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Hypersurfaces

Let f ∈ C[z1, . . . , zn] be a generic (to be defined later) polynomial in n

variables. We can define the hypersurface Zf ⊂ (C∗)n cut out by f = 0.
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variables. We can define the hypersurface Zf ⊂ (C∗)n cut out by f = 0.

Question: What can we say about H∗(Z ,C)?

Importantly: There are lots of ways to refine the cohomology of Z .

If Z were a compact smooth variety, then its cohomology would have a
pure Hodge structure. This implies that there’s a decomposition,

Hk(Z ) =
⊕

p+q=k
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Hypersurfaces

Let f ∈ C[z1, . . . , zn] be a generic (to be defined later) polynomial in n

variables. We can define the hypersurface Zf ⊂ (C∗)n cut out by f = 0.

Question: What can we say about H∗(Z ,C)?

Importantly: There are lots of ways to refine the cohomology of Z .

If Z were a compact smooth variety, then its cohomology would have a
pure Hodge structure. This implies that there’s a decomposition,

Hk(Z ) =
⊕

p+q=k

Hp,q(Z ).

Write hp,q = dimHp,q(Z ).

It is useful to phrase the decomposition in terms of a decreasing filtration

F 0 = Hk ⊃ F1 ⊃ · · · ⊃ Fk

such that
hp,q = dimGrpF (H

k).
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Mixed Hodge structure

We now review the approach of Danilov-Khovanskii (’78). Since Z is not
compact, we have to work with cohomology with compact supports,
H∗
c (Z ). This cohomology has a mixed Hodge structure which is a technical

way of saying linear algebra is much much harder than you ever thought

possible.
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Mixed Hodge structure

We now review the approach of Danilov-Khovanskii (’78). Since Z is not
compact, we have to work with cohomology with compact supports,
H∗
c (Z ). This cohomology has a mixed Hodge structure which is a technical

way of saying linear algebra is much much harder than you ever thought

possible. More concretely, we compactify Z to Z such that Z \ Z is a
simple normal crossings divisor. Then we do a sort of inclusion/exclusion
which is accomplished by the Deligne spectral sequence.

This implies that there is an increasing filtration W and a decreasing
filtration F on Hk such that the associated gradeds with respect to W

have a pure Hodge structure. We define

hp,q(Hk (Z )) = dimGrpF GrWp+q(H
k
c (Z )).

Warning: Note that we may have hp,q(Hk(Z )) 6= 0 even though
p + q 6= k . So there’s a lot more data.
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Danilov-Khovanskii’s approach

To throw out some of the excess data, we take the Hodge-Deligne numbers

ep,q(Z ) =
∑

k

(−1)khp,q(Hk
c (Z )).

We want to find ep,q.
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To throw out some of the excess data, we take the Hodge-Deligne numbers

ep,q(Z ) =
∑

k

(−1)khp,q(Hk
c (Z )).

We want to find ep,q.

First, ep,q(Z ) is motivic: if U is an open subset of Z then

ep,q(Z ) = ep,q(U) + ep,q(Z \ U).

Therefore one may compactify (C∗)n to the toric variety XP given by the
Newton polytope of f . Let Z be the closure of Z in XP . One can remove
the stuff that we added later. Now, we can define the genericity of f
which means that f is generic among polynomials with Newton polytope
P so that the strata of Z are smooth.

Secondly, one has a Lefschetz hyperplane theorem: for p, q > n − 1,

ep,q(Z ) = ep+1,q+1((C∗)n).
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Danilov-Khovanskii’s approach (cont’d)

Now, we can form the Hodge-Deligne polynomial,

E (Z ; u, v) =
∑

p,q

ep,qupvq
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Danilov-Khovanskii’s approach (cont’d)

Now, we can form the Hodge-Deligne polynomial,

E (Z ; u, v) =
∑

p,q

ep,qupvq

It is multiplicative

E (Z1 × Z2; u, v) = E (Z1; u, v)E (Z2; u, v).

It obeys Poincaré duality for Z ,

E (Z ; u, v) = (uv)n−1E (Z ; u−1, v−1).

