

Today: necessary conditions.
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Speyer: Elliptic Curves, necessary and sufficient conditions in genus 1.

Nishinou and Brugallé-Mikhalkin: Generalization of Speyer’s result in
one-bouquet case.
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Statement of lifting problem for curves

Lifting Problem: Which tropical (that is, balanced, weighted, integral)
graphs are tropicalizations of curves?

Today: necessary conditions.

Speyer: Elliptic Curves, necessary and sufficient conditions in genus 1.

Nishinou and Brugallé-Mikhalkin: Generalization of Speyer’s result in
one-bouquet case.

The condition we’ll talk about today implies the necessity of these
previously known conditions.
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Why?

There are tropical curves that are not tropicalizations, telling the
difference is subtle.
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Why?

There are tropical curves that are not tropicalizations, telling the
difference is subtle.

The problem is combinatorial, but what kind of combinatorics even
encodes this?

Closely tied to deformation theory which is often grungy, maybe
there’s a combinatorial approach.
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Example of non-liftable curve

Change the length of a bounded edge in the spatial elliptic curve so that it
does not lie on the tropicalization of any plane (possible by dimension
counting).
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Example of non-liftable curve (cont’d)

This is not liftable to a curve over K because
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Example of non-liftable curve (cont’d)

This is not liftable to a curve over K because

1 three unbounded edges in each direction in the curve shows that it
must be a cubic,
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Example of non-liftable curve (cont’d)

This is not liftable to a curve over K because

1 three unbounded edges in each direction in the curve shows that it
must be a cubic,

2 the loop in the curve shows that any lift must have genus at least 1,
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Example of non-liftable curve (cont’d)

This is not liftable to a curve over K because

1 three unbounded edges in each direction in the curve shows that it
must be a cubic,

2 the loop in the curve shows that any lift must have genus at least 1,

3 any classical cubic is either genus 0 and spatial or genus 1 and planar,
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Example of non-liftable curve (cont’d)

This is not liftable to a curve over K because

1 three unbounded edges in each direction in the curve shows that it
must be a cubic,

2 the loop in the curve shows that any lift must have genus at least 1,

3 any classical cubic is either genus 0 and spatial or genus 1 and planar,

no lift of the curve can be planar or genus 0, so the curve does not lift.
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Parameterized tropical graphs

A tropical parameterization of a tropical graph Σ is a map p : Σ̃ → Σ
(maps vertices to vertices but may contract edges) such that
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Parameterized tropical graphs

A tropical parameterization of a tropical graph Σ is a map p : Σ̃ → Σ
(maps vertices to vertices but may contract edges) such that

1 Σ̃ is a tropical graph (balanced where each edge is given the direction
of its image),
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Parameterized tropical graphs

A tropical parameterization of a tropical graph Σ is a map p : Σ̃ → Σ
(maps vertices to vertices but may contract edges) such that

1 Σ̃ is a tropical graph (balanced where each edge is given the direction
of its image),

2
∑

Ẽ∈p−1(E)

m̃(Ẽ ) = m(E ).
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Parameterized tropical graphs

A tropical parameterization of a tropical graph Σ is a map p : Σ̃ → Σ
(maps vertices to vertices but may contract edges) such that

1 Σ̃ is a tropical graph (balanced where each edge is given the direction
of its image),

2
∑

Ẽ∈p−1(E)

m̃(Ẽ ) = m(E ).

Note: If all the multiplicities of Σ are 1 and all vertices are trivalent, then
the only parameterization of Σ is the identity. In fact, the only
parameterization used in explicit examples will be the identity.
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Linear Systems on Graphs (following Baker-Norine)

If ̟ is a piecewise-linear function on Σ̃ (linear on all edges),
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Linear Systems on Graphs (following Baker-Norine)

If ̟ is a piecewise-linear function on Σ̃ (linear on all edges),

if v ∈ Σ̃, E ∋ v , write s(v ,E ) for the slope of ̟ on E coming from v .
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Linear Systems on Graphs (following Baker-Norine)

