A Appendix

A.1 Sharpe Ratio Derivation

Introduce the notation

= E[gi(X7)],  p2 = E[ga(X7)],
o1 = Var[g1(X7)], 02 = Var[ga(X7)],
012 = Cov[gi(XT), g2(X7)].

From (2.3), we can write,
Elg(X7)] =w'p, Varg(X7)] = w'Sw. (A1)

where

o= H1 L oy= o oz (A.2)
H2 012 02
Here, the investor seeks to maximize the Sharpe Ratio SR(w) in (3.1). As a result,

the investor is solving the following optimization problem:

whp — (1+rir)z
vwTYw

subject to w?1 =1,

w > 0. (A.3)

max
w

First, we can simplify (A.3) by considering the payoff functions:

(X7) = 1(X7) = (L +rpr)z, (A.4)
92(X7) = g2(X7) — (L +rpr), (A.5)

Then, we can easily verify that

fn = Elg1(XP) = i = (L+rpr)e, o = Elgo(X7)] = p2 — (L +rpr)7,
o1 = Var[gi(X7)] = o7, 63 = Var[go(X7)] = 03, 12 = Cov[§1(X7), §2(X7)] = 02
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So, the problem (A.3) can be expressed as follows,

T ~
w
max —If
Y VwlSw
subject to w?1 =1,

w > 0. (A.6)

where

012 02

i [ﬂ Cse [ ] . (A7)
K2

Now, we can rewrite (A.6) as a standard quadratic programming problem if we assume

ft1 > 0 and fiz > 0. This is a natural assumption here because the investor anticipates

a higher expected return than the risk-free rate when investing in the hedge fund. If

we let f(w) denote the objective function in (A.6), then it can be verified that for

any real number A > 0, f(w) = f(Aw). Thus, the problem (A.6) is equivalent to the

optimization problem:

1
max ————
“ Vwllw
subject to wl i =1,

w > 0. (A.8)
Clearly, (A.8) can be rewritten as an equivalent minimization problem:

min w’ Yw
w

subject to w! 1 =1,
>

w > 0. (A.9)

which is a standard quadratic programming problem.

Theorem A.1. Suppose fiy > 0 and ji; > 0. Let w* = (W}, w3) be the optimal solution
for (A.9). If

G1o < min{252, 2521, (A.10)
M2 H
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18 satisfied, then

~ ~2 _ ~ ~
SR L L (A1)

~ ~2 ~ ~
« _ H109 — 2012

where C* = (/]15'2 — ﬂg&l)Q -+ 2/]1/]2(5’162 — 5’12). Otherwise,

=2

g

2
< =2

= (A.12)

L V)

w*_{ /.0, if
(0’1/ﬁ2)7 0.

S ‘:xlqz

Proof. By Best (2010, Chapter 9, Page 192), we can obtain the following optimality
conditions for (A.9),
(Wi =1,
I\ — 23w =vrp,
Mw = 0, (A.13)
w >0,
(| A>0.

where v is the multiplier for the constraint w”?fz = 1 and X is the vector of multipliers

for the constraints w > 0. More explicitly, this leads to the linear system:

Wi fiy + wafly = 1, (A.14)
Al — 2W157 — 2web190 = Vi, (A.15)
Ay — 2W1519 — 2web3 = Vi, (A.16)
AMwi + Agwy = 0. (A.17)

with constraints w > 0 and A > 0. The constraints imply the solution to (A.17) must
satisfy one of the following three cases: (i) Ay =0 and Ay = 0. (ii) Ay > 0 and Ay = 0.
(iii) Ay = 0 and Ay > 0.

It is easy to see check that case (i) can be viewed as an optimization problem:

min w’ Yw
w

Subject to w' i = 1. (A.18)
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Let w** = (wi*, w3*) be the solution to (A.18). A simple calculation gives:

Kok U105 — 2012 Kok H207 — H1012
wy = T, Wy = T, <A19)

where C* = (fi,09 — fig01)* + 2fi1ji2(G102 — 712). This is the solution to (A.9) without

* *

the constraint w > 0. Therefore, w* = w** when w** is a feasible solution to (A.9).
Next, note that C* > 0, so w** is feasible for (A.9) if and only if f1,62 — jisd12 > 0 and

ﬁz&% — ﬁ1512 Z 0. That is:

515 < min {@63, @&%} . (A.20)
H2 H1

Next, if (A.20) is not satisfied, then the optimal solution is the solution in either case