The specialization E (Z ; u, 1) can be computed by taking the Euler
characteristic of an ideal sheaf sequence (twisted by differentials) together
with an adjunction exact sequence.
We end up getting

uE (V (P)◦; u, 1) = (u − 1)dimP + (−1)dimP+1h∗P(u).
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Batyrev-Borisov formula

Danilov-Khovanskii provide an algorithm for finding ep,q. Much later,
Batyrev-Borisov gave an explicit formula (inspired by intersection
cohomology) in terms of the face-poset of P :

E (Z ; u, v) = (1/uv)[(uv − 1)d+1

+(−1)d
∑

Q⊆P

udimQ+1S̃(Q, u−1v)G ([Q,P ]∗, uv)].
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Batyrev-Borisov formula

Danilov-Khovanskii provide an algorithm for finding ep,q. Much later,
Batyrev-Borisov gave an explicit formula (inspired by intersection
cohomology) in terms of the face-poset of P :

E (Z ; u, v) = (1/uv)[(uv − 1)d+1

+(−1)d
∑

Q⊆P

udimQ+1S̃(Q, u−1v)G ([Q,P ]∗, uv)].

Note the shape of the above formula where the first term comes from the
ambient torus and the second term is interesting.

Naive Question: Is the machinery of S̃ a combinatorial abstraction of the
resolution of singularities for the dual fan of P?
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Degenerating Hypersurfaces

Now, we give an alternative approach involving families of hypersurfaces.

Eric Katz (Waterloo) Hodge theory of hypersurfaces August 2, 2013 7 / 16



Degenerating Hypersurfaces

Now, we give an alternative approach involving families of hypersurfaces.

One can add an auxiliary parameter t and look at f ∈ C((t))[x1, . . . , xn].
Here, we think of t as the coordinate on a punctured disc around 0 and we
have a family of hypersurfaces Zt = V (ft).

Eric Katz (Waterloo) Hodge theory of hypersurfaces August 2, 2013 7 / 16



Degenerating Hypersurfaces

Now, we give an alternative approach involving families of hypersurfaces.

One can add an auxiliary parameter t and look at f ∈ C((t))[x1, . . . , xn].
Here, we think of t as the coordinate on a punctured disc around 0 and we
have a family of hypersurfaces Zt = V (ft).

Silly example: Let f (x1, x2) = 1 + x1 + x2 + tx1x2.

Eric Katz (Waterloo) Hodge theory of hypersurfaces August 2, 2013 7 / 16



Degenerating Hypersurfaces

Now, we give an alternative approach involving families of hypersurfaces.

One can add an auxiliary parameter t and look at f ∈ C((t))[x1, . . . , xn].
Here, we think of t as the coordinate on a punctured disc around 0 and we
have a family of hypersurfaces Zt = V (ft).

Silly example: Let f (x1, x2) = 1 + x1 + x2 + tx1x2.

For t 6= 0, this is a conic that naturally compactifies to a (1, 1)-curve in
P
1 × P

1, so a four-times punctured P
1.

Eric Katz (Waterloo) Hodge theory of hypersurfaces August 2, 2013 7 / 16



Degenerating Hypersurfaces

Now, we give an alternative approach involving families of hypersurfaces.

One can add an auxiliary parameter t and look at f ∈ C((t))[x1, . . . , xn].
Here, we think of t as the coordinate on a punctured disc around 0 and we
have a family of hypersurfaces Zt = V (ft).

Silly example: Let f (x1, x2) = 1 + x1 + x2 + tx1x2.

For t 6= 0, this is a conic that naturally compactifies to a (1, 1)-curve in
P
1 × P

1, so a four-times punctured P
1.

At t = 0, we get f1(x1, x2) = 1 + x1 + x2, so a line in P
2

Eric Katz (Waterloo) Hodge theory of hypersurfaces August 2, 2013 7 / 16



Degenerating Hypersurfaces

Now, we give an alternative approach involving families of hypersurfaces.

One can add an auxiliary parameter t and look at f ∈ C((t))[x1, . . . , xn].
Here, we think of t as the coordinate on a punctured disc around 0 and we
have a family of hypersurfaces Zt = V (ft).

Silly example: Let f (x1, x2) = 1 + x1 + x2 + tx1x2.

For t 6= 0, this is a conic that naturally compactifies to a (1, 1)-curve in
P
1 × P

1, so a four-times punctured P
1.

At t = 0, we get f1(x1, x2) = 1 + x1 + x2, so a line in P
2

If we make the consider tf (t−1x1, t
−1x2) = t + x1 + x2 + x1x2 and set

t = 0, we get f2(x1, x2) = x1 + x2 + x1x2, so a line in a different P2.

