
MATH 135 Fall 2006

Proofs, Part IV

We’ve spent a couple of days looking at one particular technique of proof: induction.
Let’s look at a few more.

Direct Proof
Here we start with what we’re given and proceed in a direct line to the conclusion.

Example
If n is an odd integer, then n2 − 1 is divisible by 4.

Proof
Recall that every even integer can be written as 2m for some integer m and every odd integer can
be written as 2k + 1 for some integer k.
Since n is odd, n = 2k + 1 for some k ∈ Z.
Thus

n2 − 1 = (2k + 1)2 − 1 = 4k2 + 4k + 1− 1 = 4k2 + 4k = 4(k2 + k)

so is divisible by 4.

Tips

1) Most steps should be justified, with the exception of straightforward algebraic steps.

2) Always introduce/define new variables and give their domain.

3) Start with what you’re given, not with what you want to prove.

4) Keep one eye forward and one behind; always be aware of where you’re going.

Example
If a, b, c form an arithmetic sequence, then (b− c)x2 + (c− a)x + (a− b) = 0 has equal roots.

Proof
Since a, b, c form an arithmetic sequence, then b = a + d, c = a + 2d for some d ∈ R.
Thus our equation is

−dx2 + 2dx− d = 0

−d(x2 − 2x + 1) = 0

−d(x− 1)2 = 0

and so has two equal roots.

Example
If AB is a diameter of a circle and C is on the circle, then ∠ACB = π

2
.



Proof
Let O be the centre of the circle and join CA, CO, and CB.
Suppose ∠ACO = x.
Since AO, BO and CO are radii, then AO = BO = CO.
Since AO = CO, then4ACO is isosceles, so ∠CAO = ∠ACO = x.
Therefore, ∠COA = π − ∠ACO − ∠CAO = π − 2x.
Also, ∠COB = π − ∠COA = π − (π − 2x) = 2x.
Since CO = BO, then 4BCO is isosceles, so ∠BCO = ∠CBO.
Thus, looking at the angles in 4COB, 2x + 2∠BCO = π, so
∠BCO = π

2
− x.

Therefore, ∠ACB = ∠ACO+∠BCO = x+ π
2
−x = π

2
, as required.
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Compound Statements
If A and B are mathematical statements, we often see compound statements such as

“A and B” “A or B”

For “A and B” to be TRUE, both A and B must be TRUE.
Otherwise (when one is FALSE or both are FALSE), “A and B” is FALSE.
For “A or B” to be TRUE, either or both of A and B must be TRUE.
Otherwise (when both are FALSE), “A or B” is FALSE.

Example
A =“2 is a prime number”, B =“5 is a perfect square”
Is “A and B” TRUE or FALSE?
Is “A or B” TRUE or FALSE?

Aside Regarding Sets
Recall that if A and B are sets, then A ∪B is the set of elements that are in either A or
B, and A ∩B is the set of elements that are in both A and B.
So A ∪B is similar to “A or B”, and A ∩B is similar to “A and B”.

Example
If A = {1, 2, 4, 5, 6, 9, 10} and B = {2, 3, 6, 7, 8}, then

A ∪B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
A ∩B = {2, 6}

Converse Statements
Recall that a conditional statement is one of the form A ⇒ B (ie. “If A then B”).
The converse of such a statement is B ⇒ A (“If B then A”).

Example
“If the units digit of n is 5, then n is divisible by 5.” (TRUE or FALSE?)
Converse: “If n is divisible by 5, then the units digit of n is 5.” (TRUE or FALSE?)

“If n and n + 1 are both prime numbers, then n = 2.” (TRUE or FALSE?)
Converse: “If n = 2, then n and n + 1 are both primes.” (TRUE or FALSE?)

So there is no connection between the truth of a statement and its converse.



If and only if
In mathematics, we often see statements of the form “A if and only if B” (A ⇔ B)
This means “(If A then B) and (If B then A)”. The parentheses are here for mathematical reasons,
not English language ones!

Sometimes we say “(The truth of) A is equivalent to (the truth of) B” since if A ⇔ B has been
proven then if A is TRUE, B is TRUE, and if A is FALSE, B cannot be TRUE (otherwise A would be).

To prove these statements, we have two directions to prove, since there are two implications that
must be proven to be TRUE.

