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I plan to use this space to post brief summaries of what we talked about in lectures. You can use 

this space to clarify concepts, respond to take-home questions if I ask any, and see what you 

missed if you weren't in class for some reason. 
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Mark Unread 

[Reply] 

More actions... 
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author(s) 

Today was a review class. Thanks for a great term everyone! 

 

  Lecture 35 - March 30  
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Mark Unread 
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author(s) 

Today we looked at some more complex examples of birth-and-death processes. 

We can modify the single-server queue in several ways, including adding a maximum system 

capacity or adding more servers. 

We looked at an example of multiple machines working (and being fixed) at the same time, 

which is similar but not identical to the assignment question 5. 

Finally we looked at a linear growth model (with both birth and death rates being linear 

functions of the population size) 

 

  Lecture 34 - March 28  
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Mark Unread 
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author(s) 

Today we derived the mathematical model for a birth-and-death process. We can find the total 

rate out of each state using the alarm clock lemma. v0 = λ0, and otherwise vi = λi + μi. Because 

there are only two possible places we can go from state i (i+1 or i-1), most of the 

instantaneous transition probabilities are 0, and hence so is most of the Q matrix. It turns out 

that Q is so simple that we can explicitly solve for the equilibrium probabilities. π0 = 1/(1 + ∑ 

(λ0...λj-1/μ1...μj) ), if the sum converges, and all the other πj's are a multiple of π0. 

We looked at a couple of examples - the poisson process (pure birth), pure death process, and 

a single-server queue. 

 

  Lecture 33 - March 26  

 

Diana Katherine Skrzydlo - Mar 26, 2012 10:53 
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Today we looked at a couple of examples of continuous MCs. 

We started with a 2-state chain, and were able to write down the general form of Q and use it 

to find P (very simple), π, and through the Kolmogorov equations, P(t). A handout is posted 

with some of the technical details. We then checked that P(t) gave us the same results for π 

(both rows as t -> ∞) and Q (the derivative at t=0). 

We also did a 3-state chain example where we started with Q, and looked at why certain states 

had higher equilibrium probabilities than others. 

Finally, we defined what it means for a cts MC to be a birth and death process, and talked 

briefly about situations where that model is appropriate. We'll see more details and examples 

on Wednesday. 

Someone asked a question after class - is it possible to have an absorbing state in a cts MC? If 

so, what would the values in the various matrices be for it? 

A: If state i is absorbing, the process cannot leave it, so vi = 0 and Pij = 0 for j ≠ i. The entire i
th

 

row of the Q matrix would be 0, and for P(t), Pii(t) = 1, Pij(t) = 0 for all t. The only weird thing 

would be the instantaneous transition probability Pii. Normally we say that is 0, but if i is 
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absorbing it has value 0/0 which is indeterminate. To keep P being a stochastic matrix, a 

useful convention would be to have Pii = 1 if i is an absorbing state. Great question! 
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Today was all about the matrix Q. We showed that it has its off-diagonal elements qij = vi*Pij 

and its diagonal elements qii = -vi. We can use Q to solve for the equilibrium distribution π, to 

recover the vi's and Pij's (if we didn't already have them), and to actually obtain the matrix 

family P(t) by using the Kolmogorov Forward/Backward Equations, which we proved for the 

backward case. Note: You will not have to solve matrix differential equations, but you should 

know how to set them up (given a Q matrix, show the pointwise equations the Pij(t)'s must 

solve.) 

See here for an awesome video from 2010's YouTube assignment explaining all about Q. 
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Today we started by talking about the different types of movement in a cts MC. We showed 

that the waiting times until the process leave state i must be memoryless (and hence 

exponential with some rate vi), and defined the embedded chain (or instantaneous transition) 

probabilities Pij, which then gave us the instantaneous transition rate from i to j, qij = viPij.  

