11. Introduction to Exponential Generating
Functions.

We have seen several applications of generating functions — more specifically,
of ordinary generating functions. Exponential generating functions are of another
kind and are useful for solving problems to which ordinary generating functions are
not applicable.

Ordinary generating functions arise when we have a (finite or countably in-
finite) set of objects S and a weight function w : S — N’. Then the ordinary
generating function ®%(x) is defined and we can proceed with calculations. Expo-
nential generating functions arise in a somewhat more complicated situation. The
basic idea is that they are used to enumerate “combinatorial structures on finite
sets”. In this section I will try to give you some idea of what this means without
getting bogged down in an axiomatic development. In the process, we will be able
to derive enough of the theory to solve some interesting problems. A more formal
treatment of the subject is postponed until Chapter 12, which includes proper foun-
dations of the theory as well as discussion of some subtle issues which we can’t even
speak about until the language is developed. But all that is for later! Right now,
let’s concentrate on the general ideas, and save the niggling for when we’ve already
got the big picture.

So — a “combinatorial structure on a finite set” — just what does that mean?
Graphs are good examples: a graph G = (V| E) consists of a finite set V' together
with some additional structure, in this case a set E of two—element subsets of V.
Endofunctions are also good examples: an endofunction is a finite set V' together
with some additional structure, in this case a function ¢ : V' — V from V to itself.
Generally, a “combinatorial structure on a finite set” means a finite set together
with some additional information defined in terms of that set.

Of course, we are interested in counting things. So we will not consider just one
(combinatorial) structure (on a finite set), but an entire family of related structures,
called a class of structures. For example, we can consider the class G of all graphs.
This consists of all finite sets V' and all graph structures G = (V, E') on these finite
sets. It’s a pretty big thing! (In fact, it is way too big even to be a set — but that’s
another story.) The point about the class G is that to each finite set X it associates
the finite set Gx of all graphs which have X as their set of vertices. Notice that if
X #£ Y are two different finite sets then Gx NGy = &, since if G € Gx N Gy then
X = V(G) =Y. Also notice that if #X = n then #Gx = 2"(""V/2 50 that #Gx
depends only on #X. These properties are the essential ones that we abstract to
define a class of structures.



Definition 11.1 (Classes of Structures). A class A of structures associates to every
finite set X another finite set Ax, in such a way that the following two conditions
are satisfied:

(i) if X # Y are distinct finite sets then Ax N Ay = &;

(i) if X and Y are finite sets with #X = #Y', then #Ax = #Ay.

(In Section 12 we will enrich this definition and speak about “natural” classes, but
this will suffice for now.) The interpretation of the class A is that Ay is the finite
set of combinatorial structures in the class A which are defined in terms of the finite
set X of “vertices”.

Now we see the kind of enumeration problem that exponential generating
functions are designed to solve: given a class A of structures, determine #A x for all
finite sets X. That is, determine how many A-structures are defined on each finite
set. Of course, by condition (ii) of Definition 11.1, this amounts to determining
#Ay, for all n € N. The notation Ay, is a bit awkward, so let’s use A,, := Ay, to
mean the same thing.

We could put all the numbers #A,, for n € N together into a generating

function:
o0

> (#A)"

n=0
but it turns out that this is not the way to do it. The reason why this is no good is
that the combinatorial operations we will use to analyze and manipulate classes of
structures are not reflected by algebraic operations on these power series. Instead,
the proper way to translate the combinatorics into algebra in this situation is as
follows.

Definition 11.2 (Exponential Generating Functions). Let A be a class of struc-
tures. The exponential generating function of A is
o xn
Alw) = S S
n=0
(This definition will be embellished a little later to include more indeterminates, but
this is the essential form.)
Let’s illustrate this with a few cheap examples for which we already know the
answer.

Example 11.3. First, consider the class 8 of permutations: to each finite set X it
associates the finite set Sy of all bijections ¢ : X — X from X to X. Condition
(i) is easy, and condition (ii) follows from Example 2.2, so that 8§ satisfies Definition
11.1. Way back in Theorem 2.1 we saw that #8,, = n! for all n € N, so that the



exponential generating function for the class of permutations is

> " = " 1
S(z) == Z(#sn)H = me =T
n=0 n=0

Example 11.4. Second, consider the class € of cyclic permutations. Recall from
Exercise 2.2 that #Cy = 0 and #C,, = (n — 1)! for all n > 1. Condition (i) is easy,
and you should think about how to verify condition (ii). Therefore, € is a class and
its exponential generating function is

C(z) = Z(#en)i—? = Z(n N 1)!%7]1 = log (1 i m)

by Example 7.9(a).

Example 11.5. Third, consider the class € of finite sets: to each finite set X this
associates the set €x := {X} containing only X. This seems like much ado about
nothing, but it will be very useful in a little while. That is, € is the class of finite
sets with no additional structure. Conditions (i) and (ii) are clear in this case. The
exponential generating function for the class € is

Br) =Y @) = 3 5 = el)

n=0 n=0

by Example 7.9(b).

Notice that we have the relation

r | 1
11—z P 1,

among these power series. Using the names of the exponential generating functions,
that is S(z) = E(C(x)). This suggests that some combinatorial relation exists
among the classes 8§, €, and € — a relation which it would be sensible to denote
by something like 8§ = E[C]. In fact this is the case — a permutation is equivalent
to a finite set of pairwise disjoint cyclic permutations. Our first task is to develop
enough of the theory to make sense of an expression like 8§ = £[C].

The usefulness of this theory stems from the ability to identify combinatorial
relations among classes — as above — and then to translate these into functional
equations for the corresponding exponential generating functions. After that, one
can apply algebraic techniques such as the Lagrange Implicit Function Theorem to
extract the coefficients of these generating functions, thereby solving the relevant
enumeration problems. To realize this program we need to discuss several opera-
tions on classes of structures. Then we will have developed enough technique to
analyze some nontrivial problems and derive some interesting results. (On a first
pass through these constructions it might help to read the first several carefully



and then skim quickly through the rest. After seeing how they are applied in a few
problems one can return and reread them all carefully.)

Definition 11.6 (Equivalence of Classes). Two classes A and B are (numerically)
equivalent if #Ax = #Bx for every finite set X. Of course, this is the case if and
only if their exponential generating functions are equal: A(x) = B(x). We use the
notation A = B to denote that A and B are equivalent.

(This concept of equivalence will be superseded in Section 12 by the much more
interesting concept of “natural equivalence”, but this will do for now.)

Definition 11.7 (Local Finiteness and Sums of Classes). Let (A1 A® . ) be
a (finite or infinite) sequence of classes. We say that this sequence is locally finite

provided that for every finite set X, at most finitely many of the sets (Ag? 1 >1)
are not empty. If this is the case then the set

By = ({i} x Ag?)
i=1
is a finite union of finite sets, so that B is a finite set. A typical element of Bx is
an ordered pair (i, ) with ¢ > 1 and « € .A(;(). The presence of the first coordinate

ensures that the sets {i} x Ag? are pairwise disjoint. Since the union defining Bx
is a disjoint union, we have

#By = #AY.
=1

Conditions (i) and (ii) of Definition 12.1 can now be verified easily for B. In sum-
mary, for a locally finite sequence of classes (A® : i > 1) the class B is well-defined,
and is called the sum of the sequence. The exponential generating function of B is

B(x) = ZA(;U).

The sum of classes A® for i > 1 is usually denoted by

é AW,
1=1

We could use another set of indices for the classes A as well, rather than {1,2,...}.
For example, with only two classes we would just write AM @ A®) and so on.

As an example of this definition, consider the class A @ A (in which A is any
class). For a finite set X, a typical element of (A & A)x is of the form (i, ) with
i€ {l1,2} and @ € Ax. So A® A is the class of A-structures each of which has
been given one of two “colours”: ¢ = 1 means “red” while ¢ = 2 means “blue”. The
exponential generating function of A ® A is 2A(z) as it should be.



Definition 11.8 (Subclasses and Difference of Classes). Two classes A and B are
such that A is a subclass of B provided that for every finite set X, Ax C By. In
this case we can define a class B \ A, called B minus A, by saying that

(B \.A)X = BX \.AX
for every finite set X. The exponential generating function of B\ A is B(x) — A(x).

Now, properly speaking, A is not a subclass of A & B. However, for any finite
set X there is an injective function

.AX — (.AEBB)X
a — (1)

so A is equivalent to a subclass of A @ B. From the point of view of exponential
generating functions this is good enough. There is some subtlety to this way of
comparing classes of structures, to which we return in Section 12.

Definition 11.9 (Superposition of Classes). Let A and B be any two classes. The
superposition of A and B is the class A&B defined as follows: for any finite set X,

(.A&B)X = .AX X BX-

That is, an (A&B)-structure on X is an ordered pair (a, 3) in which « is an A-
structure on X and 3 is a B-structure on X. Certainly #(A&B)x = (#Ax)(#Bx),
which implies condition (ii), and condition (i) is also easily verified. There is no
elementary formula for the exponential generating function of A&B in terms of A(z)
and B(z). Nonetheless, superposition is sometimes useful and will be important in
Section 12.

Definition 11.10 (Products of Classes). Let A and B be any two classes. The
product of A and B is the class A x B defined as follows: for any finite set X,

(.A * B)X = U (-AS X B(X\S)) .
SCX

That is, an (A % B)-structure on the set X is an ordered pair (¢, §) in which « is an
A-structure on some subset S C X, and 3 is a B-structure on the complementary
subset X \ S of X. Notice that condition (i) of the definition of classes A and B
implies that the union defining (A x B)x is a disjoint union. Thus, using condition
(ii) as well, we calculate that the cardinality of this set is, for an n—element set X
" /n

AxB)x = A Brk).