Eric Katz (Waterloo) Hodge theory of hypersurfaces August 2, 2013 7 / 16



Degenerating Hypersurfaces

Now, we give an alternative approach involving families of hypersurfaces.

One can add an auxiliary parameter t and look at f ∈ C((t))[x1, . . . , xn].
Here, we think of t as the coordinate on a punctured disc around 0 and we
have a family of hypersurfaces Zt = V (ft).

Silly example: Let f (x1, x2) = 1 + x1 + x2 + tx1x2.

For t 6= 0, this is a conic that naturally compactifies to a (1, 1)-curve in
P
1 × P

1, so a four-times punctured P
1.

At t = 0, we get f1(x1, x2) = 1 + x1 + x2, so a line in P
2

If we make the consider tf (t−1x1, t
−1x2) = t + x1 + x2 + x1x2 and set

t = 0, we get f2(x1, x2) = x1 + x2 + x1x2, so a line in a different P2.

Now, the ambient P1 × P
1 degenerates to two P

2’s joined along a line.
Our curve degenerates into two twice-punctured lines joined along a node.

Eric Katz (Waterloo) Hodge theory of hypersurfaces August 2, 2013 7 / 16



Monodromy Filtration

In general, if we have a family Zt , there is an additional filtration on the
cohomology. View the family over the punctured disc. The cohomology
H∗(Zt) gives a locally trivial fiber bundle over the punctured disc.
Consequently, one can parallel transport around the puncture. This gives a
monodromy operation T : H∗(Zt) → H∗(Zt). By possibly replacing T by
Tm for some m ∈ Z≥1, we can suppose T is unipotent. Set N = log(T )
which is nilpotent. There is an additional filtration coming from the
Jordan decomposition of N.
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In general, if we have a family Zt , there is an additional filtration on the
cohomology. View the family over the punctured disc. The cohomology
H∗(Zt) gives a locally trivial fiber bundle over the punctured disc.
Consequently, one can parallel transport around the puncture. This gives a
monodromy operation T : H∗(Zt) → H∗(Zt). By possibly replacing T by
Tm for some m ∈ Z≥1, we can suppose T is unipotent. Set N = log(T )
which is nilpotent. There is an additional filtration coming from the
Jordan decomposition of N.

If Zt were compact, then one could put an increasing monodromy
filtration M on Hk(Zt),

0 ⊆ M0 ⊆ M1 ⊆ · · · ⊆ M2k = Hk(Z ),

with associated graded pieces GrMl := Ml/Ml−1, satisfying the following
properties for any non-negative integer l ,

1 N(Ml ) ⊆ Ml−2,

2 the induced map N l : GrMk+l → GrMk−l is an isomorphism.
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Mixed Monodromy Filtration

Since Zt is not compact, we have to do something different.
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Mixed Monodromy Filtration

Since Zt is not compact, we have to do something different.

By results of Steenbrink-Zucker, there is an increasing monodromy
filtration M on Hk

c (Zt) and an increasing weight filtration W and a
decreasing Hodge filtration F .

(A twist of) the monodromy filtration has the above properties on the
W -associated gradeds.

This gives us tons of structure. We can refine the Hodge numbers even
further:

hp,q,r(Z )k = dim(GrpF Gr
M(r)
p+q GrWr Hk(Z )).

and form refined Hodge-Deligne numbers:

ep,q,r (Z ) =
∑

(−1)khp,q,r(Z )k .
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Specializations

We can play lots of different games with these refined Hodge numbers.
We can forget the monodromy filtration or the weight filtration. And it’s
always fun to have decompositions of non-negative numbers into smaller
non-negative numbers.
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Specializations

We can play lots of different games with these refined Hodge numbers.
We can forget the monodromy filtration or the weight filtration. And it’s
always fun to have decompositions of non-negative numbers into smaller
non-negative numbers.

Definition: Let E (Zgen; u, v) be the Hodge-Deligne polynomial of Zt with
the mixed Hodge structure coming from (F ,W ). Weight mixed Hodge

structure

Definition: Let E (Z∞; u, v) be the Hodge-Deligne polynomial of Zt with

the mixed Hodge structure coming from (F ,M). Limit mixed Hodge
structure

Observation: E (Zgen; u, 1) = E (Z∞; u, 1) since this forgets both M and
W .
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Degeneration formula

There’s a formula for E (Z∞; u, v) coming from the pieces in the
degeneration.
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Observation: For generic f , E (Z ; u, 1) only depends on the Newton
polytope of Z . This can be proved by a deformation argument. So we may
write ZP
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Degeneration formula

There’s a formula for E (Z∞; u, v) coming from the pieces in the
degeneration.

