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Definition 1. If C and X are topological spaces, a covering of X by C is a continuous

surjection p : C → X such that, for every x ∈ X, there is a neighbourhood V of x such that

p−1V is a disjoint union of neighbourhoods Ui, i ∈ I, each one homeomorphic to V , with the

homeomorphisms given by the restriction of p to each neighbourhood Ui. If |I| = n for every

x ∈ X, then C is an n-sheeted covering. If, for every x ∈ X, all of X is a possible choice for

V , then p is a trivial covering, and C is the disjoint union of copies of X.

If D = {z : |z| < 1}, and Do = D − {0}, and e ∈ N, then p : Do → Do by pw = we is an

e-sheeted covering of Do. This is true because, for every point x ∈ Do, say αe = z. Then, if ω

is a primitive eth root of unity, there are disjoint neighbourhoods Ui of ωiα that are mapped

homeomorphically to a neighbourhood V of x. However, if p : D → D by pw = we, then p

is not a covering of D unless e = 1. For, if V is any neighbourhood of 0, all components

of p−1V that map to V contain 0, and thus if p were a covering, it would be a 1-sheeted

covering, which means e = 1, for p is bijective.
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Theorem 2. If X is simply connected, and p : C → X is a covering, then p is a trivial

covering.

Proof. Fix a point x ∈ X and a path γ originating at x. The preimage under p of γ is

unique given a starting point y ∈ C such that py = x. For, by the compactness of γ, γ can

be covered with finitely many open sets such that the preimage of each open set is a disjoint

union of homeomorphic open sets in C. Say U ⊂ C is one such open set with y ∈ U. Some

of those open sets intersect a neighbourhood of x, so p−1γ ∩ U can be extended to them.

Repeating this process one neighbourhood at a time, a path δ starting at y is found in C

such that pδ = γ.

Say V is a neighbourhood of x such that p−1V is the disjoint union of Ui such that

pUi = V , and the restriction p|Ui is a homeomorphism. Then, in the same manner that

paths are extended, Ui can be extended to a neighbourhood Wi such that pWi = X, and

the restriction pWi
is a homeomorphism. Assume p is not trivial, then there is a point

x ∈ X such that after performing the extension of Ui, the Wi are not disjoint, otherwise Ui

could be chosen to be Wi, which would contradict the non triviality of p. Because Wi are

path connected, there is i, j with i 6= j and a path δ from yi ∈ Ui to yj ∈ Uj such that

pyi = pyj = x. Then, pδ = γ is a loop in X originating at x. Thus, γ is contractable to a

point, x. In a similar manner as to the previous paragraph, the preimage of the homotopy
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describing the contraction can be taken to be a homotopy of δ with fixed starting and ending

points at every stage of the homotopy. Thus, δ is homotopic with a point, but the endpoints

are fixed, so the endpoints must be equal, which is a contradiction, as i 6= j implies Ui and

Uj are disjoint.

Definition 3. A Riemann surface is a connected surface locally homeomorphic to C

with analytic change of coordinant maps. More formally, a topological space X is a Riemann

surface if for all x, y ∈ X, there are open neighbourhoods Vx of x and Vy of y in X, and open

sets Ux and Uy in C, and homeomorphisms φ : Ux → Vx and ψ : Uy → Vy such that ψ−1φ

and φ−1ψ are analytic where they are defined (they will be defined when, and only when

Vy ∩ Vx 6= ∅.) The functions φ and ψ are called coordinant maps. The functions ψ−1φ and

φ−1ψ are called change of coordinant maps.

Definition 4. A function f : X → Y between Riemann surfaces is analytic if for every

P ∈ X, with Q = fP, and open sets UP and UQ of C and coordinant maps φ : UP → VP ,

and ψ : UQ → VQ, where VP is a neighbourhood of P, and VQ is a neighbourhood of Q, the

change of coordinant map ψ−1fφ is analytic.

Theorem 5. If the situation around P is as in figure 2, φ and ψ can be chosen so that
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ψ−1fφw = we for some e ∈ N.