#an B =3 (1) A ()
Since this depends only on #X = n, A x B satisfies condition (ii) of the definition
of a class. Verification of condition (i) for A * B is left as a good exercise. From
multiplying the above equation by z™/n! and summing over all n € N, one easily
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FIGURE 11.1. a structure from the class A * B.

calculates that the exponential generating function of A x B is A(z)B(x). Figure
11.1 illustrates the generic form of a structure from the class A x B.

Let A, B, and C be classes of structures. The classes (A*B)*C and Ax* (B« C)
are not equal, but they are equivalent. That is, for any finite set X we have #((A *
B)*x C)x = #(A * (B *C))x because of the following bijection:

AxB)«C = Ax(BxC)
(A*xB)xC)x = U=*x(BxC))x
((a,8),7) < (. (6,7))

This extends similarly to any finite number of factors, so that we can speak about
iterated products such as A * B % € x --- % D unambiguously, at least modulo the
equivalence relation. (The concept of natural equivalence is used in the next section
to strengthen this sense in which we can say that the product * is associative.)

Definition 11.11 (Powers of Classes). Let A be a class of structures. By iterating
the product construction we may define the powers of A to be the products of A with
itself any finite number of times. That is, A' := A and for all k > 1, A*! .= AFxA.
For all k > 1, the exponential generating function of A* is A(x)¥, as can be seen by
induction on k. We would like to define A° as well — this should have exponential
generating function A(x)? = 1 and be such that A% x A = A. The class &, defined
by putting

[ A{e} i X =0,
(80)X'_{® if X +#@.



FIGURE 11.2. a structure from the class A*.

for each finite set X does have exponential generating function Ey(x) = 1. This
class €y is known as the class of empty, or null structure. By the product formula
the classes &y * A and A have the same generating function, so they are equivalent.
For any natural numbers j,k € N there is an equivalence A7 x A* = A7TF An A%~
structure on a set X is an ordered sequence of k A-structures (s, ..., ax) which
are pairwise disjoint and cover the set X. Figure 11.2 illustrates the generic form
of a structure from the class A¥.

Definition 11.12 (Finite Strings and Connected Classes). Let A be a class of
structures, and consider the sequence (A’ : j € N) of powers of the class A. We
can form the sum of this sequence if (and only if) it is locally finite. This, however,
need not be the case. For instance, if Ay # & then let a € Ag. In this case, for
each k € N, the sequence (a,...,«a) of length k is an element of AY. This shows
that if Ay # @ then the sequence of powers of A is not locally finite. The converse
is also true, and is left as an important exercise: if Ay = & then the sequence of
powers of A is locally finite. We say that the class A is connected when Ay = @.
(This rather odd-sounding choice of terminology is explained after Example 11.19.)
If A is a connected class then the powers of A form a locally finite sequence, and
we define the class of finite strings of A-structures to be the class

A* = @Ak.
k=0
By what has gone before, the exponential generating function of A* is
1

A*(x) == ;A(x)’“ =T Aw
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FIGURE 11.3. a rooted permutation.
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Notice that the condition that A is connected corresponds to the condition that
(2] A(z) = 0, which is exactly what is required for the composition of A(z) into
1/(1 — ) to be well-defined in the ring Q[[z]] of formal power series.

Definition 11.13 (Rooted Structures). Let A be a class of structures. The class
of rooted A-structures is denoted by A® and defined as follows: for every finite set
X7

.A;( = .AX x X.
That is, a rooted A-structure on the set X is an ordered pair («,v) with o € Ay
and v € X. Conditions (i) and (ii) are easily verified for A®. The exponential
generating function of A® is

= x" s " d
A (x) = Al)— = n(#A,)— = r—A(x).
(2)i= SA T = D nlhAa) T = g A)
Notice that A® is always a connected class. We picture a structure in (o, v) €
% as an A-structure a on the set X with one “special” or root vertex v € X
circled. For example, Figure 11.3 illustrates a structure from the class 8°* — that is,
a “rooted permutation”.



Example 11.14 (The Classes of k—Sets). For each natural number & € N, define
a class € as follows. For every finite set X,

60y o | (X} T #X =k
FX7 o if #X #E.

Notice that in the case k = 0 this agrees with the previous definition of £y. Con-
ditions (i) and (ii) are easily verified, as is the fact that the exponential generating
function of &, is Ey(x) = ¥ /k!. This &, is called the class of k—sets. The intuitive
content of this definition is that, given k£ € N and a finite set X, there is exactly
one way for X to be a k—element set if #X = k (it is what it is), and there is no
way for X to be a k—element set if #X # k. The sequence (£, : k € N) is locally
finite. Comparing exponential generating functions we see that the sum @, , € is
equivalent to the class € of Example 11.5.

The class €; of 1-sets, or singletons, is used so frequently that it deserves
special attention. Since £;(z) = x we also use the notation X := &; for this class.

Definition 11.15 (k—Sets of Structures). Let A be a class of structures. We define
the class Ex[A] as follows. For any finite set X, the finite set (;[A])x is the image
of the set A% under the following function:

A — (ElADx
(o1, a) +— H{aq,..., 0}
That is, a structure in (€;[A])x is an unordered k—element set of pairwise disjoint A-
structures which cover X. Each element of (Ex[A])x is the image of k! different ele-
ments of A% under this function, from which it follows that #(Ex[A])x = (F#A%)/k!.
Conditions (i) and (ii) are easily verified, as is the fact that the exponential gen-

erating function of &[A] is A(z)*/k!. Figure 11.4 illustrates the generic form of a
structure from the class Ex[A].

Theorem 11.16 (The Exponential Formula). Let A be a class of structures. If A
is connected then (Ex[A] : k € N) is a locally finite sequence of classes. The class

E[A] == ED &xlA]

has exponential generating function exp(A(z)).

Proof. Since A is connected, Ay = &. That is, every A-structure a uses at least one
vertex. Therefore, if X is a finite set and {a,...,ax} € (Ex[A])x, then £ < #X.
The reason for this is that the a; (for 1 < ¢ < k) have pairwise disjoint vertex—sets
which cover X, and each of these vertex—sets has at least one element. Therefore,
if £ > #X then (Ex[A])x = @. This shows that the sequence (Ex[A] : k € N) is
locally finite. The formula for the exponential generating function of E[A] follows
from Definitions 11.7 and 11.15. 0



FIGURE 11.4. a structure from the class Ex[A].

We have finally developed enough technology to explain the cryptic formula
8 = €[C] in the paragraph after Example 11.5. We will develop some more theory
later in this section and in the next, but we can already do quite a bit with what
we have.

Example 11.17. Let J be the class of (simple, undirected) graphs in which every
connected component is a cycle. (These are sometimes called “two—factors”.) See
Figure 11.5 for an example. Let H be the class of graphs which are cycles. (Check
conditions (i) and (ii) for these classes.) Since each graph in J can be uniquely
decomposed as a disjoint union of an unordered set of cycles, J = E[H]. We can
obtain the exponential generating function H(x) directly, as follows. Since a (simple)
graph cycle must have at least three vertices, we have #Hy = #H; = #H, = 0. For
each n > 3, a graph cycle may be directed consistently in one of two ways, each of
which yields a cyclic permutation. This leads to the equations #H,, = (#C,)/2 =
(n —1)!/2 for all n > 3. Therefore

“(n—Dla" 1«
Hw) = IS

By the Exponential Formula we have J(z) = exp(H (z)), and we conclude that

exp(—x/2 — 22 /4)
Vi—z .

Cool! Getting an answer to the enumeration problem #d, = n![z"]J(z) remains a
challenge, however. (It is not really difficult, but the answer is slightly unpleasant.)

J(x) =
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FiGUure 11.5. illustration of Example 11.17.
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Example 11.18 (Labelled Trees). Let T be the class of graphs which are trees.
(Check conditions (i) and (ii). Verifying (ii) is not trivial at this point — how would
you do it? The ideas of Chapter 12 provide the method.) Using Definition 11.13, T°
is the class of rooted trees. We may delete the root vertex from a rooted tree and,
for each connected component of the remaining graph, root that component at its
unique vertex that was adjacent to the deleted vertex. We obtain an unordered set
of pairwise disjoint rooted trees, none of which uses the deleted vertex. See Figure
11.6 for an example. Conversely, from a designated vertex v and a set of rooted
trees which are pairwise disjoint and do not use v, we may join v to the root of each
tree by an edge and root the resulting tree at v. That is, we have bijections for each
finite set X:

T = (X#E[T)x
(T,U) — (1)7{(81,w1),...,(Sk,wk)})

To be more precise, in passing from the LHS to the RHS we let {5y, ..., Sk} be the
connected components of 7'\ {v}, and for each 1 < i < k we let w; be the unique
vertex of S; which is adjacent to v in T. Conversely, in passing from the RHS to
the LHS we already have v, and we let

V(T) == {v}UV(S)) U---UV(Sy)

and
E(T):=E(S)U---UE(Sy) U{{v,w;}: 1<i<k}.
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F1GURE 11.6. illustration of Example 11.18.

These bijections establish the following equivalence of classes:
T =X« E[T).

