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1 Projective morphisms

We’ve defined projective algebraic sets. Now we need to define
projective morphisms.

You’d think it would be as easy as an (n + 1)-tuple of ho-
mogeneous polynomials, but no. Problem is, [0 : . . . : 0] isn’t a
point in projective space. So the tuple of polynomials can’t all
vanish at the same time, or the image point won’t be defined.
We also need the polynomials all to have the same degree, or else
rescaling the input variables won’t leave the destination point
unchanged.

There’s another problem, too, which is less of a problem than
an opportunity. Let V = V (Y 2Z−X3−XZ2) be a curve in P2.
Define a morphism φ : V → P1 by

φ(X : Y : Z) = [X : Y ]

This is perfectly well defined everywhere except at [0 : 0 : 1],
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which is a point of V . But, as points in P2, we have:

[X : Y ] = [Y Z : X2 + Z2]

for all points on V . (Check it out! It’s a bit freaky. And should
remind you of that example from before ...) But then we also
have

φ(X : Y : Z) = [Y Z : X2 + Z2]

which has the perfectly respectable value [0 : 1] at the point
[0 : 0 : 1].

So we don’t want our projective morphisms to be mere tuples
of polynomials.

Definition 1.1. Let V ⊂ Pn and W ⊂ Pm be projective algebraic
sets. A morphism from V to W is a function f : V → W such
that for every point P ∈ V , there is an (m + 1)-tuple [f0 : . . . :
fm] of homogeneous polynomials of the same degree such that
fi(P ) 6= 0 for some i, and

f(Q) = [f0(Q) : . . . : fm(Q)]

for all Q ∈ V with fi(Q) 6= 0 for some i.

An isomorphism is a morphism with an inverse morphism.

The most important examples of projective isomorphisms are
projective changes of coordinates.

That is, let L0, . . . , Ln be a linearly independent set of linear
homogeneous polynomials. Like {x0 + x1, x1 + x2 . . . , xn−1 +
xn, xn}, for example. Then we can define a morphism from Pn

to Pn by
T (a) = [L0(a) : . . . : Ln(a)]
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Since the set of homogeneous polynomials in n+1 variables is of
dimension n+1, it follows that the Li are a basis. In particular,
the common zero locus of the Li must be empty! (Remember
that the zero vector is not a point in projective space!) So T is
actually a morphism.

But better than that, T is an isomorphism! The matrix whose
rows are the coefficients of the Li must be invertible, because the
Li are a basis of the space of homogeneous linear polynomials.
So there is an inverse matrix, whose entries we can use to get
another set L′0, . . . , L

′
n of linear homogeneous polynomials that

will define an inverse morphism to T .

We can also do the rational map thing.

Definition 1.2. Let V ⊂ Pn and W ⊂ Pm be projective algebraic
sets. A rational map from V to W is a function f : U → W
for some nonempty open subset U ⊂ V such that for every point
P ∈ U , there is an (m + 1)-tuple [f0 : . . . : fm] of homogeneous
polynomials of the same degree such that fi(P ) 6= 0 for some i,
and

f(Q) = [f0(Q) : . . . : fm(Q)]

for all Q ∈ V with fi(Q) 6= 0 for some i.

This is the same thing as a morphism, except that it doesn’t
have to be defined everywhere.

Definition 1.3. Let V ⊂ Pn be a projective variety. The func-
tion field K(V ) of V is the field K(U), where U is any affine
piece of V .

That is, U is the affine variety obtained by intersecting V
with any standard affine piece of Pn.
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Moreover, if P ∈ V is any point, then the local ring of V at
P is the local ring OP (U), where U is any affine piece of V .

I’ll point out that it doesn’t matter which affine piece you
pick, because all the affine pieces of V are birational to each
other (using the inclusion map, where defined!), so their func-
tion fields are isomorphic. And if that birational map makes P
correspond with Q, then the pullback induces an isomorphism
of local rings too. And these facts make the following definition
sensible too, because singularity depends only on the local ring:

Definition 1.4. Let V be a projective variety, P ∈ V any point.
Then P is a singular point of V if and only if P is a singular
point of U , where U is any affine piece of V . We say that P is
a smooth point of V otherwise. We say that V is smooth if
and only if every point of V is smooth.