We then defined the matrix Q as the derivative at 0 (from above) of P(t). Q has all its off-

diagonal elements non-negative, but the rows sum to 0, not 1 (so the diagonal elements are 

negative.) It turns out that Q contains all the information about the MC, including the 

equilibrium distritbution, but we don't usually get it from P(t), since that is hard to find. 
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[Reply] 

More actions... 
 

Today we started chapter 6 - continuous time Markov Chains. 

We started by speaking in general terms about the movement in a cts MC, which is governed 

by both the time spent in each state (exponential) and the probabilities of where the process 

moves when it leaves a state (instantaneous tpm P). We defined the continuous version of the 

Markov property, and the infinite family of transition matrices P(t). The C-K equations hold 

just like they do in the discrete case, but unfortunately we can't truly capture the continuous 

movements with a single matrix. Looking at the long run behaviour, everything is the same as 

the discrete case (we keep all our definitions except nothing is periodic anymore) and the 

vector π exists uniquely if the chain is irreducible, but we don't have an easy way to solve for 

π. 

Next time we'll see a matrix Q that solves all these problems! 
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Today we finished off chapter 5 by talking about some of the properties of the poisson 

process. 

We talked about thinning, which is where we can create two (or more!) new poisson processes 

from a single one by classifying each event as one of two (or more) types. The resulting 

process of only type 1 events is still a poisson process. For the proof, we can look at the result 

from tutorial 3 or test 1. 

We also looked at the conditional distribution of the event times, given we know how many 

there are in a time interval. They turn out to be each uniform(0,t) and independent. We proved 

the case for a single event, and someone afterwards suggested we could prove the general case 

using strong induction rather than order statistics. This might be possible, I'll think about it. 

Finally, the number of events in a subinterval of length s (again conditional on n events in (0, 

t)) is binomial (n, s/t). We proved this mathematically and justified it logically. 
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Today we talked all about the Poisson process. 

We first defined a counting process, and talked about stationary and independent increments, 

then described 4 different (but equivalent) definitions of the Poisson process. We can easily 

prove some of the equivalences, in fact some you have already seen. We also looked at a 

sample path (or trajectory) of a Poisson process, which is an increasing right-continuous step 

function. We'll talk about a few more properties of the Poisson process on Friday. 
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Today we started Chapter 5 by talking about the exponential distribution. 

This is the only continuous distribution that has the memoryless property, and hence must be 

the distribution for how long we spend in each state in a continuous Markov Chain. We 

proved the Alarm Clock Lemma which says that, for a collection of n independent Ti ~ 

exp(λi), 

1. T = min{Ti} ~ exp( Σλi ) 

2. P(Tj = T) =  λj / Σλi  

3. The event Tj = T is independent of the value of T 
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Today we looked at a pretty involved example where we had a markov chain with multiple 

closed classes. 
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From the transition probability matrix P we were able to determine the classes (using a state 

diagram) and rewrite P in simplified form by reordering the states. Within each class we found 

the mini-equilibrium distribution (we did this using logic but you could also solve πC PC = πC 

subject to the elements of πC adding to 1). Then for this chain, there are actually an infinite 

number of stationary distributions, each a linear combination of the two equilibrium 

distributions for the closed classes. We can write the general form as απC1 + (1-α)πC2 for any 

real α between 0 and 1. 

We then talked about absorption probabilities (the final topic in discrete MCs) from transient 

states into closed classes. In general, we can find Ak,Cj as the probability of going directly from 

k into Cj plus the probability of going somewhere else (transient), then from there being 

absorbed into Cj. We found the probabilities for our example. The actual equilibrium reached 

in these types of markov chains depends on the starting state. I will post some R code and 

results so you can see equilibrium behaviour for various MCs. 
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Today we looked in more detail at finding equilibrium for a markov chain. 