By applying the forgoing theory, we obtain a functional equation for the exponential
generating function:

T*(x) = zexp(T*(z)).
The number of rooted trees on any n—element set is #7J° = nl[z"]T*(x). We can
obtain this coefficient by applying the Lagrange Implicit Function Theorem, in this
case with R(z) = T*(z), F(u) = u, and G(u) = exp(u). Thus, we calculate that

470 = nlla"T*(2) = (0 — 1)![u"exp(u)”

(n — D)!u" exp(nu) = n"".

Since each tree with n vertices can be rooted at any of its n vertices, we conclude
that the number of (unrooted) trees on a set of n vertices is #7J,, = n"2 for each
n>1.

Example 11.19 (Stirling numbers of the second kind). Recall from Example 3.5
that for n € N and 0 < k£ < n, S(n,k) denotes the number of set partitions of
N,, with exactly k parts. We define the class Ptn of set partitions by saying that
for every finite set X, Ptny is the set of all set partitions of X. (Check that this
satisfies conditions (i) and (ii) of Definition 11.1.) To keep track of the number of



parts in a set partition, we will use a bivariate generating function

Ptn(z,y) := Z ( Z y#”> ::L—:L
n=0 \wePtn, ’

(Notice that this is “exponential in z” and “ordinary in 3”.) A set partition of X
is a finite set of pairwise disjoint nonempty finite sets which partition X. That is,

letting
821 = @ gk
k=1

denote the class of nonempty sets, we have an equivalence
Pin = 8[821]

of classes. Since the exponential generating function of € is exp(z), by considering
how the indeterminate y enters the formula we find that

Ptn(z,y) = exp(y exp(z) — y).
For any n, k € N, the fact that

S(n, k) = nl[z"y*] exp(y exp(z) — y)
can be used to give another proof of Excercise 3.11.

Examples 11.17 and 11.19 illustrate the reason why a class A for which Ay = @
is said to be “connected”. In Example 11.17, the connected components of the
graphs from the class J were graphs from the connected class H. In Example
11.19, the parts (“connected components”) of the set partitions from the class Ptn
were from the connected class €>;. The classes J and Ptn are not connected. The
structures from these classes are built up as disjoint unions of pieces, each of which is
from a connected class. In short, structures from a connected class often serve as the
connected components out of which structures from other classes are constructed.

Definition 11.20 (Composition of Classes). The exponential formula is the proto-
typical special case of composition of classes. Let A and B be classes of structures,
with A connected (i.e. Ay = &). We define the composition of A into B to be the
class B[A] defined as follows. Fix a finite set X. A B[A]|-structure on X consists of
a pair (&, 3) such that

e ¢ is an E[A]-structure on X, and

e (3 is a B—structure on &.

Remember, ¢ is a finite set (of A-structures), so this makes sense. In set—theoretic
notation, the definition is

BlAlx = |J (&) xBe).

Ee€Alx
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FIGURE 11.7. a structure from the class B[A].

Verification of condition (i) for B[A] is left as an exercise. If £ is an element of
(Ex[A])x then & is a k—element set, so there are #By different B-structures on &.

Therefore -

= (#ExA]x) (#Bx).

k=0
This verifies condition (ii) for B[A].

(The notations E;[A] and B[A] are slightly inconsistent when B = &, but the
two constructions are “naturally equivalent” in the sense of Section 12.) Figure 11.7
attempts to illustrate the generic form of a structure from the class B[A].

Theorem 11.21 (The Compositional Formula). Let A and B be classes with A
connected. Then the exponential generating function of B[A] is B(A(x)).



Proof. We calculate that

O

Example 11.22. Let Q be the class of graphs which are connected, have exactly one
cycle, have maximum degree at most three, and are such that each vertex of degree
three is on the unique cycle. We will determine #Q,, for all n € N. Fix a finite set X

and consider a graph v € Qx. Directing each cut—e

dge of v towards the unique cycle

C of v shows how we may regard v as a collection of nonempty directed paths which

have been fit together “inside” the graph cycle C.

See Figure 11.8 for an example.

Conversely, given an unordered set of pairwise disjoint nonempty directed paths
partitioning X and a graph cycle on this set of paths, a graph in Qx is constructed

by connecting the terminal vertices of these paths
nonempty directed path is equivalent to a structu
this analysis gives an equivalence of classes

Q = H[X % X7]
with the class H as in Example 11.17. Therefore

Q) - 1

X

according to the graph cycle. A
re from the class X % X*, so that

1[ 1 T z?
— log _ _

2| 1—z/(1—x) l—2z 2(1—x)?
B 1_1 1 1 1 T x?
T oo\ T \0 ) 1 T 2
B 1 [ > on > " s 11 100 j+1 1o
S 1) D5 DD SELEE DI (A

=1 n=1 =0 =0

1] X /o1 n—1\
= 3 (2—1—1).’13—|—;( ——1- ):L‘]
B i (27t —p2 —n —2)(n — 1) 2"
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Ficure 11.8. illustration for Example 11.22.

Hence, the number of graphs in Q with vertex set {1,2,...,n} is #Q¢ = #Q; = 0,

" so =1 (1Y),

for all n > 2. In particular, #9; = 0 as well, as it should be.

Example 11.23 (Endofunctions and Doubly—Rooted Trees). In this example we
obtain the formula #7, = n"~2 (for all n > 1) of Example 11.18 by a more direct
combinatorial argument.

Let § denote the class of endofunctions. It is clear that #§, = n" for all
n € N. Let R = T° be the class of rooted trees, and fix a finite set X. Directing
each edge of a rooted tree v € Ry towards the root of v, and putting a directed
loop at the root of v, determines the functional directed graph of an endofunction
on X. This determines an injective function Rx — Fy for every finite set X. Thus,
R may be regarded as a subclass of §.

The functional directed graph of an arbitrary endofunction is the disjoint union
of an unordered set of (weakly) connected components. Letting € denote the class
of endofunctions for which the functional directed graph is connected, we have § =
gle].

The functional directed graph of an endofunction in € may be uniquely decom-
posed as the disjoint union of an unordered set of endofunctions in R, with the loops
at the roots replaced by a cyclic permuation of the roots. This gives an equivalence



C C[R]
FIGURE 11.9. the equivalence € = C[R].
¢ = C[R], in which C is the class of cyclic permutations. See Figure 11.9 for an

example.
Thus we have § = E[C[XR]], and so

Flz) = exp (log (1_;}%@))) 1—;1?(:1:)'

Since #§, = n" for all n € N, we conclude that

1 =z
- R0 = F(x) :nz:%n g

Now consider the class R®* = (T°)* of doubly—rooted trees. The rootings are
done sequentially, so the root vertices are ordered: one first, the other second. We
denote the first root with a circle and the second root with a triangle. Also, the
two root vertices may coincide. If v is a doubly-rooted tree on the set X then ~
contains a unique directed path ¢ from the second root to the first root. Every edge
of v not on ¢ may be directed towards ¢; also put a directed loop at each vertex on
¢. This decomposes v uniquely as the disjoint union of a nonempty unordered set
of rooted trees in R, and a total order on the set of their roots. See Figure 11.10 for
an example.

This gives a natural equivalence

R = (X« X[R] = éﬂ%k,



A

Re (C*)[R]
FIGURE 11.10. the equivalence R®* = (X x X*)[R].

and hence

T*%(z) = R*(z) = TR f)(;g:c)

Comparing this with the above formulas, we get

= F(z)—1.

n

d\? = x” N T
(x%> T(x) = ;Tﬂ(#‘%)ﬁ = Zn g

n=1

Therefore, for all n > 1 we have #7,, = n" 2.

Example 11.24 (Expected Number of Leaves in a Tree). Let T be the class of
trees, let X be a finite set, and let T' € Tx be a tree with vertex—set X. Denote
by ¢(T) the number of leaves (vertices of degree at most one) in 7. Assume that
#X = n. Among all the n"~2 trees in Ty, what is the average value of £(T))? That
is, how many leaves should we expect to see on a tree with n vertices? First of all,
since the designation of a root vertex v € X does not change the number of leaves
of T', we may just as well compute the average of ¢(T) as (T,v) varies over all n"!
rooted trees in T®. This allows us to use the recursive structure R = X x E[R] of the

class R = T* of rooted trees.

Consider the bivariate generating function

[e.e] n

Rx,y):=> [ >, 4@ %

n=0 \ (Tw)ERy,



For any n > 1,

L, = nl[z"] %R(m,y)

= > un
=1 (Tw)eR,
is the total number of leaves among all the rooted trees in R,,. Thus, the answer to
our question is L, /n"" 1.

Notice that for (T,v) € R, the leaves of T are:

e those vertices which have no children in (7, v), that is, the terminal vertices of
(T, v), and
e if the root vertex has at most one child, then the root is also a leaf.
This special case for the root vertex is kind of annoying, so let’s ignore it for the
moment. For a rooted tree (T,v) € R, let 7(T',v) be the number of vertices which
have no children in 7', and let

o0

B(z,y) ::Z Z y () j;—?

n=0 \ (Tw)ER,

To obtain an expression for B(z,y), we use the recursive structure R = X E[R]. In
this equivalence, if (7', v) corresponds to (v, {(S1,w1), ..., (Sk,w)}), then

1 if k=0,
T(T’U) - { T(Sl,wl) + "‘+T(Sk,wk) if k > 1.