Example

Suppose x, y ≥ 0. Then x = y if and only if
x + y

2
=
√

xy.

Proof
“⇒”

If x = y ≥ 0, then
x + y

2
=

2x

2
= x and

√
xy =

√
x2 = x (since x ≥ 0) so

x + y

2
=
√

xy.

“⇐”

If
x + y

2
=
√

xy, then

x + y = 2
√

xy

(x + y)2 = 4xy

x2 + 2xy + y2 = 4xy

x2 − 2xy + y2 = 0

(x− y)2 = 0

x = y

Therefore, x = y if and only if
x + y

2
=
√

xy.

Example
In 4ABC, b = c cos A if and only if ∠C = 90◦.

Proof
“⇐”

If ∠C = 90◦, then cos A =
b

c
, so b = c cos A.

“⇒”
Suppose b = c cos A.
Drop a perpendicular from B to P on AC.
Then AP = AB cos A = c cos A.
But AC = AP + PC and AC = b = c cos A = AP .
(Think about whether this makes sense if P is to the right of C.)
Thus PC = 0, so P and C coincide.
Therefore ∠BCA = ∠BPA = 90◦.

B

CA

ac

b



Proof by Contradiction
Also sometimes called Indirect Proof or Reductio ad absurdum.
Here we list all possibilities including the one that is to be proved and show that all of the “other”
possibilities lead to contradictions.

Example
Show that

√
2 is irrational.

Proof
Suppose that

√
2 is rational.

Aside The rational numbers are Q =
{ a

b

∣∣∣ a, b ∈ Z, b 6= 0
}

Then
√

2 =
a

b
for some a, b ∈ Z, b 6= 0, with a, b having no common factors.

Thus a =
√

2b or a2 = 2b2.
Since the RS is even, the LS is even.
Since a2 is even, then a is even, ie. a = 2A for some A ∈ Z.
Thus 4A2 = 2b2 so b2 = 2A2.
Using a similar argument, b is even.
Therefore a and b have a common factor of 2, a contradiction.
Therefore

√
2 must be irrational.

Note
There are varying degrees of irrationality – if you’re curious, check out algebraic and transcendental
numbers.

Example
If n + 1 objects are to placed in n boxes, then there exists one box which will contain at least two
objects.

Proof
Suppose that there is not such a box.
Then each of the n boxes contains at most one object.
Thus, the total number of objects is at most 1× n = n, a contradiction.
Therefore there is one box which contains at least two objects.

Aside
This is the second proof of this result that we have seen.
(See Proofs, Part 3 for the other one.)
Which do you like better?
Question: Do you think that this proof uses induction without saying so? If so, how?

Proof by Contrapositive
Recall that a statement A ⇒ B has a converse B ⇒ A which may or may not be TRUE when A ⇒ B
is TRUE.
A ⇒ B also has a contrapositive (NOT B)⇒ (NOT A), i.e. “If B is not TRUE, then A is not TRUE.”

Contrapositive Law
A ⇒ B and (NOT B) ⇒ (NOT A) are either both TRUE or both FALSE.



Consequence: If we can prove (NOT B) ⇒ (NOT A), this is the same as proving A ⇒ B.

Justification
Suppose (NOT B) ⇒ (NOT A) has been proven; and suppose that A is TRUE. Why is B TRUE?

Since A is TRUE, then NOT A is FALSE, so NOT B couldn’t be TRUE (otherwise NOT A would
be TRUE).
Therefore NOT B is FALSE so B is TRUE.
Therefore A ⇒ B is TRUE.

Example
Prove that if x is a real number such that x4 + 7x < 9, then x < 1.1.

Proof
We prove the contrapositive: “If x ≥ 1.1, then x4 + 7x ≥ 9”
Since x ≥ 1.1, then

x4 + 7x ≥ (1.1)4 + 7(1.1) = 1.4641 + 7.7 = 9.1641

So the contrapositive is TRUE.
Therefore if x4 + 7x < 9, then x < 1.1.

Example
Prove that if a, b ∈ R and ab is irrational, then a is irrational or b is irrational.

Proof
We prove the contrapositive: “If a is rational and b is rational, then ab is rational.”

Aside
“NOT (A or B)” is “(NOT A) and (NOT B)”

(If it is not TRUE that “A or B” is TRUE, then both A and B must not be TRUE.)
Similarly, “NOT (A and B)” is “(NOT A) or (NOT B)”.