Any vector π that satisfies π P = π and has non-negative elements that sum to 1 is called a 

stationary distribution of the markov chain. It turns out that π is unique and guaranteed to 

exist if the MC is irreducible and the states are positive recurrent. If the MC is also aperiodic, 

then as n -> ∞ the matrix P
(n)

 will approach a matrix ∏ which has all its rows equal to π. This 

means that the state the MC is in in the long run does not depend on the starting state. We can 

interpret πi as the long-run proportion of time the process spends in state i, and 1/πi is the 

average number of steps to return to state i. 

If a state is transient or null recurrent, the equilibrium probability for that state is 0. 

If a MC has two or more closed classes, then unfortunately π is not unique, but we can find a 

mini-equilibrium distribution within each closed class. 
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We again talked about classes, and proved several results: 

Open classes contain transient states 

Finite closed classes contain positive recurrent states 

Infinite closed classes contain all of any type of state 

We stated but did not prove that the period and type of state is the same for all states in a class. 

We examined some simple examples of finding the period of a class based on the possible 

one-step transitions. 

We also defined the row vector pn which contains the probabilities of the chain being in each 

state at step n. Because of the Chapman-Kolmogorov equations, we can find that pn+1 = pn P. 

In some cases, the markov chain will approach an equilibrium in the long run, and in that case 

we will have pn = pn+1 = π, so π P = π. 
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Today we talked about how renewal theory applies to Markov Chains. 

We steal all the terminology for events in renewal theory and apply it to the states in a MC. 

There is a handout on this material posted. We looked at some examples and found that some 

chains have all the states with the same behaviour but some have states with different 

behaviour in the long run. This is because of... 

Classes in markov chains. (There is a handout on this material posted too.) We defined what it 

means for states to be accessible from one another and to communicate - there is a path of any 

length from one state to the other, and a (possibly different) past back. Communication splits 

the state space into classes where two states are in the same class if and only if they 

communicate. There are two types of classes, open (which you can leave but then not come 

back) and closed (which you cannot leave). 
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We looked at some simple examples of Markov chains, including a two-state chain 

(commonly used for the weather), a chain where the win or loss of a team depends on the last 

2 outcomes (we need 4 states rather than 2 for this to satisfy the Markov property), and the 

various modifications of the random walk that we've seen. 

We defined the n-step transition probabilities P
(n)

ij and derived the Chapman-Kolmogorov 

equations which allow us to use the matrix P to obtain any transition probability for any 

number of steps in the future. 

We started to look at renewal theory applied to MCs. 
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Today we started talking about Markov Chains (chapter 4 in the textbook). 

We started by looking at the random walk on a circle, which is difficult to analyze using 

renewal theory techniques. We defined the conditions for a markov chain - discrete stochastic 

process with a discrete state space and the markov property, which is that the future can only 

depend on the present, not the past.  

We defined the one-step transition probabilities Pij and the matrix of these values P, which is 

known as a stochastic matrix and has all elements non-negative and all rows sum to 1. 

We brainstormed some situations where markov chains can be used as models. 
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Today we finished up renewal theory by talking about the event λ01 = "get to 1 starting from 

0" which is delayed renewal. It turns out to be guaranteed to occur if p ≥ 1/2 but not if p < 

1/2. Furthermore, its average waiting time is finite if p > 1/2. 
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We can extend these results to events for getting from any state to any state, including going 

in the negative direction by reversing the roles of p and q. 

Lastly, we talked briefly about gambler's ruin, a modification of the random walk with 

barriers at 0 and k. More details of the derivation of the solution are posted in a handout, and 

an example. 

Have a great reading week! 
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Today we talked more about the random walk. In particular, we analyzed the event λ00 = 

"return to 0" in a number of ways. We found the renewal sequence (in this case it was periodic 

with period 2 so all the odd terms in the sequence are 0) but it was hard to evaluate the limit 

and use the renewal theorem. Instead we summed the renewal sequence to get E[V00] by 

approximating it and showing it diverges if p=1/2 and converges if p ≠ 1/2. Hence the event 

"return to 0" is transient if the walk is biased and recurrent if the walk is balanced. 