(ii) or case (iii). Clearly, case (ii) leads to wy = 0, and from (A.14), it is easy to

calculate w; = 1/f1;. On the other hand, w; = 0 and wy = 1/fi5 is the solution for case

(iii). Finally, we substitute the solutions in case (ii) and (iii) back into the objective

function in (A.9) and compare their values to obtain the optimal solution. This yields
w* = (1/11,0) if 63/2 < 63/ i3, otherwise, w* = (0,1/[i2). O

To investigate the nature of the investor’s optimal strategy in terms of the original
model parameters, we need to write fiy, fis, 01,092,012 explicitly. Following Djerroud

et al. (2016) we assume m; = my = m. Introducing the notation:

Cy =E[(X] —mz —x)4], Cy = E[(X} — mz — z)%],
Py = E[(x + mzx — X7)4], Py = E[(z + mz — X3)2],
P . :=E[((1 -c)x+mz— XT7){], Py :=E[((1 — ¢)x +mz — X7)7].
We obtain:
f1=1—a;)Cy — P —rypz, (A.21)
fiz = (1 — a2)Cy — Prc — ryre, (A.22)
61 = Var[(1 — ay) (X% — ma — x), — (v +ma — XF), — ryra]
=(1-—a)*(Ca—CY)+ P, — P} +2(1 — on)C1 P, (A.23)
&5 = Var[(1 — ao) (X5 — mz — x); — (1 — )z + mx — X5) 4 — rpr7]
= (1= 0)*(C2 = C}) + Poe — PP+ 2(1 — a2)C1 P (A.24)

28



012 = E[g1(X7)G2(X7)] — firfio
=1—-a)(l—a)Cy— (1 —aq)rpraCy — (1 — ao)rpraxC + Poe + ca Py,
+ Tfj.IPl + Tf,TfL’PLc + 7’}2c’TZL’2 - ﬂlﬂg. <A25)

Detailed derivations, including explicit formulas for C;, P, P, i« = 1,2 in the case
where X[ is a geometric Brownian motion (see section 4) can be found in A.3. Recalling

that fi; > 0 and fi; > 0, we can obtain the valid ranges for o and as from (A.21) and
(A.22):
01 - P1 - Tf7T.T %

a < =a], <

Ch

01 — Pl,c — T’f’TI
Ch

= ag. (A.26)

By (A.26) and noting that P, > P, ., we can easily deduce that af < af. This is
reasonable, because the first-loss fee structure provides downside protection for the

investor. In return, the investor can tolerate a higher performance fee.

A.2 Sortino Ratio Derivation

From (3.5) and noting that r(7T") = g(X§)/x — 1, we can easily obtain

03 = E[min{r(T) — 1,0}

_ ]E[min{g(f%) -0}
= 2 ?E[min{g(X5) — (1 + )z, 0}?]. (A.27)
As a result, we have
E[*52] 1 Elg(X§)] - (1 + Dz
SOR(w) = L = : A28
R ey e o

Recall that g(X7) = w1g1(X5) + wago(X%) and let
gX7) = 1(X7) = (M + Dz and  goy(X7) = g2(X7) — (1 + 1)z

Thus, we can further simplify equation (A.28) as follows,

Elg(X7)]

SR = X, 07

(A.29)
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where §;(X7) = w1G11(X7) + wafa,(X7). Now, introduce the notation:

pig = E[g(X7)] pag = Elgoy(X7)],

o11(w) = Elg1i(X7) 1 (g,x3) <0}

o2.(w) = [G24(X7)*1ig,(x2) <0y,

o120(w) = E[g11(X7) G2, (X7) L5 (x2) <0y (A.30)

and note that

Emin{g(X7),0}*] =E[3(X7)*1(,0x5)<0)]
=E[(w191,(XF) + w21 (X7))*Li5(x3)<0}]
=WPE[91,1(XF) 1 (5,(x2)<0)]
+ 2w1waE[§1,1(X7) 2.1 (X7) L5, (x2)<0}]
+ WiE[G2,0(XF) 15, (x2)<03) - (A.31)

We can rewrite (A.29) as

Wyt + Wally
wioy (W) + 2wiwaoi2 (W) + w3y (W)

SOR(w) = (A.32)

Similar to the Sharpe Ratio maximization framework in the previous section, the in-
vestor’s goal is to maximize SOR(w) at maturity 7. In general, the expression (A.32)

is difficult to optimize analytically.