If ̟ is a piecewise-linear function on Σ̃ (linear on all edges),

if v ∈ Σ̃, E ∋ v , write s(v ,E ) for the slope of ̟ on E coming from v .
Define the Laplacian of ̟ by

∆(̟)(v) = −
∑

E∋v

s(v ,E )
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Linear Systems on Graphs (following Baker-Norine)

If ̟ is a piecewise-linear function on Σ̃ (linear on all edges),

if v ∈ Σ̃, E ∋ v , write s(v ,E ) for the slope of ̟ on E coming from v .
Define the Laplacian of ̟ by

∆(̟)(v) = −
∑

E∋v

s(v ,E )

A divisor Λ on Σ̃ is a Z-combination of vertices of Σ̃.
We write ̟ ∈ L(Λ) (̟ is the linear system associated to Λ) if

0 ≤ Λ(w) + ∆̟(w).
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Linear Systems on Graphs (following Baker-Norine)

If ̟ is a piecewise-linear function on Σ̃ (linear on all edges),

if v ∈ Σ̃, E ∋ v , write s(v ,E ) for the slope of ̟ on E coming from v .
Define the Laplacian of ̟ by

∆(̟)(v) = −
∑

E∋v

s(v ,E )

A divisor Λ on Σ̃ is a Z-combination of vertices of Σ̃.
We write ̟ ∈ L(Λ) (̟ is the linear system associated to Λ) if

0 ≤ Λ(w) + ∆̟(w).

Σ̃ has canonical divisor:

KΣ̃ =
∑

v

(deg(v)− 2)(v)
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Main theorem

Theorem: If Σ ⊂ Rn is a tropicalization of a curve then there exists
p : Σ̃ → Σ and for all m ∈ Zn (which will be the normal vector to a
plane), there is a piecewise-linear function ϕm : Σ̃l → R≥0 (Σ̃l is the l -fold
subdivision of Σ̃) with Z-slopes such that
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2 ϕm = 0 on E with m · E 6= 0,
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Main theorem

Theorem: If Σ ⊂ Rn is a tropicalization of a curve then there exists
p : Σ̃ → Σ and for all m ∈ Zn (which will be the normal vector to a
plane), there is a piecewise-linear function ϕm : Σ̃l → R≥0 (Σ̃l is the l -fold
subdivision of Σ̃) with Z-slopes such that

1 ϕm ∈ L(KΣ̃l
),

2 ϕm = 0 on E with m · E 6= 0,

3 ϕm never has slope 0 on edges E with m · E = 0,

4 ϕm obeys the cycle-ampleness condition.
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Cycle-ampleness condition

Let H be a hyperplane given by H = {x |x ·m = c}.
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Cycle-ampleness condition

Let H be a hyperplane given by H = {x |x ·m = c}.

Let Γ be a cycle in the interior of p−1(H) ⊂ Σ̃.

Set h = minv∈Γ (ϕm(v)) then,

Dϕm ≡
∑

v∈Γ|ϕm(v)=h





∑

E 6∈Γ|s(v ,E)<0

(−s(v ,E ))



 ≥ 2.

“sum of positive slopes coming into the cycle at min’s of ϕm must be at
least 2.”

Eric Katz (University of Waterloo) Lifting Tropical Curves September 4, 2012 24 / 34



Sections of canonical bundle

Before we use these conditions, we need the following observation:
ϕm ∈ L(KΣl

) translates into

∆(ϕm)(v) = −
∑

E∋v

s(v ,E ) ≥ 2− deg(v).
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If v ∈ Γ is a vertex with edges E1, . . . ,Ek ,F1, . . . ,Fl (partitioned in any
way). By hypothesis s(v ,Ei ), s(v ,Fj ) 6= 0.
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If v ∈ Γ is a vertex with edges E1, . . . ,Ek ,F1, . . . ,Fl (partitioned in any
way). By hypothesis s(v ,Ei ), s(v ,Fj ) 6= 0.