Observation: For generic f , E (Z ; u, 1) only depends on the Newton
polytope of Z . This can be proved by a deformation argument. So we may
write ZP

Now we need to introduce the Newton subdivision associated to a
degenerating hypersurface. Let f ∈ C((t))[x1, . . . , xn]. Write

f =
∑

aux
u.

For au ∈ C((t)), let val(u) be the smallest exponent of t with non-zero
coefficient. Consider the function

u 7→ val(au).
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Degeneration formula

There’s a formula for E (Z∞; u, v) coming from the pieces in the
degeneration.

Observation: For generic f , E (Z ; u, 1) only depends on the Newton
polytope of Z . This can be proved by a deformation argument. So we may
write ZP

Now we need to introduce the Newton subdivision associated to a
degenerating hypersurface. Let f ∈ C((t))[x1, . . . , xn]. Write

f =
∑

aux
u.

For au ∈ C((t)), let val(u) be the smallest exponent of t with non-zero
coefficient. Consider the function

u 7→ val(au).

The upper hull is the convex hull of all points lying above the graph of this
function. Its lower faces induces a subdivision of P .
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Degeneration formula (cont’d)

Example: Let us consider f (x1, x2) = 1 + x1 + x2 + tx1x2. Here is the
function and its associated subdivision.
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Degeneration formula (cont’d)

Example: Let us consider f (x1, x2) = 1 + x1 + x2 + tx1x2. Here is the
function and its associated subdivision.

0

0

0

1
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Degeneration formula (cont’d)

Example: Let us consider f (x1, x2) = 1 + x1 + x2 + tx1x2. Here is the
function and its associated subdivision.

0

0

0

1

Now, we have the following degeneration formula which follows from the
spectral sequence of Steenbrink or the motivic nearby fiber of Bittner:
Theorem (K-Stapledon)

E ((ZP)∞; u, v) =
∑

Int(Q)⊆Int(P)

E (ZQ ; u, v)(1 − uv)codimQ .

where the sum is over the faces in the subdivision.
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Degeneration formula (cont’d)

Example: Let us consider f (x1, x2) = 1 + x1 + x2 + tx1x2. Here is the
function and its associated subdivision.

0

0

0

1

Now, we have the following degeneration formula which follows from the
spectral sequence of Steenbrink or the motivic nearby fiber of Bittner:
Theorem (K-Stapledon)

E ((ZP)∞; u, v) =
∑

Int(Q)⊆Int(P)

E (ZQ ; u, v)(1 − uv)codimQ .

where the sum is over the faces in the subdivision.

This gives the specialization

E (ZP ; u, 1) =
∑

Int(Q)⊆Int(P)

E (ZQ ; u, 1)(1 − u)codimQ .
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Determining E (ZP ; u, 1)

This formula lets us identify E (ZP ; u, 1)
Definition: Let PZn be the set of convex lattice polytopes in Z

n. A
unimodular valuation on PZn is a map φ : PZn → R satisfying

1 φ(P ∪ Q) + φ(P ∩ Q) = φ(P) + φ(Q) whenever
P ,Q,P ∪ Q,P ∩Q ∈ PZn ,

2 φ(∅) = 0, and

3 φ(P) = φ(UP + u) for P ∈ PZn , U ∈ Sln(Z), u ∈ Z
n.

Valuations are determined by their values on unimodular simplices.
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Definition: Let PZn be the set of convex lattice polytopes in Z

n. A
unimodular valuation on PZn is a map φ : PZn → R satisfying

1 φ(P ∪ Q) + φ(P ∩ Q) = φ(P) + φ(Q) whenever
P ,Q,P ∪ Q,P ∩Q ∈ PZn ,

2 φ(∅) = 0, and

3 φ(P) = φ(UP + u) for P ∈ PZn , U ∈ Sln(Z), u ∈ Z
n.

Valuations are determined by their values on unimodular simplices.