We found more detailed information by actually deriving the pgf of T00 (the waiting time until 

the first occurrence of λ00. We used some technical lemmas and got F00(s) = 1 - √(1 - 4pqs
2
). 

This showed us that is null recurrent if p = 1/2, and also gave us a way to find the exact value 

for E[V00]. 

Next time we'll see other events in this process as well as a common modification, the 

gambler's ruin model. 

 

  Lecture 18 - Feb 15  

 

Diana Katherine Skrzydlo - Feb 16, 2012 11:32 

PM  

Mark Unread 

[Reply] 

More actions... 
 

 

0 unread of 1 messages - 1 

author(s) 

Today we explained the difference between the waiting time for the delayed renewal event 

"22" and the renewal event "24". Then we talked about the renewal theorem (both periodic 

and aperiodic) and how that can be used to easily find the average waiting time for a pattern 
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from the renewal sequence. 

We introduced the random walk, a discrete stochastic process where each time the process 

moves up by 1 or down by 1 independently of other steps. A handout on the setup and basic 

results is posted. 
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Today we used the renewal relation to find out all the information about a renewal event "24" 

in rolls of a fair die. We were able to find the renewal sequence and get the pgf, from which 

we found the event was recurrent, had mean 36 (which makes sense), and get the probabilities 

of it occurring for the first time on trials 2, 3, and 4 (which we could also come up with a 

logical explanation for). 

We then talked about what happens in the delayed renewal case. We get the delayed renewal 

sequence d0, d1, d2 etc which is the same as rn except d0=0 and the generating function of that 

is Dλ(s). We also have an associated renewal event λ which is conditional on λ already having 

occurred. We get the associated renewal sequence r0, r1, r2 etc and Rλ(s). Then the pgf of the 

first waiting time for the delayed renewal event is Fλ(s) = Dλ(s)/Rλ(s). We did an example with 

"22" in rolls of a die, and surprisingly found that E[Tλ] = 42.  
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Today we talked more about the random variable Vλ, which can tell us about whether the 

event λ is transient or recurrent, but unfortunately not much else. We also introduced the 

renewal sequence, an easy to obtain collection of probabilities with r0 = 1, rn = P(λ occurs on 

trial n). We can use the renewal sequence in two ways - to calculate E[Vλ] by summing rn 

from n=1 to ∞, or by finding the generating function of the rn's, Rλ(s) and using the renewal 

relation to find the pgf of Tλ, Fλ(s). We'll see some examples next time, and how this changes 

with a delayed renewal event. 
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Today we classified renewal events into transient or recurrent based on whether or not they are 

guaranteed to occur. We also further split up recurrent events (ones which are guaranteed to 

occur) into positive recurrent (average waiting time is finite) and null recurrent (average 

waiting time is infinite). These classifications correspond exactly to the definitions of 

improper, proper, short proper, and null proper random variables. 

We then defined a new random variable Vλ which represents the number of times λ occurs. 

We derived the pmf and it turns out that Vλ + 1 ~ Geo(1-fλ). (I wrote that incorrectly on the 

board as Vλ ~ 1 + Geo(1-fλ), please correct your notes, sorry!) 
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Today we started talking about renewal theory. We defined stochastic process (and looked at a 

few examples), an event λ, the waiting time Tλ, the probability that Tλ is finite fλ, and the inter-

event waiting times Tλ
(k, k+1)

. We defined renewal events (all Tλ's iid) and delayed renewal 

events (the first one is different), and looked at a brief example of both kinds. All these 

definitions are summarized in a handout. 
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Today we finished up talking about probability generating functions. The first test covers the 

material up to the end of today. Please don't forget there is NO CLASS THIS FRIDAY. 

javascript://
javascript://
javascript://
javascript://
javascript://
javascript://
javascript://
javascript://
javascript://
javascript://
javascript://
javascript://
javascript://
javascript://
javascript://


We talked about what we can do with pgfs: 

- determine if a rv is proper or improper 

- derive the pmf of the rv (can be tedious if you use Taylor series, but can always be done) 

- find the mean if the rv is proper by taking the first derivative at s=1 

- find the variance  

- prove stuff easily 

We also looked at the multiplicative property which holds when the random variables are 

independent, and how that can help us with compound random variables. 