Keeping track of 7(7',v) through the equivalence R = X x E[R] yields the functional
equation

B(z,y) = =«

> B(x,y)k
v+ il
k=1

= z(y +exp(B(z,y)) — 1)
for the generating function B(z,y).
Now we can handle the special case of the root vertex, by noticing that if (T, v)
corresponds to (v, {(S1,w1),. .., (Sk, wk)}) as above, then

1 if k=0,
UT)=q 1+7(S1,u) if k=1,
7(S1,v1) + -+ (S, vp) if k> 2.

From this, we see that

>, B(z,
R(z,y) Z:ty+y3®w%+§:—%%ﬁ
k=2 ’

= 2(y +yB(z,y) +exp(B(z,y)) — 1 — B(z,y)).



The functional equation for B(z,y) and the equation for R(x,y) in terms of B(z,y)
are of the form to which the Lagrange Implicit Function Theorem applies, in this
case with K = Q(y), G(u) = exp(u) + y — 1, and F(u) = exp(u) + (y — 1)(1 + u).
Notice that B(z,y) = *G(B(x,y)) and R(z,y) = xF(B(z,y)), and that F'(u) =
(d/du)F(u) = exp(u) + y — 1 = G(u). Thus we calculate that

0

L, = nllz"] a—yR(:E,y) = n! %[aj"]xF(B(x,y))

y=1 y=1

~ %[azn-ww(z,y))

9 o n—1
. =n(n —2)! a—y[u JF'(u)G(u)

y=1

= - 2N a%@xp(u) Ly

= n(n—2)[u" Hnexp((n — 1)u)
_ n (n_2)!(n_1) :n2<n_1)n72.

(n—2)!
Hence, finally, we see that the average number of leaves among all trees on the set

(1,2,...,n}is 3
Gl (1—l)n_ ~Z

y=1

nn—1 n e
asymptotically as n — oo. Informally speaking, in a large random tree one expects
that something close to the fraction 1/e ~ 0.36787944 ... of the vertices are leaves.

11. Exercises.

1.  Let (AW, A® . ) be a locally finite sequence of classes. Show that B :=
P2, AW satisfies condition (i) of Definition 11.1.

2. Let A and B be classes of structures. Show that A x B satisfies condition (i) of
Definition 11.1.

3. Show that if A is a connected class (i.e. Ay = &) then the powers of A form a
locally finite sequence.




4. Let A and B be classes, with A connected. Show that B[A] satisfies condition
(i) of Definition 11.1.

5. Recall that a derangement is a permutation with no fixed points. Let D be the
class of derangments.

(a) Derive the exponential generating function

exp(—x)
1l—a2

D(x) =

(b) Use part (a) to give another solution for Example 2.6.

6. For a permutation o € §,,, let ¢(0) be the number of cycles of 0. What is the
average value of ¢(0) among all n! permutations in §,,?

7. Use the formula of Example 11.19 to give another solution for Exercise 3.11.

8.  Fix a positive integer k. For a permutation o, let ¢(o, k) be the number of
cycles in o of length exactly k.

(a) Obtain an algebraic formula for the bivariate exponential generating function

S(z,y) =) (Z ya("””) %

n=0 o Sn

(b) Show that the average number of cycles of length & among all n! permutations
in 8, is

1/k if k <mn,

0 ifk > n.

9. Let Y be the class of (nonrooted) labelled trees in which each vertex has degree
either 1 or 3. Show that for all k£ > 0, #Y2r+1 = 0 and

2k)! (2k + 2
#92k+2=(2—k)( ;)

10(a) Let A be the class of rooted labelled trees such that each vertex has at most
two children. Show that the exponential generating function for A is



(b) Let B be the class of rooted labelled trees which are in A and are such that the
root vertex has at most one child. Show that the exponential generating function

for B is
B(x)=1—-+V1 -2z — 22

(c) Let U be the class of endofunctions f : X — X such that for every v € X,
#f~1(v) < 2. Show that the exponential generating function for U is

1
V1—2r— 22

(d) Use part (c) to obtain a formula for the number of endofunctions f : N,, — N,
in the class U, for every natural number n € N.

U(z) =

11(a) Derive the following formula
> ZL‘2k+1 1 <1 + l’)
Z = —log :
— 2k+1 2 11—z

(b) Let Q be the class of endofunctions in which each cycle has odd length. Ex-
plain the following formulas which implicitly determine the exponential generating

function Q(z) of Q:

R(x
Qr) = /RS,

R(z) = x exp(R(x)).

12. A triangle—tree is a connected graph in which every edge is in exactly one
cycle, and this cycle has length three (see Figure 11.11). Show that the number of
triangle—trees with vertex—set N,, is 0 when n is even, and is
(2K)!1(2k + 1)*1
K12k

when n = 2k 41 is odd.
(Hint: Describe the recursive structure of the class of rooted triangle-trees.)

13.  Let § be the class of endofunctions, and for ¢ € Fy, let p(¢) denote the
number of fixed points of ¢: that is, the number of v € X such that ¢(v) = v.

(a) Obtain functional equations which determine the exponential generating func-

tion .
Flz,y)=>_ (Z y”””) %

n=0 \¢egn

(b) Among all endofunctions ¢ € §,, what is the average value of p(¢)?



FIGURE 11.11. a triangle—tree.

FIGURE 11.12. an oriented cactus.

14. A cactus is a connected graph such that each edge is in at most one cycle.
Equivalently, it is a connected graph in which each block (2-connected component)
is either an edge or a cycle. An oriented cactus is a cactus in which each cycle has
been directed in one of its two strongly connected orientations. (See Figure 11.12.)



(a) Show that for all n > 1, the number of oriented cacti on the set {1,...,n} is

n-l k-1
n n—2
(=11 (n—1—k)'

k=0

(b) Derive a functional equation that implicitly determines the exponential gen-
erating function for the class of rooted non—oriented cacti.

(c) For each n € N, what is the number of (non-rooted, non-oriented) cacti on
the set N,,?

15(a) Show that the number of rooted trees on the set NN,, which have exactly k
terminal vertices is

(n—&)! (Z) Stn—1,n — k).

(b)* Find a combinatorial (bijective) proof of this result.

16.* Revisit Exercise 8 of Chapter 8. Find a combinatorial proof of Exercise
8.8(b).

17.* For n,k € N, let g(n, k) be the number of connected graphs with k edges and
vertex—set {1,2,...,n}; also let Q,(t) := Z(:”O_I)/Q q(n, k)tk.
(a) Explain an efficient algorithm for computing Q,,(¢).

(H%nt:)the generating function Y~ @, (t)z™/n! is related to an easily determined
series.

(b) If you know MAPLE or another computer algebra application, write some code
and crank out Qg(t). (Or do it by pencil and paper! ;-)

11. Endnotes.

Here are three books that treat exponential generating functions in detail:

e [.P. Goulden and D.M. Jackson, “Combinatorial Enumeration,” John Wiley &
Sons, New York, 1983.

e R.P. Stanley, “Enumerative Combinatorics, vol. II,” Cambridge U.P., Cam-
bridge, 1999.



e H.S. Wilf, “Generatingfunctionology,” Academic Press, New York, 1994.

That the number of labelled trees with n vertices is n" 2 is attributed to Cay-
ley, in 1889. His solution is a bit sketchy, however. A bijective proof was given in
1918 by Priifer. See page 51 of

e N.L. Biggs, E.K. Lloyd, and R.J. Wilson, “Graph theory: 1736-1936,” Clarendon
Press, Oxford, 1976.

There are other kinds of generating functions besides the ordinary generating
functions and exponential generating functions we have discussed. For example, in
number theory it is frequently useful to encode a sequence aq, as, ... of integers by
means of its Lambert series: . .

x
Z Qg 1 xk .
k=1

It is not difficult to verify that for every n > 1, the coefficient of x™ in this series is
D,
din

the sum being over all positive divisors of n. For an introduction to several of the
various forms of generating functions, see

e P. Doubilet, G.-C. Rota, and R.P. Stanley, On the foundations of combinatorial
theory. VI. The idea of generating function, in “Proceedings of the Sixth Berkeley

Symposium on Mathematical Statistics and Probability Vol. II: Probability theory,”
Univ. California Press, Berkeley, 1972.

e R.P. Stanley, Generating functions, in “Studies in Combinatorics” (G.-C. Rota,
ed.), Math. Assoc. America, Washington, 1978.



12. Foundations of Exponential Generating
Functions.

In Section 11 we introduced the theory of exponential generating functions and
applied it to solve several enumeration problems. There were some shortcomings
of that discussion, though, which we address in this section. The main point of
dissatisfaction is that the concept of equivalence used in Section 11, while adequate
for numerical purposes, is much too coarse to discern the more interesting properties
of classes of structures. The underlying problem is that Definition 11.1 does not
really provide an adequate foundation for the theory even though, as we saw, much
of it can be developed satisfactorily at that level of detail. Thus, we begin with a
more sophisticated definition of a “natural” class of structures.

Definition 12.1 (Natural Classes of Structures). A natural class of structures A
associates to each finite set X another finite set Ax, so that the following conditions
hold.
[*V] There is an algorithm V4 which takes as input an A-structure o« € Ax and
returns as output the set X on which « is defined.
[*C1] For finite sets X and Y and a bijection f : X — Y there is an induced
bijection f.: Ax — Ay.
[*C2] For the identity bijection idyx : X — X, the induced bijection is the identity
bijection

(1dx)* = idAX . .AX — .Ax.
[*C3] For bijections f : X — Y and g : Y — Z, the induced bijections are
compatible with composition of functions:

(gof)*:g*of*:AX_)AZ-

If we want to emphasize the class A which is being used to produce the induced
bijection f, then we will write f, instead.