A.3 Derivation of Explicit Formulas
Assuming m; = mg = m, we rewrite the investor payoffs §;(XF) and §2(X7) in the

following more compact forms:

G(X7) =X7 —mzx —oq( X7 —max—x) — (L+7rpr)z.
G2(X7) =X7 —mx — as(X7 —mx —x), + (x +ma — X7,
—(1=czx+me—X7)r —(L+rsr)z.
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Then, using the equality X7 —mzx —z = (X7 —mzx —x), — (x +mz — X7), we obtain

that:

51(X2) =(1 — an) (XE — mz — 2)4 — (3 +mz — XE), — ryza, (A.33)
Go(X7) =1 —ao)( X7 —mz —x); — (1 — )z +ma — X)) —rppe. (A.34)

The expressions for fi1, fiz, 57, and 73 then follow immediately. Moreover, noting that
(z4+mz—X5)(1—c)z+ma—X5): = (1—c)z+ma—X7)L +ex((1—c)z+mz—X7) 4+
yields:

d12 = E[g1(X7)G2(X7)] — i fiz
:(]_ — 041)(]_ — @2)02 — (1 — OZ1>7"f7T[E01 — (1 — Oég)’l“fyjn’liCl —+ P27C + CIPLC
+ ’I"f7T:EP1 + ’r‘f7T£L‘P17c + T‘JQc’TZL‘2 — [L1fda. (A35)

G1(XF) =XF —mx — ay (X7 —ma — )4 — (14 1)z,
G2 (X7) =X7 —mx — (X7 —ma —x)4 + (v + ma — X7)4
—((1=cz+mex— X7)y — (14 1)x.

Similarly, we can write §;;(X7) and §o,(X7) as follows,

911(X7) =(1 — o )(XF —mx —x)4 — (x + ma — X7)4 — Lz, (A.36)
G2 (XT) =(1 — ) (XF —mx —x)y — (1 — ¢)x +me — X7+ — lx. (A.37)

It is easy to check §;(X7) <0 = w1G1(XF) + wa2d2,(XF) < 0, which implies that

(wi(1 — 1) +we(l — a2)) (X7 —ma — )4
<wi(x+me —X7): +we((1 — )z +ma — X7) 4 + . (A.38)

When X7 < (1 + m)x, the inequality (A.38) always holds. On the other hand, when

X% > (1+m)zx, we can easily obtain

(w1l —aq) +wa(l —ag)) (X7 —mx —z) <lx
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[
= X7 < x4+ (1+m)r=(1+a+m)x, A.39
T wl(l—a1)+w2(1—a2) ( ) ( ) ( )

where a = [/w(1 — a1) + wa(1 — ag). Therefore, we have that §,(X7) <0 <— X7 <
(1+a+ m)x. It follows that

E[min{g,(X7), 0}*] =E[g:(X7)* 15 (xz)<0)]
=E[(w1911(XF) + w2d2.(X7))* 1 x2<(1+atm)r)]
=wiE[g11(XF)* L ixe<(14atm)a)]
+ 2w1woR[G1 1(X7) G20 (XT) L xz<(14atm)ey]
+ WiE (G2, (X7)* 11 x2 < (14atm)ay - (A.40)

Introducing the notation:

O(l) [1{X‘”<(1+a+m)x}]

Cy = E[(XF — )+ 1{xz<(1+atm)a}];
Cl = [( x)il{X%§(1+a+m)m}];
Pll,c = ((1 - C)SL‘ +mr — X%)—F]-{X%S(l—&-a—&-m)x}]a

E[
Py, :=E[((1 - c)z 4+ mz — X7)7 1 {xz<(rarm)a];

by (A.36) and (A.37), we can obtain

p=(1—01)Cy — P —lz, p1y=(1—a)Cy — P —lz,
o14(w) =E[g11(XF)* 11 x<(1+atm)a)]
=E[((1 - a1)(X§ — mx — 2)+ — (2 + mx — XF)1 — 12)° Lixs <(14asm)a})-
=(1 —ay)*CL + Pio + 220, — 2(1 — ay)lx Ol + 2l.:1:P1170.
021(w) =E[G21(XF)* 1 {x2<(1+atm)z)]
_E[(1— as) (X3 — ma — 2)y — (1 - a + ma — X3)y — 10)° Lige(rsasmel]
= (1 — a)’Ch + Py, + ’2*Cl — 2(1 — an)lzCy + 2laP],
o12,(w) =E[G1,(X7)G2(X7)L{xp<1+atm)a)]
= (1 —a))(l —ay)C — (1 —a)lzCl — (1 — ay)lxCt + P217C + ca:Pllﬁc
+ leiO + leic + 222C),
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In order to derive explicit formulas for C;, P;, P ., P' . i=1,2 and C'jl», 7 =0,1,2,

i,c

we need the following result.