Proof. Assume UP and UQ contain the origin, and that φ0 = P and ψ0 = Q. This is

possible because UP and UQ are open, so φ and ψ can be composed with the appropreate

translations, which are analytic homeomorphisms. Write ψ−1fφ = h(z) =
∑∞

k=0 akz
k. Let

e ∈ N be the smallest number such that ae 6= 0. So, h(z) = zeg(z) where g(z) =
∑∞

k=0 ae+kz
k,

and g(0) 6= 0. So, g(0)
ae

= 1. The eth root function is defined around 1, so k(z) = (g(z)
ae

)
1
e is

analytic in a neighbourhood of 0. Also, h(z) = zeg(z) = (zk(z))e. The derivative (zk(z))′ =

k(z)+zk′(z), so (zk(z))′|0 = k(0) 6= 0, so z 7→ zk(z) is invertible around 0 by the analytic in-

verse function theorem. Let w be it’s inverse, then ψ−1fφw = (zk(z))e = we. The restriction

of ψ−1fφ to UP − {0} is an e-sheeted covering of UQ − {0}. But, φ and ψ are homeomor-

phisms, so they preserve the disjointness of neighbourhoods, and they are bijective, so f is

e to 1, and the preimage under f of a neighbourhood in VQ − Q is the disjoint union of e

neighbourhoods. Therefore, f restricted to VP is an e-sheeted covering of VQ. So, e does not

depend on the choice of φ and ψ. The number e is called the ramification index of f at P,

denoted e(P ), and if e > 1, then P is called a ramification point of f. Let R be the set of all

ramification points of f, and let S = fR.

Theorem 6. If f : X → Y is a surjective analytic function between compact Riemann

Surfaces, then the following hold:

1. The set of ramification points of X is finite. Also, the number of points in f−1Q is

finite for every Q ∈ Y .

2. The function f restricted to X −R is an n-sheeted covering of Y − S.

3. For every Q ∈ Y,
∑

P∈f−1(Q)

e(P ) = n.

Proof. 1. Since X is compact, it is enough to show that R is discrete. For, if R were

not discrete, there would be a convergent sequence Pk in R. Say figure 2 is the situation

around P . Then, UP and UQ are Riemann surfaces, and ψ−1fφ is an analytic function

from U, a neighbourhood of 0 in UP to UQ. But, Pk → P so there is a Pm in φU .

However, Pk is a ramification point of f , so f is many to 1 on φPmUPm −Pm ∩ fφU , so

Pm is a ramification point of ψ−1fφ. This is a contradiction, for f−1Pm 6= 0, and 0 is

the only possible ramification point of ψ−1fφ.

Similarly, f−1Q is discrete. For if Pk → P, and fPk = Q, then fP = Q by continuity

of f. Say figure 2 is the situation around P . Then, there is a Pm ∈ VP such that

φ−1Pm = w0 6= 0, and fPm = Q. Let φPm be a coordinant map that takes 0 to Pm, and
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maps onto a neighbourhood UPm of Pm. Then, UP ∩UPm 6= ∅, and 0 = ψ−1
Q fφPm0 and

ψ−1
Q fφPm0 = ψ−1

Q fφφ−1φPm0 and ψ−1
Q fφφ−1φPm0 = ψ−1

Q fφw0 = we 6= 0.

2. Say Q 6∈ S. It suffices to find a neighbourhood of Q whose preimage is the disjoint

union of n homeomorphic copies of itself. By the first part of this theorem, f−1Q is

finite, so let f−1Q = {P1, . . . , Pn}. Choose Ui open such that Pi ∈ Ui, and if Vi = fUi

then Vi∩S = ∅. There is a neighbourhood of Q, V contained in V1∩. . .∩Vn such that if

U ′i = Ui∩f−1V, then f restricted to U ′i is a homeomorphism onto V. Clearly, U ′i ⊂ f−1V,

so U1 ∪ . . .∪Un ⊂ f−1V . By contradiction, assume no such neighbourhood V existed.

This amounts to stating that for a basis of neighbourhoods of Q, the reverse inclution

does not hold. That is, there are neighbourhoods Nk of Q such that ∩kNk = {Q} and

there is P ′k ∈ f−1Nk but P ′k 6∈ U ′1∪ . . .∪U ′n. But X is compact, so there is a convergent

subsequence P ′ki → P ′ ∈ X. As ∩kNk = {Q}, the f−1Nk are contained in the preimage

of smaller and smaller neighbourhoods of Q. So, fPk → Q, and by continuity of f,

fP ′ = Q. This implies that P ′ = Pj for some j. So, P ′ ∈ Uj. But, Pki 6∈ Uj for all i,

and Uj a neighbourhood of P ′, so Pki cannot converge to P ′.