This looks like a lot to require, but we will see that everything in Section 11
satisfies these much more demanding conditions.

First of all, I want to explain the intuitive content of the axioms. The axiom
[*V] says that if one is handed an arbitrary structure « from the class A then there is
a computation V 4 which can be performed with this input in order to determine the
set (of vertices) on which « is defined. The axiom [*C1] says that given a bijection
f: X =Y, if we take the set of A-structures defined on X and “relabel the vertices
according to f” then we obtain a bijection f, from Ax to Ay. The key idea is that
f« is the result of changing the names of the vertices only, leaving the additional



structure (from the class A) unchanged. Axiom [*C2] is then an obvious requirement
— if we do not change the names of the vertices at all then each A-structure on X
must be mapped to itself. Axiom [*C3] is likewise a necessary requirement for this
interpretation of the induced bijections, which I leave to you to ponder.

Example 12.2 (Graphs). As an example, consider the class G of graphs. Let’s
verify the axioms to show that G is a natural class. Given a graph v = (V| E), we can
determine its vertex—set Vg(y) := V, so that axiom [*V] holds. For the remaining
axioms, let f: X — Y be a bijection, and consider v = (X, F) € Gx. We define

This defines a function f, : Gx — Gy. It is now a routine if somewhat tedious
matter to check that this definition satisfies axioms [*C1], [*C2], and [*C3].

Example 12.3 (Endofunctions). As another example, consider the class § of end-
ofunctions. Let’s verify the axioms to show that § is a natural class. Given an
endofunction ¢, we can determine its vertex-—set Vz(¢) := dom(¢), since the domain
of a function is implicit in its definition. Thus, axiom [*V] holds. For the remaining
axioms, let f : X — Y be a bijection, and consider ¢ € Fx. We define

fu(9) = fodo fiY Y
This defines a function f, : §x — Jy. It is now a routine if somewhat tedious
matter to check that this definition satisfies axioms [*C1], [*C2], and [*C3].

The next issue is to show that these axioms imply the conditions of Definition
11.1.

Proposition 12.4. Let A be a natural class of structures. Then A satisfies the
conditions of Definition 11.1.

Proof. Let X and Y be finite sets, and assume that o € Ax N Ay. From axiom
[*V] we have V4(a) = X and V4(«) =Y, so that X =Y. This implies condition
(i). For the second condition, let X and Y be finite sets such that #X = #Y. By
Proposition 1.1 there is a bijection f : X — Y. By axiom [*C1] there is thus a
bijection f, : Ax — Ay. By Proposition 1.1 again, it follows that #Ax = #Ay,
verifying condition (ii). O

The main problem with Section 11 is that the concept of equivalence of classes
used there was much too weak to be really interesting. The correct idea of equiv-
alence takes some getting used to but enables us to see some beautiful subtleties
which were invisible before. In order to define it we first need to properly describe
a few things that we’ve already done.

Definition 12.5 (Natural Transformations). Let A and B be natural classes. A
natural transformation ™ from A to B is denoted by 7 : A = B and is defined as
follows. For each finite set X there is a function 7y : Ax — By, and these satisfy



the following axiom:
[*T] Let f: X — Y be a bijection between finite sets. Then the diagram

Ay 24 Ay

TXi lTY
By % By

commutes. In less visual terms, this means that 7y o f4 = fp o 7x as functions from

.AX to By.

The intuitive content of this definition is as follows. Each 7x is a “procedure
for changing an A-structure on X into a B—structure on X”. Commutativity of the
diagram says that 7x and 7y really are the same procedure: only the names of the
elements of the underlying vertex—set have been changed according to the bijection
f X — Y. This does not change the effect of the transformation 7. That is, the
transformation 7 does not depend on the names of the elements of the set underlying
the structures on which it acts.

Example 12.6. Let R := T° be the class of rooted trees, and let § be the class
of endofunctions. In Example 11.22 we considered R to be a subclass of §. More
precisely, we were considering a natural transformation 7 : R = § defined as follows.
For a finite set X, the function 7x : Rx — Fx takes as input a rooted tree (T,v) €
Rx and returns as output the following endofunction 7x(7,v) := ¢ € Fx. We let
¢(v) := v, and for every other w € X we let ¢(w) be the unique parent of w in the
rooted tree (T, v). Care must be taken to verify the axiom [*T], but again it follows
directly from the definitions. All the functions 7x are injective in this example, so
we can consider R as a subsclass of § via the natural transformation 7.

Example 12.7. We define a natural transformation 7 from the class § of endo-
functions to the class G of graphs, as follows. For any finite set X, the function
nx : §x — Gx is defined as follows. For any endofunction ¢ € Fx, the graph nx(¢)
is defined as follows: nx(¢) := (X, E) in which

E:={{v,w} C X : v# w and either w = ¢(v) or v = p(w)}.

It is a good exercise to check that axiom [*T] holds in this example. Notice that in
general the functions nx are neither surjective nor injective.

Definition 12.8 (Natural Equivalence). Let A and B be natural classes. A natural
equivalence between A and B is a pair of natural transformations 7 : A = B and
p B = A such that for every finite set X, the functions 7x : Ax — Bx and
px : Bx — Ax are mutually inverse bijections. If there exists a natural equivalence
between the classes A and B then we say that these classes are naturally equivalent,
and denote this relation by A = B.



This supersedes the notation used in Section 11 but does not contradict it —
in every case in which the symbol = was used in Section 11 the classes are in fact
naturally equivalent.

Next, we revisit the constructions of Section 11 for natural classes.

Definition 12.9 (Sums of Classes). Let (AW : j > 1) be a locally finite sequence
of natural classes. Then the sum B := @;’;1 AU is a natural class. We check the
axioms of Definition 12.1 for B. For an arbitrary B-structure § = (i,a) we let
Vs(8) := V4 (a). For a finite set X, if 3 € Bx then a € AY, so that Vs(3) = X
as desired, by axiom [*V] for A®. This verifies [*V] for B. Consider a bijection
f X — Y between finite sets. We define the induced bijection fg : Bx — By as
follows: for each 3 = (i,a) € By, let fg(8) := (i, fa@()). Since each f,u is a
bijection from .Ag? to Agj), it follows that fz is a bijection from Bx to By. This
establishes [*C1] for B. Axioms [*C2] and [*C3] follow from the construction of the
induced bijections fg, as can be checked.

Definition 12.10 (Subclasses and Difference of Classes). For natural classes A
and B, in order to say that A is a subclass of B we not only need Ax C Bx for
every finite set X, but also we require that V4(a) = Vg(a) = X for all a € Ay,
and that fa(a) = fa(a) € Ay for all @« € Ax and f : X — Y. In this case, the
difference B \ A is again a natural class, with operations Vg. 4 and fg._4 induced
from the corresponding operations on B. Thus, B \ A is also a subclass of B.

Definition 12.11 (Superposition of Classes). For natural classes A and B, the
superposition A& B is also a natural class. For an (A&B)-structure (o, ) we may
define V 44 5(a, B) := Va(a) to satisfy axiom [*V]. If («, 5) € (A&B)x and f: X —
Y is a bijection, then

faes(a, B) = (fala), f5(0))
satisfies axioms [*C1], [*C2], and [*C3].

Definition 12.12 (Products and Powers of Classes). For natural classes A and B,
the product A % B is also a natural class. For an (A * B)-structure (o, 5) we may
define V g.5(a, B) := V(o) UVg(f) to satisty axiom [*V]. If (a, B) € (A *B)x and
f: X — Y is a bijection, then

fass(a, B) := (fale), f5(5))

satisfies axioms [*C1], [*C2], and [*C3]. Iterating this construction shows that for
any natural class A, each of the powers A* is also a natural class.

Definition 12.13 (Finite Strings and Connected Classes). If A is a connected
natural class then the sequence (A* : k € N) of powers of A is locally finite, and it
follows from Definitions 12.9 and 12.12 that A* is a natural class.



Definition 12.14 (Rooted Structures). For a natural class A, the class A* is also
natural. For an A*-structure (a,v) we may define V4e(a,v) := V4(a) to satisfy
axiom [*V]. If (a,v) € A% and f: X — Y is a bijection, then

fas (@, 0) := (fala), f(v))
satisfies axioms [*C1], [*C2], and [*C3].

Definition 12.15 (Composition of Classes). If A and B are natural classes, with
A connected, then B[A] is a natural class. First consider the special case of the
class E[A]. For an E[A]-structure £ we may define

Ve (§) = U Va(a)

acg

to satisfy axiom [*V]. If f : X — Y is a bijection, then the induced bijection
fer : E[A]x — E[A]y may be defined as follows. For each { € E[A]x let

fera(§) == A{(flva@)ale) : a €}
That is, for each A-structure o in &, let f|v, (o) be the restriction of f to the subset
Va(a) € X. This gives a bijection from V 4(«) to some subset of Y, and we take the
image of a under the corresponding induced bijection (f|v,())a of A-structures.
One can check the axioms [*C1], [*C2], and [*C3] for this construction. Moreover,
there is another bijection to be considered, since both £ € E[A]|x and fepq(§) are

finite sets. Namely, there is a unique bijection ]?: § — few(§) with the property
that for all a € &,

~

Va(f(@)) ={f(v) : veVala)}.