Please read the handouts and let me know if any of the examples are unclear. See you next 

week! 
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Today we started talking about generating functions, and in particular probability generating 

functions. This material is not in the textbook so make sure you look at the handouts posted. 

We defined a generating function (when it exists), looked at how to find the coefficients using 

a Taylor series expansion or more useful techniques such as combining other generating 

functions using addition/subtraction/integration/differentiation/multiplication. We defined a 

probability generating function GX(s)and showed that it will always converge absolutely on 

the interval (-1, 1). We can check whether X is proper by checking if GX(1) = 1. If it's <1, X 

is improper. 

Collapse Replies 
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Will the generating function still converge on at least (-1,1) if the RV is improper? 
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Yes. In fact, at s=1 it will converge to a value strictly less than 1 if X is 

improper. My convention is, when I write the sum as n goes from 0 to infinity, 

not to include the actual term at infinity. But even if you do, if |s| <= 1, you 

would get s^infinity equalling 0, so the p_infinity term will not contribute. 
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Today we finished Chapter 3 by talking about compound random variables, which are a sum 

of a random number of independent and identically distributed random variables. S = X1 + X2 

+ ... + XN 

We derived the mean and variance of S by conditioning on N and using double averaging and 

the conditional variance formula. We get E[S] = E[X]E[N] and Var(S) = Var(X)E[N] + 

E[X]
2
Var(N). We saw a quick example. 

Questions afterward: 

Can we condition on X instead of N to derive these formulae? 

No, because all the Xi's are not the same. If we condition on X1 = x, then the other X2, ..., XN 

are still random. We would have to condition N times (a random number of conditions!) to 

make that work. 
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Today we started talking about computing variances by conditioning. We have a couple of 

techniques we can use. 

We can find a recursive equation for E[X
2
] by finding E[X

2
|Y=y] for every possible value of y 

and then using double averaging. We did an example of this with the same mouse in the maze. 

Remember we square the entire variable X|Y=y before taking its expected value. 

Or, we can use the conditional variance formula. This works great if the distribution of X|Y=y 

is something we recognize. We defined Var(X|Y=y) and the corresponding random variable 

Var(X|Y) similar to the expected value case, and then proved the formula Var(X) = 

E[Var(X|Y)] + Var(E[X|Y]). We did an example of this technique as well. 
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Today we did an example of two independent random variables and using the properties of 

conditional expectation to find the distribution of a combination of them. I did it by finding the 

tail probability P(Z>z) but you should theoretically get the same result if you do P(Z<= z) 

directly. You will end up with two integrals (one from 0 to min{1/z, 1} and one from min{1/z, 

1} to 1). 

Then we did a generalization of a logic problem - n offers in n envelopes, and if you open an 

offer you must immediately accept or reject it. It turns out the optimal strategy for finding the 

best offer is to open k envelopes and then choose the first one that is larger than all those. The 

k that maximizes the probability of getting the best offer is n/e. (I didn't show the maximizing, 

but you can check out the excel sheet which graphs the probability for various values of n and 

k). Apparently a radio station is doing this for a contest with 5 envelopes. 5/e rounds to 2, just 

so you know if you get on the show! 

Next time we'll talk about computing variances by conditioning. 
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Today we finished the example of two continuous rvs. 

We looked at 4 properties of conditional expectation (a handout is posted) and how we can 

apply them in 3 cases based on the information we're given. We also described how these 

techniques can be used for probabilities as well as expectations, since a probability of an event 

is just an expectation of an indicator rv attached to that event. 