Proposition A.1. Let X = zexp{(p — 302)t — cW;}. Then, for 0 <a <b,
B[(X7) L gexren] = 227 (0(d) (2,0, 1)) — D(dy (2,5,)) (A1)
Proof. Let Z = t~'2W, ~ N(0,1),

dl (‘Tv Y, t) = log(x/y)a_i/;u * %)t7 d2(x7 Y, t) = dl (‘T? Y, t) - 0-\/%

Then

log(a/z) < (pn— 0?/2) — oV/tZ < log(a/x)
log(X;/b) + (1 — 50°)t log(z/a) + (n — 30°)t
iy <7< "
< do(x,b,t) < Z < dy(x,a,t). (A.42)

d2 ($7a7t)

E[(X7)Lacxs <] = /

1 1
v exp {2(u — 502)25 — 20VtZ} exp {—522}612
dz(z‘,b,t)

d2(1‘,a,t) 1
= x262’”/ exp {—= (2% + 4ov'tz + 20°t)}dz
da(z.b,t) 2

dg(a:,a,t) 1
= 2%e*M / exp {—= (2 + 20Vt)*} exp {o*t}dz
da (b,1) 2
) da(z,a,t)+20Vt
— x262ut+a t/
d

2(x,b,t)+20'\/g
= 222N D(dy (2, a, 1) — D(dy(z, b, 1))).

1
exp{ =5y’ }dy

where

ey = Sy

(A.43)
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To simplify notation, we define

dy(x, bz, T) -
do(x, bz, T) :

dy (b), dy(x, bz, T) = dy(b),
da(b).

Then, we can explicitly write C(l), Cy, CL, Oy, CL, Py, P1l70, b, PQI,07 P, P!

1,¢0

P, . and

P} . as follows,

Ch = E[Lixz<(1atm)e}] = P(—da((1+m +a)))
C, =E[(XE -z —ma)] = 2" ®(d (1)) — (1 4+m)azd(da(1)),
Ci = E[(XF — ma — 2) 1 1{xz<(+atm)r)]
= 2e! (®(dy (1 +m)) — ®(dy (1 +m +a))) + (1 +m)z(P(de((1 +m)) — D(do((1 +m + a)))
Cy =E[(X} —x— mw)i]
= x262“T+"2T<I>(J1(1)) —2(1+ m)ng“Tq)(dl(l)) +(1+ m)2x2®(d2(1)),
Cy = E[(XF — ma — 2)} 1{xz<(1+atm)a}]
= 22T+ T (D (dy (1 +m)) — O(dy (1 +m + a)))
—2(1 +m)x2e" T (®(dy (1 +m)) — &(dy((1 +m + a))))
+ (1 +m)22?(®(do((1 +m)) — ®(dz((1 +m + a)))
P =Pig=(1+m)z®(—dy(1)) — xe!T®(—dy(1)),
(—

P! o= Pro=(1+m)zd(—dy(1)) — ze""®(—d(1))
Py = Py = (1+m)*2?®(—da(1)) — 2(1 + m)z?e" (—d; (1)) + 2?7+ T D (—d, (1)),
Ply= PQO (14 m)222®(—dy(1)) — 2(1 + m) 22T d(—dy (1)) + 22T+ TP (—dy (1)),

P .=E[((1—-c)x+mz—X7)4]
= (1 —c+m)z®(—dy(1 —¢)) — ze"T®(—d, (1 — ¢)),
Pll,c - ‘Pl,C
= (1 —c+m)z®(—dy(1 —c)) — ze!T®(—di (1 — c)),
Py, =E[((1 - ¢)x +mx — X%)i]
= (1= c+m)?2?®(—dy(1 — ¢)) — 2(1 — ¢+ m) 22" Td(—dy (1 — ¢)) + 22T+ TD(—dy (1 — ¢)).
P2l’c = P2,c
= (1 — ¢4+ m)2220(—=dy(1 — ¢)) — 2(1 — c+ m)a?e"TD(—dy (1 — ¢)) + 22T Td(—dy (1 — ¢)).
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