If a and b are rational, a =
p

q
and b =

m

n
for some m, n, p, q ∈ Z, n, q 6= 0.

Thus ab =
pm

qn
which is rational.

This proves the contrapositive.

Note
The contrapositive is useful when it is difficult to get a handle on the hypotheses and conclusions of
the original statement, but easier to deal with their negations.

Question
How do we know when to use what? Practice and intuition.

Quantifiers
There are two additional symbols to discuss: ∀,∃.
Let P (x) be a statement depending on x.
Then

• ∀x, P (x) is “For all x, P (x) is TRUE”.
• ∃x, P (x) is “There exists an x such that P (x) is TRUE”.



One catch: We need to specify the “universe of discourse” (that is, the domain) for x.

Example
Suppose P (x) = “x2 = 2”
Is ∀x, P (x) TRUE or FALSE?
If U of D = {

√
2,−

√
2}, it is TRUE.

If U of D = R, it is FALSE.

Is ∃x, P (x) TRUE or FALSE?
If U of D = Z, it is FALSE.
If U of D = C, it is TRUE.

Note
The order of quantifiers matters.

Example
U of D is R
∀x∃y, x3 − y3 = 1

“For all real numbers x, there exists a real number y such that x3 − y3 = 1.”
(TRUE: for any x, we can solve for y.)

∃y∀x, x3 − y3 = 1
“There exists a real number y such that for all real numbers x, x3 − y3 = 1.”

(FALSE: there is no single value of y that works for all x.)

Example
U of D = Z
∀x∃y, y ≥ x

“For all integers x, there exists a larger integer y”
∃y∀x, y ≥ x

“There exists an integer y such that y ≥ x for all integers x.”

Negations
NOT (∀x, P (x)) = ∃x, NOT P (x)
“It is not true that for all x, P (x) is true.” “There exists an x such that P (x) is not true.”

NOT (∃x, P (x)) = ∀x, NOT P (x)

Why do we care about quantifiers?
In mathematics, precision is very important. By its very nature, the English language is not very
precise. Quantifiers are a way to translate statements in English that may or may not present am-
biguities into precise mathematical statements, allowing us to agree on exactly what is being stated.

Example
Does the statement “f(n) = 0, where n is a positive integer” mean “∀n, f(n) = 0” or does it mean
“∃n, f(n) = 0” (U of D is P)? This is not clear. Translating to quantifiers can help us decide which
we really mean.

That being said, translating from plain English to quantifiers can be difficult, as most of us nor-
mally do not use “for all” and “there exists” in everyday speech.

Examples
“There is always some number x with x + y = 1, no matter what number y is”
is really saying “For all numbers y, there exists a number x such that x + y = 1”
or ∀y∃x, x + y = 1



“Some real numbers are not the square root of any real number”
is really saying
“There exists a real number x such for all real numbers y, x is not the square root of y”
or ∃x∀y, x 6= √

y

The best approach to these problems is to try to rewrite the English first into a more precise-looking
form, and then convert to quantifiers.

Note
If we go back to the third Example in the Quantifiers section, the first statement could be written as
“There is no largest integer” and the second statement could be written as “There is a largest integer”.

One Final Note on Proofs
It is important when writing proofs not to start with what we want to prove and work in the wrong
direction to get something that we know is true. (However, this “wrong” direction might in fact be
the direction in which we figure out the proof.)

Example

Prove that if x, y ∈ R+ with x− y ≥ 1 then
x

y
+

y

x
≥ 1

xy
+ 2.

Rough Work

x

y
+

y

x
≥ 1

xy
+ 2

x2 + y2 ≥ 1 + 2xy

x2 − 2xy + y2 ≥ 1

(x− y)2 ≥ 1

x− y ≥ 1

The last step doesn’t actually work in this direction, but this does allow us to figure out how to do
this, as the steps all work in the other direction!

Proof

x− y ≥ 1

(x− y)2 ≥ 1

x2 − 2xy + y2 ≥ 1

x2 + y2 ≥ 1 + 2xy
x

y
+

y

x
≥ 1

xy
+ 2

as required.

It would be difficult to simply write out in this direction (it seems like magic), but with some work
before, it can be done.