We did an example of a discrete X continuous Y (we called it U) using our knowledge of the 

conditional distribution of X|U=u (this was case 2) 
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Today we used conditioning to solve a problem where the distribution of X on its own is quite 

complicated using the setup of the mouse in the maze. If we condition on the door the mouse 

chooses first, it becomes straightforward. 

We also extended our definitions to the continuous case (everything stays pretty much the 

same except for the interpretation) and started an example of two continuous random variables 

starting from their joint pdf. 
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Today we started Chapter 3 with a whole lot of definitions. We have the conditional rv X|Y=y, 

its conditional range, conditional pmf P(X=x|Y=y), and conditional expectation E[X|Y=y]. 

Then if we allow y to vary as well, we have a new random variable E[X|Y] which is just a 

function of Y. We proved (in the discrete case) that E[E[X|Y]] = E[X] for any rv Y, which will 

be very useful for lots of problems. We saw one example which we will continue next time. 

Note: P(X=x|Y=y) is a valid pmf if X is proper to begin with and P(Y=y) is not 0. Similarly, I 

didn't mention this, but E[X|Y=y] is guaranteed to converge as long as X is *short* proper. 
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Today we talked about indicator variables and how they can be used to solve complicated 

problems. We did an example involving the number of unrolled faces on a die after n trials. I'll 

provide a graph of what the mean and variance look like for various values of n and post a link 

here when it's up. 

We also looked more closely at the classification of random variables into improper, short 

proper, and null proper, and the conditions for each. 

Have a great weekend! 
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Today we talked about continuous random variables, summarized the distributions we care 

about in this course in a chart, and briefly went over some properties of expectations of 

(functions of) random variables, including variance. We also talked about joint distributions, 

covariance, and how to find out if two random variables are independent. 

Questions from after lecture 

How come Poisson was under the "continuous" category if it's a discrete random variable? 

The headings I gave are the situation that leads to the distribution. In order to have a Poisson 

random variable (which is indeed discrete, remember it's the range of the rv that determines 

the type), we need a continuous process indexed by time or something similar, where events 

can occur at any instant. In that context, if we count up the number of events in a fixed time 

interval, we get a Poisson distribution. 

If a joint pmf or pdf f(x,y) factors into two functions g(x)*h(y), does that automatically mean 

they are independent, and that g(x) is the pdf of X and h(x) is the pdf of Y? 

Yes, but ONLY if the ranges of X and Y are also independent of each other. Or equivalently, 

ONLY if the range of (X,Y) is a product of sets. For example, if the range is 0 < x < y, or x > 

0, y> 0, x+y < 1, those are not independent, no matter what the pdf factors into. 
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Today we talked all about random variables. We defined them, classified them according to 

their range (not domain), and defined functions that describe them (pmf in the discrete case, 

pdf in the continuous case, cdf in both). 

We looked at Bernoulli trials as a way to give us several distributions: bernoulli/indicator, 

binomial, geometric, and negative binomial, and looked at the relationships between them and 

the property that the geometric distribution is proper as long as p > 0. That means no matter 

how unlikely something is, as long as it's not impossible, it is guaranteed to occur in a finite 

number of trials (for example, an infinite number of monkeys on an infinite number of 

typewriters will eventually produce the complete works of Shakespeare.) 

We also saw the Poisson random variable, and we'll look at a few continuous ones next time. 
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Today we finished off Chapter 1. We talked about combinations of sets, and defined a 

probability as a function mapping subsets of S to real numbers, subject to 3 axioms. We can 

prove all the properties of probability with those axioms. A summary of the material is posted 

in Content under Review Quiz. We also defined conditional probability and Bayes' rule. 

The Monty Hall problem is an application of Bayes' rule. I'll get it started - see if you can 

figure out the rest.  

Let's let the events A, B, and C be "the car is behind door A, B, or C" respectively. Then we 

know P(A) = P(B) = P(C) = 1/3. 