-~

This merely says that f(«) is the part of fepq(£) which corresponds to o under
the renaming of vertices f : X — Y. Now we can check the axioms in the general
case B[A| of composition of classes. Given a B[A|-structure (&, 5) we may define
V(€ 8) = Ve (§) to satisfy axiom [*V]. If (§,5) € B[A]x and f: X — Y isa
bijection, then we let

Foi(&,B) == (fer (€), f5(B)).

We have used the bijection f 1 & — fen(§) to induce the bijection fB : Be —
Byeaye) which is then applied to the B-structure § € Be. One can check the
axioms [*C1], [*C2], and [*C3] for this construction, but it is rather involved.

In summary, we have seen that all the constructions of Section 11 can be carried
through more precisely for natural classes, and yield natural classes in return. This
level of detail is not always appropriate when solving particular problems, but it is
important to establish the foundations of the theory. It is a worthwhile exercise to
review Section 11 and understand why each of the equivalences discussed there is in
fact a natural equivalence.



There are classes which are equivalent but are not naturally equivalent — so
from now on we speak of numerical equivalence when referring to the weaker relation.
Notice that the class § of permutations and the class L := X* of total orders
are numerically equivalent, since they both have exponential generating function
S(z) = (1 —z)~!' = L(z). The obvious question arises as to whether or not these
classes are naturally equivalent. In fact they are not naturally equivalent, and much
more is true: there are no natural transformations from 8§ to L. This is a
very strong statement! There seem to be many possibilities for attempting to define
a natural transformation from 8§ to L. How can we be sure that none of them will
work? The key idea is that with a natural transformation 7 : A = B information
can only be lost (or at best preserved — never added) when passing from a € Ax to
Tx(a) € Bx. As a consequence of this, 7x(a) has at least as many “symmetries” as
a has. We'll next make these cryptic comments precise, and then apply this strategy
to the classes & and L.

Definition 12.16 (Automorphisms). Let A be a natural class, X a finite set, and
a € Ax. An automorphism of a is a permutation o € Sx such that o.(«a) = a.
Here we are regarding ¢ : X — X as a bijection, and considering the induced
bijection o, : Ax — Ax guaranteed by axiom [*C1]. Let aut(«) denote the set of
all automorphisms of a.

Proposition 12.17. Let A be a natural class, X a finite set, and o € Ax. Then
aut(«) is a subgroup of Sx.

Proof. Certainly aut(«) is a subset of 8x, and hence is finite. By axiom [*C2] we
have (idy), =ida, : Ax — Ax, so that (idx).(«a) = « and therefore idx € aut(a).
If 7,0 € aut(a) then — using axiom [*C3] — we have

(7 00)s(a) = m(02(0)) = m.(0) = o,
so that moo € aut(«) as well. This shows that aut(«a) is a finite set of permutations

which contains the identity permutation and is closed under functional composition.
From this it follows that aut(«) is a group, necessarily a subgroup of Sx. O

Definition 12.18. Let ‘B denote the class of permutation groups: for any finite
set X, Py is the set of all subgroups I' of Sx. Given a permutation group I', we
can determine its identity element ¢ and define V(I') := dom(¢), the domain of the
bijection ¢. This verifies axiom [*V]. We leave as an exercise the verification of the
axioms [*C1] through [*C3], noting only that for a bijection f : X — Y, the induced
bijection is defined by

f.D):={fomoft: meT}

Proposition 12.19. For any natural class A, the construction aut : A = P is a
natural transformation.



Proof. We check the axiom [*T] for aut. Let f : X — Y be a bijection between
finite sets, and let & € Ax. We must chack that fyg(aut(o)) = aut(fa(a)). Consider
an arbitrary permutation ¢ € 8y. Then o € aut(fa(«)) if and only if o4(fa(a)) =
fa(a). On the other hand, o € fy(aut(a)) if and only if 0 = fomo f~! for some
7 € aut(«). This condition implies that

oa(fala)) = (faomao fi' o fa)(a) = fa(a),
using axioms [*C2] and [*C3]. This shows that fg(aut(«)) is a subset of aut(fa(a)).
Conversely, for any o € aut(fa(a)), let 7 := fL oo o f. Now

() = fa' (0alfala))) = f2'(fala)) = o,

so that m € aut(«). Also, since

fomof Tl =foflogofof =0,
this shows that aut(fa(a)) is a subset of fiz(aut(c)) as well. This completes the
proof. O

Proposition 12.20. Let A and B be natural classes, and let T : A = B be a
natural transformation. For any finite set X and o € Ay, aut(«a) is a subgroup of
aut(7(a)).

Proof. Consider any o € aut(a), so that o4(e) = . By axiom [*T], we have
op(T(a)) = 7(0a()) = T(a), so that o € aut(7(«)) as well. O

Example 12.21. Now we can finally show that there is no natural transformation
from § to L. Suppose that there were such a transformation 7: 8 = L. Fixn € N
and let ¢ € §,, be the identity permutation on N,,. Then ¢ := 7(¢) is a total order on
N,, and, by Proposition 12.20, aut(:) is a subgroup of aut(¢). However, as is easily
seen, aut(c) = 8§, and aut(¢) = {¢}. For all n > 2 it is impossible for §,, to be a
subgroup of {¢}, and therefore the hypothetical 7 does not exist.

We close our discussion of exponential generating functions with an example
which could have been included at the end of Section 11. However, the combinatorics
is a little complicated and the algebra is very complicated, so we have postponed
it until now. We limit ourselves to merely sketching the main steps, leaving the
verification of details and the substantial algebraic manipulations as good exercises.

Definition 12.22 (Nested Set Systems). A nested set system on the set X is a
pair (X, A) in which X is a finite set and A is a set of subsets of X such that

e If A, Be A theneither ACBorBC Aor ANB=0.

(An example is illustrated in Figure 12.1.) Let Nx denote the set of all nested set
systems on the set X. Axioms [*V], [*C1], [*C2], [*C3]| are easily verified, so that
this defines the natural class N of nested set systems.



X

FIGURE 12.1. a nested set system.

To analyze the class N, first notice that (&, @) and (&, {&}) are two different
N-structures on the empty set. Also, if (X, A) is a nested set sytem and v € X is
such that {v} € A, then (X, AU {{v}}) is also a nested set system. Let’s say that
a nested set sytem (X, A) is proper if A € A implies #A > 2, and denote by M the
subclass of N consisting of the proper set systems. The proper part of (X, A) € Nx
is (X, A°) in which A°:={A € A: #A > 2}. Let P be the natural class such that
for any finite set X,

Px ={(X,A): AC X}.
For each finite set X, define a function
TxlNX — NQX?XXMX
(X,;A) — (g,{AeA: A=0}), (X, {ve X: {v} €A} (X, A%).

We leave it as an exercise to show that this construction defines a natural transfor-
mation 7 : N = Ng * (P&M), and that moreover this transformation is one part of
a natural equivalence N = Ng * (P&M).

To further analyze the class M, let’s say that a nested set system (X, A) is a
cell if it is proper and X € A. Let Q be the class of cells. If (X, A) is a cell then
(X, A~ {X}) is a proper nested set system such that:

o #X >2 (since if #X <1 then (X, A) would not have been proper), and
e X is not in A~ {X}.



X X
FIGURE 12.2. the equivalence Q =M\ (g @ €1 @ Q).

A little thought shows that this gives rise to a natural equivalence
QEM\(Eo@El@Q)

See Figure 12.2 for an example of this equivalence.
Finally, an arbitrary proper nested set system can be expressed uniquely as
the disjoint union of a collection of cells and singleton vertices, so that

M=ExEQ].

These recursive relations among the classes N, M, and Q lead to functional
equations relating the exponential generating function

New=Y | X )L

n=0 \ (Nn,A)eN,

to the analogous exponential generating functions M (z,y) and Q(x,y) for the sub-
classes M and Q, respectively. The remainder of the solution to this enumeration
problem (determining #N,, for all n € N) is relegated to a series of exercises.



12. Exercises.

1. In the following, A denotes a connected class, C is the class of cycles, § is
the class of endofunctions, £ := X* is the class of total orders, R := T* is the class
of rooted trees, and 8§ is the class of permutations. Prove the following natural
equivalences.

(a) e =Xxx«L.

(b) L*=Lx*xXxL.

(c) E[A]* =E[A] xA°.

(d) C[R]* = L°[R].

(e) What expression for §* follows from (c) and (d)?
(f) S&L = L&L.

2.  The classes T**® of triply—rooted trees and §°* of rooted endofunctions are
numerically equivalent, since #JT°*** = n"*t1 = #3F* for all n € N. Are these classes
naturally equivalent?

3.* Let A, B, and D be natural classes such that A ® D = B & D. Prove that
A = B. (This is trivial for numerical equivalence! For natural equivalence it is quite
subtle.)

Exercises 4, 5, and 6 could have been put in Chapter 11, but as they are rather
more difficult than the eaarlier ones I’ve chosen to postpone them until now.

4. A labelled plane tree (LPT) is a tree with vertex-—set {1,2,...,n} (for some
n € N) which is embedded in the plane as a planar graph. Two embeddings are
considered the same if and only if they are “ambient isotopic”; this means that
the whole plane may be stretched and squished like a rubber sheet to bring one
embedding onto the other. Folding or tearing is not allowed. For example, of the
LPTs pictured in Figure 12.3, the center one is equivalent to the one on the left,
but not to the one on the right. Let h(n) be the number of (equivalence classes of)
LPTs with vertex—set {1,2,..,n}, for each n € N. The first few values are h(0) = 0,
h(1) =1, h(2) =1, h(3) =9, and h(4) = 20. Determine h(n) for all n € N.
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Ficure 12.3. labelled plane trees.