Note that n is constant, for if Q1, Q2 ∈ Y, there is a path connecting them that does

not intersect S. This path is simply connected, so its covering space is trivial. Its

covering space is n-sheeted at Q1, so it must be n-sheeted at Q2. Define the degree of

f to be n, and denote this quantity deg f.

3. If Q ∈ Y, let f−1Q = {P1, . . . , Pm}. Then there are neighbourhoods Ui of Pi and Vi of

Q such that f : Ui → Vi and there are coordinant maps such that ψ−1fφPiw = we(Pi).

Then, f is e(Pi) to 1 from Ui−0 to UQ−0. There is a neighbourhood of Q, V contained

in
⋂
i = 1mVi such that V ∩ S contains either nothing, or possibly Q. Then, by the

second part of this theorem, f is n to 1 on V − {Q}. So,
∑m

i=1 e(Pi) = n.

Theorem 7 (Riemann-Hurwitz). If f : X → Y is a surjective analytic function

between Riemann surfaces, then Y is triangularisable implies that X is triangularisable, and

2gX − 2 = deg f(2gy− 2) +
∑

P∈X(e(P )− 1) where gX is the genus of X, and gY is the genus

of Y.

Proof. Refine the triangularisation of Y so that it contains all of S as its vertices, and

each edge and face contains only one element from S. This is possible as S is finite by the

first part of the previous theorem. The triangularisation of X will be constructed to consist

of the preimage under f of the edges, faces, and vertices of Y . Clearly, the preimage under f
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of a vertex of the triangularisation of Y are vertices of X. Let T be an edge or face of Y, and

ϕ the homeomorphism of T with an interval or triangle. Let T o be the corresponding open

line or open edge. Since each point of S is a vertex, T o∩S = ∅. So, by the second part of the

previous theorem, f is an n-sheeted covering of T o. Also, T o is simply connected, so by the

first theorem of covering spaces, f is a trivial covering, so the preimage of an edge or face is

a disjoint union of n edges or faces, U1, . . . Un. In the case where T ∩S = ∅, T is still covered

trivially by f , so the closure of each component Ui maps to T and is homeomorphic with an

edge or face by the composition ϕf. If T ∩ S is not empty, it contains one point Q. Then,

T − {Q} is covered trivially by f, and its preimage is the disjoint union U1 − P, . . . Un − P
where each Ui−P is homeomorphic by ϕf to an edge or face with a point removed. Also, as

T contains only one point of S, ϕf extends to a bijection from T to an interval or triangle

by ϕfP = ϕQ. To show it is a homeomorphism, assume figure 2 is the situation around

P. Then, |wn| → 0 ⇔ |we(P )
n | → 0, and Pn → P ⇔ φ−1Pn → 0 ⇔ fPn = Q. So, Ui is

homeomorphic with an interval or a triangle, and thus the preimage of T is n edges or faces.

If Y has a triangularisation with e edges, f faces, and v vertices, the preimage of the

triangularisation of Y is a triangularisation of X with ne edges and ne faces. Let Q be a

vertex in the triangularisation of Y. By part 3 of the previous theorem, n−
∑

P∈f−1Q e(P ) = 0.

So, n−
∑

P∈f−1Q(e(P )− 1) = |f−1Q|. So, the induced triangularisation of X has

∑
Q a vertex

n− ∑
P∈f−1Q

(e(P )− 1)

 vertices.

But e(P ) − 1 = 0 unless P ∈ R, and each P is in the preimage of only 1 point, and

each element of S is a vertex of the triangularisation of Y, so summing over elements in the

preimage of each vertex is the same as summing over all of R, or all of X. So, the number

of vertices in the induced triangularisation of X is nv −
∑

P∈X(e(P ) − 1). So, 2gX − 2 =

nv − ne+ nf −
∑

P∈X(e(P )− 1) = deg f(2− 2gY )−
∑

P∈X(e(P )− 1).
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