Let's let the event O be the event "Monty opens a door, revealing a goat" 

Without loss of generality, we can suppose you choose door A and he opens door B. 

Now what we're looking for is the probability you win if you switch, which is the probability 

the car is behind door C. BUT we have the conditional information that he opened B, so we 

are actually looking for P(C|O).  

Try using Bayes' rule on this probability and see if you get 2/3. 
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Question about immeasurable sets 

A probability must be defined on a measure space, and thus we restrict our definition of 

probability to measurable subsets of S. Great question, I had to look up my STAT 901 notes to 

find out! Incidentally, if you want more info about the Cantor set, google it. I'll post if I find a 

good page. 
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What we're looking for is P(C|O). 

Using Bayes' rule, we can express this as P(O|C)*P(C)/P(O) 

But P(O) is pretty difficult to calculate directly, so we'll use the law of total probability 

on it. 

The event O can be split up into three disjoint parts: O = OA U OB U OC and we can 

apply the multiplication rule to each part to get P(O) = P(A)*P(O|A) + P(B)*P(O|B) + 

P(C)*P(O|C) 

Obviously P(O|B) is 0 (since he cannot open door B to reveal a goat if B has the car. 

P(O|C) is 1 (since if you chose A and the car is behind C, the only door he can open is 

B) 

P(O|A) is 1/2 (since he randomly chooses a goat-door to open) 

Putting this all together, 

P(C|O) = P(O|C)*P(C)/P(O)  

= P(O|C)*P(C)/[P(A)*P(O|A) + P(B)*P(O|B) + P(C)*P(O|C)] 

= 1*(1/3) / [(1/2)*(1/3) + 0*(1/3) + 1*(1/3)] 

= (1/3) / (3/6) 

= 2/3 as required. 

Neat, eh? Can you think of a simpler, logical explanation for this non-intuitive result? 
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Is this correct? 

Not swapping: 

Originally, you have 33% of picking the car. Your strategy is not to switch so 

you stay 33% (thus, getting a goat is 67%). 

Swapping: 

Originally, you have 33% of picking the car. Your strategy is to switch every 

time. If your door has a car, then you switch to receive the goat--a 33% 

occurrence. However, to pick a goat and switch (to the only available choice: a 

car) is 67% likely. 

I think getting that one door open effectively switches the probabilities of 

choosing a goat and choosing a car. If there were 1000 doors, you choose 1 (.1% 

chance that you guessed the car) but then 998 other doors open revealing all 

goats. What's the likelihood of the last door having the car and not a goat? 

On second thought, this question may have been rhetorical. D'oh. 
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What we're looking for is P(C|O). 

Using Bayes' rule, we can express this as P(O|C)*P(C)/P(O) 

But P(O) is pretty difficult to calculate directly, so we'll use the law of total 

probability on it. 

The event O can be split up into three disjoint parts: O = OA U OB U OC and 

we can apply the multiplication rule to each part to get P(O) = P(A)*P(O|A) + 

P(B)*P(O|B) + P(C)*P(O|C) 

Obviously P(O|B) is 0 (since he cannot open door B to reveal a goat if B has the 

car. 

P(O|C) is 1 (since if you chose A and the car is behind C, the only door he can 

open is B) 
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P(O|A) is 1/2 (since he randomly chooses a goat-door to open) 

Putting this all together, 

P(C|O) = P(O|C)*P(C)/P(O)  

= P(O|C)*P(C)/[P(A)*P(O|A) + P(B)*P(O|B) + P(C)*P(O|C)] 

= 1*(1/3) / [(1/2)*(1/3) + 0*(1/3) + 1*(1/3)] 

= (1/3) / (3/6) 

= 2/3 as required. 

Neat, eh? Can you think of a simpler, logical explanation for this non-intuitive 

result? 
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A simpler explanation would be to regard this as the change of variable from a 

car to goat. 

Switching loses if and only if the player initially picks the car, which has a 

probability of 1/3, so switching must win with probability of 2/3. 