This leads us to a definition of tangent space to a projective
variety too.

Definition 1.5. Let P be a point on a projective variety V . The
Zariski tangent space to V at P is the Zariski tangent space
to any affine piece of V that contains P , namely the dual of
MP (V )/M)P (V )2.

The tangent space to V at P is the projective closure of the
tangent space to V at P in any affine piece of V containing P .

And we can define dimension for projective varieties. It never
ends!

Definition 1.6. Let V be a projective variety. The dimension
of V is the dimension of any nonempty affine piece of V .
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It’s not too hard to see that this is the same as the length of
the longest chain of nonempty projective subvarieties, just like
in the affine case:

V0 ( . . . ( Vd = V

Back in Affineland, we had a beautiful correspondence be-
tween morphisms and homomorphisms of the coordinate rings
of the two varieties. This reminds us that we haven’t talked
about the algebra side of projective geometry very much yet!
We glossed over the ideal stuff – because it’s all basically the
same as in the affine case – and we haven’t talked about the
coordinate ring stuff.

That’s because the homogeneous coordinate ring is terrible.

Definition 1.7. Let V ⊂ Pn be a projective algebraic set. The
homogeneous coordinate ring of V is the ring C[X0, . . . , Xn]/I(V ).

So far, so good. Here’s the problem.

Let V be the line S = 0 in P2(S : T : U), and let W be the
curve V (XY − Z2), in P2(X : Y : Z).

First, notice that V ∼= W , because of the morphism

φ(0 : T : U) = [T 2 : U 2 : TU ]

whose inverse is

φ−1(X : Y : Z) = [0 : X : Z] = [0 : Z : Y ]

Notice that we need two different representations of the inverse
to cover all the points of W .

And if you doubt my word that these are inverses:

φ(φ−1(X : Y : Z)) = φ(0 : X : Z) = [X2 : Z2 : XZ]
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= [X2 : Y Z : XZ] = [X : Y : Z]

and similarly for the other representation of φ−1. The other way
around:

φ−1(φ(0 : T : U)) = φ−1(T 2 : U 2 : TU) = [0 : T 2 : TU ] = [0 : T : U ]

and similarly for the other representation of φ−1.

Anyway, so V is isomorphic to W . But the homogeneous
coordinate ring of V is

C[S, T, U ]/(S) ∼= C[T, U ]

but the homogeneous coordinate ring of W is

C[X, Y, Z]/(XY − Z2)

which isn’t a UFD. (I mean, XY = Z2 is two different factor-
izations into irreducibles. “How do you know that X, Y , and Z
are irreducible and non-associate?” you ask. “Shut up,” I reply,
helpfully.) So it’s a pretty frickin’ different ring from C[T, U ],
and certainly not isomorphic to it.

So we won’t be talking about homogeneous coordinate rings
any more. They’re not useless – far from it! – but they’re not
the tool we need right now.

It will actually take some time to build the tool we need
to keep track of morphisms. Worse yet, we won’t build it for
varieties of dimension bigger than one. So, for the remainder
of the course, we’re going to specialize to the case of curves –
algebraic varieties of dimension one.
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2 Curves

Definition 2.1. A curve is an algebraic variety of dimension
one. A projective curve is a projective algebraic variety of di-
mension one, and an affine curve is an affine algebraic variety
of dimension one.

In particular, a curve is irreducible. I say this because not
everyone holds this particular philosophical belief, and I believe
it’s best to prepare you for the harsh, cold world outside this
course.

The aspect of curves I particularly want to deal with first is
its local rings. A smooth point on a curve has a very special
kind of local ring.

Definition 2.2. A discrete valuation ring (or DVR, for
short) is a Noetherian local domain whose maximal ideal is prin-
cipal and nonzero. A generator for the maximal ideal is called a
uniformizing parameter, or uniformizer, for short.

The prime geometric example of this is the ring

C[t](t) =

{
f(t)

g(t)
| g(0) 6= 0

}
which is the local ring of A1 at the point 0. The maximal ideal
is all the non-units, which are exactly the fractions f/g where
f(0) = 0. (These are the ones whose reciprocals don’t lie in the
ring.)

