C&O 430/630 Fall 2006 Homework 4.

1. Let $U = \bigoplus_{i \in \mathbb{Z}} U_i$ and $V = \bigoplus_{j \in \mathbb{Z}} V_j$ be complex vector spaces carrying representations of $\mathfrak{sl}(2,\mathbb{C})$ (where the U_i and V_j are the eigenspaces of H). On the tensor product space $U \otimes V$ define endomorphisms X and Y by

$$X(\mathbf{u} \otimes \mathbf{v}) := (X\mathbf{u}) \otimes \mathbf{v} + \mathbf{u} \otimes (X\mathbf{v})$$

and

$$\mathsf{Y}(\mathbf{u}\otimes\mathbf{v}):=(\mathsf{Y}\mathbf{u})\otimes\mathbf{v}+\mathbf{u}\otimes(\mathsf{Y}\mathbf{v})$$

for all pure tensors, extended linearly, and let H := XY - YX.

Show that $\{X, Y, H\}$ spans a representation of $\mathfrak{sl}(2, \mathbb{C})$ on $U \otimes V$.

- 2. Let V be a finite dimensional complex vector space, written as a direct sum of subspaces $V = \bigoplus_{j \in \mathbb{Z}} V_j$. Assume that U, D, and $\Lambda := \mathsf{UD} - \mathsf{DU}$ are endomorphisms of V with the following properties:
- * for all $j \in \mathbb{Z}$, $\mathsf{U}: V_j \longrightarrow V_{j+2}$; * for all $j \in \mathbb{Z}$, $\mathsf{D}: V_j \longrightarrow V_{j-2}$;
- * for all $j \in \mathbb{Z}$, there is a real number λ_j such that $\Lambda \mathbf{v} = \lambda_j \mathbf{v}$ for all $\mathbf{v} \in V_j$.

Show that if $\lambda_j > 0$ for all j > 0, and $\lambda_{-j} = -\lambda_j$ for all $j \in \mathbb{Z}$, then there is a representation of $\mathfrak{sl}(2,\mathbb{C})$ on V such that for all $j\in\mathbb{Z}$, V_j is the j-th eigenspace of H = XY - YX.

- (a) Use the Matrix-Tree Theorem to show that for each $n \geq 1$, the number of trees with vertex-set $\{1, 2, ..., n\}$ is n^{n-2} .
- (b) Use the Matrix-Tree Theorem to determine the number of spanning trees of the complete bipartite graph $K_{a,b}$ (for all $a \ge 1$ and $b \ge 1$).