∑

s(v ,Fj ) ≤
(

∑

−s(v ,Ei )
)

+ (deg(v)− 2))

“At v, sum of outgoing slope along edges Fj is less than sum of incoming
slopes along edges Ei plus (deg(v)− 2).”
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Sections of canonical bundle

Before we use these conditions, we need the following observation:
ϕm ∈ L(KΣl

) translates into

∆(ϕm)(v) = −
∑

E∋v

s(v ,E ) ≥ 2− deg(v).

If v ∈ Γ is a vertex with edges E1, . . . ,Ek ,F1, . . . ,Fl (partitioned in any
way). By hypothesis s(v ,Ei ), s(v ,Fj ) 6= 0.

∑

s(v ,Fj ) ≤
(

∑

−s(v ,Ei )
)

+ (deg(v)− 2))

“At v, sum of outgoing slope along edges Fj is less than sum of incoming
slopes along edges Ei plus (deg(v)− 2).”
If deg(v) = 2, then the slope is non-increasing through v (ϕm is concave
at v).
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Elliptic curve example

Note: This is p−1(H) where H is the plane of the screen.
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Elliptic curve example (cont’d)

Need to pay attention to positive incoming slope coming into the cycle.

1 Direct edges towards cycle.
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Elliptic curve example (cont’d)

Need to pay attention to positive incoming slope coming into the cycle.

1 Direct edges towards cycle.

2 ϕm must be decreasing on unbounded edges. (ϕm ≥ 0)

3 ϕm is equal to 0 on ∂(p−1(H)) and has slope at most 1 there.

4 Slopes of ϕm only decrease along edge as we move towards cycle.

5 Slope of ϕm is at most 1 as it turns the corner and heads to cycle.

6 There is positive incoming slope at ≤ 3 points on the cycle. At those
points, ϕm is equal to distance to ∂(p−1(H))

7 For deg(Dϕm) ≥ 2, the minimum distance must be achieved at least
twice.
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Elliptic curve example (concluded)

In summary, minimum distance from Γ to Σ̃ \ p−1(H) must be achieved by
at least two paths.
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Elliptic curve example (concluded)

In summary, minimum distance from Γ to Σ̃ \ p−1(H) must be achieved by
at least two paths.

This is Speyer’s well-spacedness condition!

Also get generalization to higher genus as given by Nishinou and
Brugallé-Mikhalkin. This requires strong conditions on combinatorics of Σ.
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Weak well-spacedness condition

There’s a new generalized version of a weak form of Speyer’s condition in
higher genera that holds for curves of complicated combinatorial type. It’s
a consequence of the main theorem.
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There’s a new generalized version of a weak form of Speyer’s condition in
higher genera that holds for curves of complicated combinatorial type. It’s
a consequence of the main theorem.

Theorem: Let Σ ⊂ Rn be a tropicalization. Then there exists p : Σ̃ → Σ
that satisfies the following property:

if H ⊂ Rn is a hyperplane and Γ′ is any component of p−1(H) ⊂ Σ̃ with
h1(Γ′) > 0
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Weak well-spacedness condition

There’s a new generalized version of a weak form of Speyer’s condition in
higher genera that holds for curves of complicated combinatorial type. It’s
a consequence of the main theorem.

Theorem: Let Σ ⊂ Rn be a tropicalization. Then there exists p : Σ̃ → Σ
that satisfies the following property:

if H ⊂ Rn is a hyperplane and Γ′ is any component of p−1(H) ⊂ Σ̃ with
h1(Γ′) > 0 then ∂Γ′ is not a single trivalent vertex of Σ̃.
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A new example

a c

b

d
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b

d

Embed in the plane so that it is balanced in the plane.

Add unbounded edges pointing out of the plane to ensure that is globally
balanced. Give every edge multiplicity 1. Can ensure that only
parameterization is the identity.
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A new example

a c

b

d

Embed in the plane so that it is balanced in the plane.

Add unbounded edges pointing out of the plane to ensure that is globally
balanced. Give every edge multiplicity 1. Can ensure that only
parameterization is the identity.