The degeneration formula allows us to verify
Lemma The following function is a unimodular valuation

P 7→
E (ZP ; u, 1)

(u − 1)dimP+1
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Determining E (ZP ; u, 1)

This formula lets us identify E (ZP ; u, 1)
Definition: Let PZn be the set of convex lattice polytopes in Z

n. A
unimodular valuation on PZn is a map φ : PZn → R satisfying

1 φ(P ∪ Q) + φ(P ∩ Q) = φ(P) + φ(Q) whenever
P ,Q,P ∪ Q,P ∩Q ∈ PZn ,

2 φ(∅) = 0, and

3 φ(P) = φ(UP + u) for P ∈ PZn , U ∈ Sln(Z), u ∈ Z
n.

Valuations are determined by their values on unimodular simplices.

The degeneration formula allows us to verify
Lemma The following function is a unimodular valuation

P 7→
E (ZP ; u, 1)

(u − 1)dimP+1

We obtain Danilov-Khovanskii’s formula by checking that the right-hand
side is a unimodular valuation and showing that the formula is true for
unimodular simplices by (easy) explicit computation.
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Refining S̃(P)

We may also use this machinery to refine S̃(P , t). By Batyrev-Borisov’s
formula, we have the following formula for coefficients of S̃(P , t):

S̃(P)p+1 = hp,n−1−p(Hn−1
c,na ((ZP)gen))

where na refers to the non-ambient cohomology, the cokernel of the map

H∗
c ((C

∗)n) → H∗
c (ZP).
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We may also use this machinery to refine S̃(P , t). By Batyrev-Borisov’s
formula, we have the following formula for coefficients of S̃(P , t):

S̃(P)p+1 = hp,n−1−p(Hn−1
c,na ((ZP)gen))

where na refers to the non-ambient cohomology, the cokernel of the map

H∗
c ((C

∗)n) → H∗
c (ZP).

We have
S̃(P)p+1 =

∑

q

hp,q,n−1(Hn−1
c,na (Zf )).

Note that the right-hand side depends on the Newton subdivision of P .
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Structure of S̃(P)

Now, by the structure of the monodromy filtration, the sequence
{hl+i ,i ,k(Hn−1

c,na (ZP))|0 ≤ i ≤ k − l} is symmetric and unimodal. This

decomposes the coefficients of S̃(P) into the sum of symmetric and
unimodal sequences. If we can show that some of them vanish, then we
can get inequalities for S̃.
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decomposes the coefficients of S̃(P) into the sum of symmetric and
unimodal sequences. If we can show that some of them vanish, then we
can get inequalities for S̃.

For example, if P admits a regular, unimodalar lattice triangulation, then
the refined limit mixed Hodge numbers are concentrated in (p, p). In this
case S̃(P) is symmetric and unimodal.
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the refined limit mixed Hodge numbers are concentrated in (p, p). In this
case S̃(P) is symmetric and unimodal.

Natural question: Can we combinatorially identify hp,q,n−1(Hn−1
c,na (ZP))?

Stanley has introduced local h-vectors as a way of decomposing h-vectors.
The Ehrhart analogues are h∗-vectors, investigated by Karu, Nill, and
Schepers. Is the decomposition coming from Hodge theory the same?
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Now, by the structure of the monodromy filtration, the sequence
{hl+i ,i ,k(Hn−1

c,na (ZP))|0 ≤ i ≤ k − l} is symmetric and unimodal. This

decomposes the coefficients of S̃(P) into the sum of symmetric and
unimodal sequences. If we can show that some of them vanish, then we
can get inequalities for S̃.

For example, if P admits a regular, unimodalar lattice triangulation, then
the refined limit mixed Hodge numbers are concentrated in (p, p). In this
case S̃(P) is symmetric and unimodal.

Natural question: Can we combinatorially identify hp,q,n−1(Hn−1
c,na (ZP))?

Stanley has introduced local h-vectors as a way of decomposing h-vectors.
The Ehrhart analogues are h∗-vectors, investigated by Karu, Nill, and
Schepers. Is the decomposition coming from Hodge theory the same?

Question: Are local h-vectors a combinatorial abstraction of semistable
reduction?
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Thanks!

Vladimir Danilov and Askold Khovanskii, Newton polyhedra and an

algorithm for calculating Hodge-Deligne numbers.

K. and Alan Stapledon, The tropical motivic nearby fiber and the Hodge

theory of hypersurfaces. in preparation.
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