5. For a finite graph G = (V, E), the Wiener index of G is defined to be

W(G) = Zdist(;(v, w),
vEW
in which the sum is over all unordered pairs of distinct vertices of G, and dist¢(v, w)
denotes the distance between v and w in G. Give a formula for the average value
of W(T') as T ranges over the set of all trees with vertex-set {1,2,...,n}, for each
n € N.

6. For a finite graph G = (V, E), the productivity of G is defined to be

7(G) = [ dese()
veV
in which the product is over all vertices of G, and deg(v) denotes the number of
edges incident with v in G. (This is the number of endofunctions ¢ : V' — V such
that {v, ¢(v)} € F for all v € V.) Give a formula for the average value of 7(7") as
T ranges over the set of all trees with vertex-set {1,2,...,n}, for each n € N.

The remaining exercises outline a solution to the enumeration of nested set—
systems.

7. Show that the class N of nested set systems is a natural class.

8. Show that the functions 7x : Nx — Ng x Px x Mx constructed above define a
natural transformation which is one part of a natural equivalence N = N * (P&M).

9. Give detailed justifications of the natural equivalences
Q=M~(ErdE1DQ)



and
M= ExE[Q]

discussed above.

10.  Derive functional equations relating N(x,y), M(x,y) and Q(z,y) from the
natural equivalences among N, M, and Q.

11. Use the functional equations of Exercise 10 to show that
1 2 —
Vo = U (e (2]
Y 1+y 1+y

in which R(t) = texp(R(t)). (Hint: the change of variables z := y/(1 + y) is very
useful.)

12. A normed ring is a commutative ring R with a norm function |-| : R — [0, 00)
that satisfies the following axioms:

e |0l =0and |1] =1,

e for all a,b € R, |ab| = |a||b|, and

o for all a,b € R, |a+b| < |a| + [b].

For example, C with the usual modulus function is a normed ring.

When R is a normed ring, we may relax the definition of convergence of a
sequence of formal power series fi(x) as k — oo, as follows. We require that for all
n € N there exists a constant A,, € R such that for every real € > 0 there exists a
K = K(n,e¢) such that for all k£ > K,

A, — ") i) < e.

If this holds then the formal power series F(z) = > >°  A,z" is the limit of the
sequence (f(z): k>1).

(a) Show that if (fx(z) : k > 1) converges in the sense of Section 7, then it
converges in the above sense.

(b) Give an example of a sequence of formal power series in R|[[x]] which converges
in the above sense but not in the sense of Section 7.

(c) Extend this definition of convergence to sequences of formal Laurent series
over a normed ring.

13(a) By setting y =1 in Exercise 11, obtain an expression for Y~  (#N,,)z"/n!
as the limit of a sequence of formal power series in R[[x]] which converges in the
sense of Exercise 12.



13(b) Deduce that for all n € N:

e kn—l—k—l

N0 =42y
k=1

12. Endnotes.

Our approach to the foundations of exponential generating functions follows
the ground—breaking paper of Joyal:

e A. Joyal, Une théorie combinatoire des séries formelles, Adv. in Math. 42
(1981), 1-82.

Further developments of this theory are explained in

e F. Bergeron, G. Labelle, and P. Leroux, “Combinatorial Species and Tree-Like
Structures,” Cambridge U.P., Cambridge, 1998.

Nested set—systems are naturally equivalent to certain other combinatorial
structures. Their enumeration was first given in

e J. P. Hayes, Enumeration of fanout—free Boolean functions, J. ACM, 23 (1976),
700-709.

See also

e K. L. Kodandapani and S. C. Seth, On combinational networks with restricted
fan—out, IEEE Trans. Computers, 27 (1978), 309-318.

e L. R. Foulds and R. W. Robinson, Determining the asymptotic number of phylo-
genetic trees, pp. 110-126 of “Combinatorial Mathematics VII (Newcastle, August
1979)”, ed. R. W. Robinson, G. W. Southern and W. D. Wallis. Lect. Notes Math.,
829. Springer, 1980.

These last three references were found with the help of Neil Sloane’s On—Line En-
cyclopedia of Integer Sequences:
http://www.research.att.com/~njas/sequences/index.html



13. A Combinatorial Proof of
the Lagrange Implicit Function Theorem.

In this section we give a proof of LIFT which uses slightly weaker hypotheses
than that in Section 8. It also gives some combinatorial insight into the “meaning”
of the formula which is not apparent from the previous algebraic proof.

Theorem 13.1 (LIFT). Let K be a commutative ring which contains the rational
numbers Q. Let F(u) and G(u) be formal power series in K[u]] with [u°]G(u) # 0.
(a) There is a unique (nonzero) formal power series R(x) in K[[z]] such that

R(z) = 2 G(R(x)).
(b) The constant term of R(z) is 0,and for alln > 1,

(" F(R() = ~ " /()G ().

(Notice that we do not require [u°]G(u) to be invertible in K.)

Proof. We prove this combinatorially by interpreting these formal power series as
exponential generating functions for “generic” classes of structures. More precisely,
we will interpret both sides combinatorially and define bijections which imply that

n![2"F(R(x)) = (n — D!u"™ ' F' (v)G"(u)

for all n > 1. To do this, let fo, fi, fo,... and go, g1, 9o, ... be infinitely many
indeterminates which commute pairwise and are algebraically independent over K.
Form the power series

F(u) = anm and G(u) = Zg"ﬁ
n=0 ) n=0 )

Thinking of these as exponential generating functions for classes F and G, we see
that f, represents all F-type structures on an n—element set; analogously for g, as
well. The fact that the f;—s and g;—s are indeterminates means that these series do
not satisfy any special identities — any algebraic formula which can be proved valid
for them must also be true if the indeterminates are specialized to have particular
values; for example, if f,, = #A,, for a particular class A of structures. It is in this
sense that F'(u) and G(u) are generic exponential generating functions.

In what sense, though, can we talk about a generic class of structures, which is
what we want F (and §) to be? In fact, a generic class F is just the class € of finite
sets — the only difference is in what goes into the exponential generating function.
We just agree to mark an n—element set with the indeterminate f,,, for each n € N.



If we specialize f, = #A, for some class A, then indeed there are f, choices for
putting an A-structure on an n—element set, and the generic F'(u) specializes to the
particular A(u) in this case.

Now consider the natural equivalence R = X x G[R]; this (implicitly) defines
a class R for which the exponential generating function satisfies R(z) = 2G(R(z)).
An R-structure on the set X consists of a rooted tree T" with vertex—set X and,
for each vertex w € X, a G-structure on the set of children of w in 7. But the
generic class G is just €, so R is the class of all rooted labelled trees (RLTs). The
only novelty is in how the indeterminates g; enter the formula for the exponential
generating function of R.

Let ¢(T, v, w) denote the number of children of the vertex w in the RLT (7', v).
Recalling that a G-structure on a j-element set is marked by g;, we see that the
equation R(z) = xG(R(z)) has the unique solution

R =3[ 3 g™ 5

n=0 \ (T,w)eR,
in which
g(T,v) - H Ge(Tw,0)-
weVg (T,v)
Notice that [z'|R(z) = go # 0 so that R(z) is nonzero, and from R(r) = xG(R(x))
it follows that [z°]R(z) = 0. This proves statement (a) in LIFT.

To prove statement (b), we analyze that formula combinatorially. The power
series F'(R(x)) may be interpreted using composition of classes. This must be the
exponential generating function for F[R], the class of forests of rooted labelled trees.
In this generating function, f, indicates a forest with exactly r connected compo-
nents. Thus we have arrived at a combinatorial interpretation of the LHS of LIFT:
nl[z"]F(R(z)) is the sum over all forests of RLTs with vertex—set {1,2,..,n}, in
which each forest ¢ contributes the monomial

M) = fro T] 8™
(Tw)ep

(Here we think of ¢ as a set of RLTs.) That is,

x
FR@) =Y 3 M) |5
n=0 \ peF[R],

The next step is to find a similar interpretation for the RHS of LIFT. But this
is easy! F’(u)G™(u) is u™! times the exponential generating function of the class
F* % G". A structure from this class on a finite set X is (naturally equivalent to)
an ordered (n + 2)—tuple 0 = (A, v, By, ..., B,) in which A, By, ..., B, are pairwise



disjoint subsets of X which have X as their union, and v is a designated element of
A. The contribution of ¢ to the exponential generating function is the monomial

m(0) = fya | ] 945,

i=1

Therefore,
(n— D" F (u)G™(u) = n 'nlu"uF' (u)G™(u)
1
= - )  mo)
oce(FexGn),
is 1/n times the sum of m(o) over all o from the class F*+G" on the set {1,2,...,n}.

That factor of 1/n is kind of annoying, but we can move it to the LHS by considering
the class F[R]|® instead.
In summary, our strategy for proving LIFT is to show that for n > 1,

nin[z"|F(R(z)) = n![u"|uF"(u)G" (u)

by constructing a bijection between two sets. On the LHS is the set F[R]? of pairs
(o, w) in which ¢ is a forest of RLT's with vertex—set {1, 2, ..,n} and w is a designated
vertex of ¢. On the RHS is the set (F* % §"),, with elements o as described above
in the case X = {1,2,...,n}. Moreover, in this bijection, if (p,w) corresponds to
o, then we require that M(¢) = m(c). In tabular form:

FIRly, = (F*xG"),

(p,w) < o= (Av,By,...,B,)
M(p) = mlo)

Such a bijection will suffice to prove LIFT.