There does not exist the desired ϕm, so it does not lift.
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A new example (cont’d)

1 Direct edges towards cycle.
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A new example (cont’d)
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A new example (cont’d)

1 Direct edges towards cycle.

2 ϕm is equal to 0 on ∂(p−1(H)) and has slope at most 1 there.

3 Slopes of ϕm only decrease along edge as we move towards cycle.

4 Slope on edge a is at most 3.
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A new example (cont’d)

1 Direct edges towards cycle.

2 ϕm is equal to 0 on ∂(p−1(H)) and has slope at most 1 there.

3 Slopes of ϕm only decrease along edge as we move towards cycle.

4 Slope on edge a is at most 3.

5 Slopes on edges b, c , d sum to at most 5, so they contribute at most
one point to Dϕm on one of the cycles.
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A new example (cont’d)

1 Direct edges towards cycle.

2 ϕm is equal to 0 on ∂(p−1(H)) and has slope at most 1 there.

3 Slopes of ϕm only decrease along edge as we move towards cycle.

4 Slope on edge a is at most 3.

5 Slopes on edges b, c , d sum to at most 5, so they contribute at most
one point to Dϕm on one of the cycles.

6 Long edges are too long for ϕm to have positive slope and to also
intersect a cycle in a minimum of ϕm.
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A new example (cont’d)

1 Direct edges towards cycle.

2 ϕm is equal to 0 on ∂(p−1(H)) and has slope at most 1 there.

3 Slopes of ϕm only decrease along edge as we move towards cycle.

4 Slope on edge a is at most 3.

5 Slopes on edges b, c , d sum to at most 5, so they contribute at most
one point to Dϕm on one of the cycles.

6 Long edges are too long for ϕm to have positive slope and to also
intersect a cycle in a minimum of ϕm.

7 deg(Dϕm) ≤ 1 on one cycle.
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Quick Outline of proof

1 Suppose Σ lifts. By Nishinou-Siebert, C →֒ (K∗)n extends to a stable
map f : C → P from a complete semi-stable curve to a toric scheme.
These are families of object over an unpunctured disc.
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4 ϕm is a combinatorial shadow of ωm measuring the vanishing of ωm

on components of the central fiber.
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Quick Outline of proof

1 Suppose Σ lifts. By Nishinou-Siebert, C →֒ (K∗)n extends to a stable
map f : C → P from a complete semi-stable curve to a toric scheme.
These are families of object over an unpunctured disc.

2 Dual graph of C0 is Σ̃, a parameterization of Σ.

3 Obtain 1-forms ωm = f ∗ dz
m

zm
, a section of log cotangent bundle

Ω1
C†/O† .

4 ϕm is a combinatorial shadow of ωm measuring the vanishing of ωm

on components of the central fiber.

5 Cycle-ampleness condition comes from ωm being “almost” exact on
the cycle and the fact that a non-constant rational function on a
(possibly degenerate) elliptic curve must have (counted with
multiplicity) at least two poles.
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Asides and future directions

1 This method is a combinatorial approach to deformation theory.
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wild phenomena.

5 General abstract formulation: let C be a marked family of curves with
log dual graph Γ; given piecewise linear ̟ : Γ → R≥0; when is ̟ the
order of vanishing of a rational function on C (or a section of a line
bundle)?
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Asides and future directions

1 This method is a combinatorial approach to deformation theory.

2 Gives an additional combinatorial structure on tropicalizations of
curves. Higher dimensions?

3 Once you are willing to work with log structures and toric schemes,
proof is relatively unsophisticated and short. Involves looking at
differential forms order-by-order in power series.

4 Method works in finite residue characteristic as long as you exclude
wild phenomena.

5 General abstract formulation: let C be a marked family of curves with
log dual graph Γ; given piecewise linear ̟ : Γ → R≥0; when is ̟ the
order of vanishing of a rational function on C (or a section of a line
bundle)?

6 Possible applications to number theory? Further refinement of
Chabauty in bad reduction case?
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Thanks!
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