But if f(0) = 0, then f(t) = tq(t) for some polynomial q, so
we get

f(t)

g(t)
= t

q(t)

g(t)
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and so f/g is in the principal ideal (t). Conversely, anything
in (t) is a non-unit, so the maximal ideal of C[t](t) is just (t).
Which is, as you can see, principal. So t is a uniformizer for
C[t](t). (As is 25t or πt, for example, or even t3 + 2t. Because
t3 + 2t = t(t2 + 2), and t2 + 2 is a unit.)

In fact, there’s more structure there. For any rational func-
tion f/g, you can separate all the factors of t in top and bottom
(well, ok, presumably not both), and write:

f(t)

g(t)
= ta

p(t)

q(t)

where a is an integer (possibly negative, if f/g isn’t in the local
ring!) and p/q is a unit of the local ring C[t](t).

Which means that every ideal of C[t](t) is the ideal (ta) for
some (non-negative) integer a. Neat!

Turns out this pattern isn’t special to this ring.

Theorem 2.3. Let C ⊂ An be a curve, and P ∈ C a smooth
point. Then the local ring OP (C) is a DVR, and any linear func-
tion f whose zero set is not tangent to C at P is a uniformizer
for OP (C).

By “tangent to C at P”, I mean “containing the tangent
space TP (C)”.

Proof: We’ll only prove this for plane curves (that is, curves
in A2). Sadly, a proof for a general smooth curve is beyond the
scope of these notes, but you can find one pretty easily online.

So let P be a smooth point on a curve C ⊂ A2. Since the
local ring at P is invariant under isomorphisms, we can change
coordinates in A2 so that P = (0, 0).

8



We need to use the fact that C is smooth at P . Well, the
curve C is defined by a single polynomial equation f(x, y) = 0.
Since P = (0, 0) is on C, we also know that f(0, 0) = 0, so that

f(x, y) = ax+ by + q(x, y)

where a and b are constants, and q is a polynomial whose terms
all have degree 2 or higher.

Since C is smooth at P , we know that JP (f) = (fx(P ), fy(P ))
is not the zero matrix. In other words, either fx(0, 0) = a or
fy(0, 0) = b is nonzero. By another judiciously chosen change
of coordinates, we can keep the point P right where it is, but
change the nonzero ax+ by into the much neater y.

So now our equation looks like

f(x, y) = y + r(x, y)

where r(x, y) has only terms of degree 2 or higher. And y = 0
is the tangent line to C at P (go back and check the definition
if this isn’t clear.)

To prove that OP (C) is a DVR, we need to show that it’s
Noetherian, local, a domain, and that the maximal ideal is prin-
cipal and nonzero. The first three of those we already know, so
we just need to check that the maximal ideal is principal. (It’s
pretty obviously nonzero.)

Thus, let cx + dy be any linear form in x and y with c 6= 0.
(This is the same as picking a line through P that does not
contain the tangent line y = 0.) After the linear transformation(

1 −d
0 c

)
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our linear form cx + dy becomes x, but P and the line y = 0
are unchanged. (The restriction c 6= 0 ensures that the matrix
is invertible.)

We will show that x generates the maximal ideal of OP (C).

Well, we already know that the maximal ideal of OP (C) is
generated by x and y. And we have the equation

f(x, y) = y + r(x, y)

and both sides equal zero in the ring OP (C). If we regroup the
terms of f(x, y), we can get a new equation

f(x, y) = yg(x, y) + xp(x)

where g(x, y) is a polynomial with g(0, 0) 6= 0 (because of that
linear y term), and p(x) is a polynomial in x. (There’s no con-
stant term because f(0, 0) = 0.)

But this enables the following equation in OP (C), because
f(x, y) = 0 there:

y = −x p(x)

g(x, y)
∈ xOP (C)

Note that this is indeed an equality in OP (C) because g(P ) =
g(0, 0) is nonzero.

So y ∈ (x), and so (x, y) = (x), just like we wanted! Meaning
that the maximal ideal (x, y) = (x) of OP (C) is principal, and
so OP (C) is a DVR with x as its generator, as advertised. ♣
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