Before defining the bijection we’re looking for, I want to remark that its con-
struction is not natural in the sense of Section 12 — it will use the numerical order
of the labels {1,2,...,n} of the vertices in the underlying set. But this doesn’t
bother me too much. Notice that we are not trying to show that the classes F[R]*®
and F*® * §" are naturally equivalent — they are not even numerically equivalent!
We're just relating one coefficient of F'(R(x)) to one coefficient of F'(u)G™(u).

First think about defining a function from F[R]? to (F* % §"),. Let ¢ be
a forest of RLTs with vertex—set {1,2,...,n}, and let w be a vertex of ¢. The
corresponding o = (A, v, By,...,B,) will be defined below (eventually). Notice
that since we require that m(c) = M(y), this gives us a big hint as to how to
construct o from (p,w). Since we must have #A = #¢, let A be the set of root
vertices of the components of ¢, and let v be the root vertex of the component of ¢
which contains w. To define the sets B; is a little bit tricky, and this is where the
clever combinatorics in this proof comes into play.



We'll start by defining a function BE'S from F[R],, to (F x §"),, using the fol-
lowing algorithm, which makes use of a list L and a (first—in first—out) queue Q.

FUNCTION: BFS from F[R], to (Fx*G"),;
INPUT: ;
initially L and () are empty, and ?:=1;
let A be the set of root vertices of the components of ¢;
put the vertices in A on the list L in ascending numerical order;
repeat while L is not empty:
copy the first vertex of L onto @;
delete the first vertex from L;
repeat while () is not empty:
let C; be the set of children of the first vertex of (;
put the vertices of C; onto () in ascending numerical order;
increment ¢« ¢+ 1;
delete the first vertex from ();
end repeat;
end repeat;
OUTPUT: (A, CY,...,Cy).

What this is doing is breadth—first search on each component of ¢, taking
the components in ascending order of root labels, and recording the set of children
of each vertex. (I suggest that you run the algorithm by hand on an arbitrary
example with 15 vertices and three components.) Observe that since each vertex in
{1,2,...,n} is deleted from the queue exactly once, a sequence of n sets (C1, ..., C,)
is produced. Also notice that if (By, ..., B,) is a listing of (C4, ..., C,) in any order
and 0 = (A,v, By,...,B,), then m(c) = M(p) as required.

From the output (A,C,...,C,) we can recover the forest ¢ by the following
inverse algorithm, again using a list L and a queue Q.

FUNCTION: FOREST from a subset of (FxG"), to F[R],;
INPUT: (A, C4,...,Ch);
initially ¢ has vertices [NV, and no edges;
initially L and () are empty, and ¢:=1;
put the vertices in A on the list L in ascending numerical order;
repeat while L is not empty:

copy the first vertex of L onto @;

delete the first vertex from L;

mark the first vertex of () as a root vertex of ¢;

repeat while () is not empty:

join the first vertex of () to each vertex of C; by an edge of ¢;



put the vertices of (; onto () in ascending numerical order;
increment 7« ¢+ 1;
delete the first vertex from ();
end repeat;
end repeat;
OUTPUT: .

The algorithm FOREST is not well-defined on all of (F*§"),. It is amusing
and instructive to find an example input with n = 10, say, which causes the algo-
rithm to malfunction. Nonetheless, it is not difficult to verify that for any ¢ € F[R],,
we have

FOREST(BFS(p)) = ¢.

In order to construct the bijection for proving LIFT, it will help to understand
exactly which (n + 1)—tuples in (F % G"),, are in the image of the function BF'S.
For this, let’s start with the construction of the sets (C1, ..., Cy) for just the
first tree 17 of ¢ (the one with the smallest root label). Here, k is the number of
vertices of T}. This corresponds to the first pass through the outer repeat loop in
the algorithm defining BF'S. For each 1 < i < k, let ¢; := #C; — 1. Notice that
after the —th vertex has been deleted from the queue (), the number of vertices
remaining on @ is 1 + ¢; + - -+ + ¢;; this is true initially (the case i = 0) and the
elements of C; are appended to () just before the i—th vertex is deleted from (). So
the sequence (cy, ..., c) satisfies the following conditions:
e cach entry is an integer ¢; > —1;
e if 1 <14 < k then the partial sum ¢ + - - - + ¢; is nonnegative; and
.Cl+"'+0k:—1.
Such a sequence is called a simple Raney sequence. We shall also say that a sequence
(Cy,...,Ck) of sets is a simple Raney sequence when (#Cy — 1,... ,#Cy — 1) is.
As a result, we see that if (A,C4,...,C,) = BFS(p) for some ¢ € F[R],, then
(Cy,...,C,) is the concatenation of #A simple Raney sequences.

Lemma 13.2. Let (by,...,b;) be a sequence of integers such that each b; > —1 and
by + -+ by = —1. Then there is exactly one cyclic shift of the b; which is a simple
Raney sequence.

Proof. For 0 < i < k, let s; := by + --- 4+ b;, so that sy := 0 and s := —1. Let s*
denote the minimum of {s,...,s;}, and let j be the first index at which s; = s*.
The cyclic shift ¢; := b;y; (subscripts modulo k for 1 <1 < k) of the b; is easily seen
to be a simple Raney sequence. (See Figure 13.1.) Any other cyclic shift of the b; is
seen to have some partial sum which is at most —2, and hence fails to be a simple
Raney sequence. O

Definition 13.3. A finite sequence (cy,...,c,) of integers is an r—fold Raney se-
quence provided that the following conditions hold:



FIGURE 13.1. the unique cyclic shift of Lemma 13.2.

e ecach entry is an integer ¢; > —1;

oif ]l <i<nthenc +---+¢ >—r;and

®eC+---+cp=—T.

We shall also say that a sequence (C,...,C,) of sets is an r—fold Raney sequence

when (#C; —1,...,#Cy — 1) is.

It is easy to see that the concatenation of r simple Raney sequences is an
r—fold Raney sequence. In part, the following lemma asserts that the converse is
also true. (The proof is left as an exercise.)

Lemma 13.4. Let 0 = (¢y,...,¢,) be an r—fold Raney sequence, for some r > 1.
(a) Then 0 has a unique expression as the concatenation @ = py---p. of r simple
Raney sequences, called the blocks of 6.

(b) A cyclic shift of 0 is an r—fold Raney sequence if and only if it is obtained by a
cyclic shift of the blocks of 0; that is, pjy1---prp1---p; for some 0 <5 <r —1.

(c) Let B = (by,...,b,) be a sequence of integers b; > —1 such that by+---+b, = —r.
Then there are exactly v cyclic shifts of 3 which are r—fold Raney sequences.

Lemma 13.4 gives us enough leverage to finish the proof of LIFT. The idea
is to define (By,...,B,) to be a cyclic shift of (C1,...,C,) which, along with v,
encodes the choice of the root vertex w of (p,w).

To see this, consider any rooted forest (p,w) € F[R]?. Let v be the root of the
tree containing w, and construct (A, C1,...,C,) by applying the algorithm BF'S to



. We have seen that (Cy,...,C,) is an r—fold Raney sequence. Let pipy---p, be
the factorization of this r—fold Raney sequence into its blocks, corresponding to the
components of ¢. It remains to decide which of the sets C; is to become the first set
By — then the cyclic shift taking the C;—s to the B;—s is determined, and we have
constructed o = (A, v, By,..., B,).

Now, if v is the s—th vertex of A in ascending numerical order (1 < s < r)
then consider the block ps. If w is the p-th vertex (in ascending numerical order)
of the s—th component T (in ascending order of root labels) of ¢, then By is chosen
to be the p-th set in the s—th block of (Cy,...,C,).

Conversely, given 0 = (A, v, By, ..., B,) we must decide which of the sets B;
to choose for the first set Cy. Given (By,...,B,), thought of as a cyclic list of
sets, let pips--- p, be the cyclic list of simple Raney sequences forming its block
decomposition. If v is the s—th vertex of A then choose the indexing of these blocks
so that By is in the block ps. Now let C) be the first set in p;. This determines
(Cy,...,C,) and by applying the algorithm FOREST we construct ¢. Now if By
is the p—th set in the block ps, let w be the p—th vertex of the s—th component of .

The constructions given above provide a pair of mutually inverse bijections
between the sets F[R]® and (F* * G"),,, such that if (¢, w) corresponds to o then
M (p) = m(c). There are a number of details to check — that the hypotheses of the
lemmas are satisfied when required, that the algorithms always terminate properly
on the given input, that they produce the expected output, etc. — but these are left
to the diligent reader. This completes the combinatorial proof of LIFT. O

13. Exercises.

1. Prove Lemma 13.4.

13. Endnotes.

This proof of LIFT is a variation of that given by Raney:



e G.N. Raney, Functional composition patterns and power series reversion, Trans.
Amer. Math. Soc. 94 (1960), 441-451.

There are multivariate versions of LIFT as well. For a state—of-the—art version
and some pointers to prior literature, see

e [P. Goulden and D.M. Kulkarni, Multivariable Lagrange inversion, Gessel-
Viennot cancellation, and the matriz tree theorem, J. Combin. Theory Ser. A 80
(1997), 295-308.