Suppose the player initially picked a goal, he will definitely win a car by 

switching since the other goat can no longer be picked. The probability of the 

player initially selecting a goat is 2/3. 
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Right, both very good alternative explanations. There are lots! 
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Today we went over the course outline. 

We started by brainstorming material from STAT 230 and came up with a great list of 

concepts that we'll use in this course. Then we began Chapter 1 by defining experiment, 

sample space, trial, sample point, and event. We can look at combinations of events using the 

union, intersection, and complement operators (which we will continue next time.) 

A couple of questions from after class 

- What is the difference between countable and uncountable infinity?  

Countably infinite means we can map it to the integers, i.e. put them into some order and 

count them. Any finite set, the positive integers, the entire set of integers, and even the rational 

numbers are countable sets. Uncountable means we cannot make a list of all the items in the 

set - if we try, we will leave some out. 

- Can we define different sample spaces on the same experiment? 

Yes. In our example where the experiment was "roll a die", the obvious sample space is S = 

{1, 2, 3, 4, 5, 6}. But S = {even, odd}, S = {prime, not prime}, S = {1, 3, 5, even}, etc are all 

valid sample spaces since they include all the possibilities and nothing is double-counted. 

They're not as useful though, since any events we are interested in have to be subsets of S. 

- If S is continuous, is the power set of S an event? 

I'll think about this one and get back to you here on this blog 
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In my opinion, if S is the sample space (no matter countable or not), then the power set 

of S is the set containing all the events (subsets of S) of the underlying experiment, and 

it is not an event itself because the power set is not a subset of S but a set of events. 

Actually there is an elegant way to tell the power set of a set A is never a subset (or 

event in this case) of A by cardinality rather than repeating "sets" and "events" like 

above. The power set of A always has a higher cardinality than A (by Russell's 

Paradox), which implies that the power set of A can never be a subset of A, otherwise 
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the power set of A would has a cardinality no greater than does A. 

However, under the subset definition of events, it is possible to have a set of outcomes 

identical to another outcome and a set of events identical to another event, for example 

S={a,{a}} where a could be anything, but such confusions could be eliminated by 

changing notations or the definition of events if one really wants to try. The following 

example is just for some fun. Set theorists define all natural numbers with only the 

empty set and set operations. In that way, 0=empty and 1={empty}. So a sample space 

like {0,1} would be {empty,{empty}}, which leads to confusion as mentioned above. 

But we are all OK with a sample space like that since we all think of 1 as an outcome 

instead of an event of observing 0. 

Anyway, we are focusing on probability theory rather than set theory in this course: 

figuring that out may not be helpful. Most importantly, life is meant to be easy and we 

seldom, if any, encounter weird things like that. 

- Kevin 
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Today we went over the course outline. 

We started by brainstorming material from STAT 230 and came up with a great list of 

concepts that we'll use in this course. Then we began Chapter 1 by defining experiment, 

sample space, trial, sample point, and event. We can look at combinations of events 

using the union, intersection, and complement operators (which we will continue next 

time.) 

A couple of questions from after class 

- What is the difference between countable and uncountable infinity?  

Countably infinite means we can map it to the integers, i.e. put them into some order 

and count them. Any finite set, the positive integers, the entire set of integers, and even 

the rational numbers are countable sets. Uncountable means we cannot make a list of all 

the items in the set - if we try, we will leave some out. 

- Can we define different sample spaces on the same experiment? 

Yes. In our example where the experiment was "roll a die", the obvious sample space is 

S = {1, 2, 3, 4, 5, 6}. But S = {even, odd}, S = {prime, not prime}, S = {1, 3, 5, even}, 

etc are all valid sample spaces since they include all the possibilities and nothing is 

double-counted. They're not as useful though, since any events we are interested in 



have to be subsets of S. 

- If S is continuous, is the power set of S an event? 

I'll think about this one and get back to you here on this blog 

 

 


