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Abstract. A real is called properly n-generic if it is n-generic but not n + 1-

generic. We show that every 1-generic real computes a properly 1-generic real.

On the other hand, if m > n > 2 then an m-generic real cannot compute a

properly n-generic real.

1. Introduction

The notions of measure and category (or in forcing terminology, random (Solovay)
and Cohen forcing) have made their way into computability theory via the notions
of restricted randomness and genericity. Restricted genericity for Cohen reals was
introduced by Jockusch [?], who studied n-genericity, that is, genericity where the
forcing relation is restricted to n-quantifier arithmetic (as Jockusch and Posner [?]
observed, a real is n-generic iff for all Σ0

n sets of strings S, there is some initial
segment σ of A such that σ ∈ S or σ 6⊆ τ for all τ ∈ S.) Restricted genericity
gives rise to a proper hierarchy (every n + 1-generic real is also n-generic but not
vice versa). Thus, we can define a real to be properly n-generic iff it is n-generic
and not n + 1-generic. [A related notion, first discussed by Kurtz [?], is that of
weak n-genericity. Here a real A is weakly n-generic iff A meets all dense Σ0

n sets
of strings. Kurtz [?] showed that weak genericity refines the genericity hierarchy,
with n-generic ) weakly n + 1-generic ) n + 1-generic.]

The study of reals random at various levels of the arithmetical hierarchy was
introduced by Martin-Löf [?]. A real A is called n-random iff for all Σ0

n-tests
{Un : n ∈ N}, we have A /∈

⋂
n

Un. Here, a Σ0
n-test is a (uniform) collection of

Σ0
n-classes {Un : n ∈ N}, such that µ(Un) 6 2−n, where µ is Lebesgue measure.

(We refer the reader to Downey, Hirschfeldt, Nies and Terwijn [?] for a general
introduction to results relating genericity, randomness and relative computability,
as well as to the forthcoming books Nies [?] and Downey and Hirschfeldt [?].)

Both n-genericity and n-randomness can be relativized to a given real Z by
replacing Σ0

n objects by ones that are Σ0
n relative to Z. For instance, a real A is

n-random over Z iff A /∈
⋂

n
Un for all tests {Un : n ∈ N} that are Σ0

n relative to

Z. It is easy to see that a real is n-generic iff it is 1-generic over ∅(n−1). Kurtz
[?] showed that this is also true for randomness; that is, a real is n-random iff it is
1-random over ∅(n−1).

There are striking similarities between the ways these two notions interact with
Turing reducibility. For example, relatively 1-generic reals form minimal pairs, as
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do relatively 2-random reals. Another nice example is van Lambalgen’s Theorem
([?]) which says that A⊕B is n-random iff A is n-random and B is n-random over
A; Yu [?] proved the analogous statement for genericity.

There are interesting distinctions as well. For example, there are complete ∆0
2

1-random reals, whereas all 1-generic reals are generalised low.
This paper is motivated by a result of Miller and Yu [?]:

Theorem 1.1 (Miller and Yu). Let A be 1-random over a real Z, and let B be
1-random and computable in A. Then B is 1-random over Z.

[This result follows from van Lambalgen’s theorem in the case that Z has 1-
random degree.] In particular, letting Z = ∅(n−1), if A is n-random and B 6T A,
with B 1-random, then B is n-random. Asking whether the same property holds
for Cohen genericity yields both a similarity and a distinction from the random
case. We will show that the analogue of Miller and Yu’s result holds in the generic
case, if the bottom real B is 2-generic:

Theorem 1.2. Let A be 1-generic over a real Z, and let B be 2-generic and
computable in A. Then B is 1-generic over Z.

As a result, it is impossible for, say, a 3-generic real to compute a properly 2-generic
real. We mention that Theorem 1.2 may be known, but is not yet found in print,
and so we include a proof here.

On the other hand, the analogue of Miller and Yu’s result always fails when
2-genericity is reduced to 1-genericity:

Theorem 1.3. Every 1-generic real computes a properly 1-generic real.

In fact we prove something somewhat stronger.

Theorem 1.4. Every 1-generic real computes a 1-generic real that is not weakly
2-generic.

We mention some related results: Haught [?] showed that below 0′, the 1-generic
degrees are downward closed; Martin showed that for n > 2, the n-generic degrees
are downward dense (see [?]). More such results are surveyed in [?], which gives
some applications.

Several questions remain:

Question 1.5. Does a sufficiently generic real compute a weakly 2-generic real that
is not 2-generic?

A degree is properly 1-generic if it contains a 1-generic real but no 2-generic real.

Question 1.6. Does a sufficiently generic real compute a properly 1-generic Turing
degree?

We remark that as all “sufficiently” generic reals share the same “sufficiently”
definable properties that are invariant under finite differences, the answers to the
questions do not differ between such reals.

1.1. Notation and terminology. We work with Cantor space 2ω. A class is a
subset of 2ω. For every σ ∈ 2<ω, let [σ] denote the clopen interval in 2ω defined
by σ, i.e., {X ∈ 2ω : σ ⊂ X}. For any W ⊆ 2<ω, we let W =

⋃
σ∈W

[σ] be the
open class defined by W . An open class O ⊆ 2ω is enumerable by some Turing



EVERY 1-GENERIC COMPUTES A PROPERLY 1-GENERIC 3

degree b (we write that O is Σ0
1(b)) if it is defined by some W that is computably

enumerable by b. We say that O is c.e. if it is enumerable by 0. This terminology
can be used up the arithmetic hierarchy; thus a Π0

1(b) class is the complement of an
open set enumerable by b (equivalently, the set of paths through a tree computable
by b); and a Π0

2(b) class is the intersection of a countable sequence of open sets,
uniformly enumerable by b.

If W ⊆ 2<ω, we say that a string σ ∈ 2<ω decides (or forces) W if either σ ∈ W
or no extension of σ is in W . If σ decides W then either [σ] ⊆ W or [σ] is a subset
of the complement of W . A real X ∈ 2ω is 1-generic iff for every c.e. class W , X is
not in the boundary of W (that is, either X ∈ W or X is in the complement of the
closure of W). Similarly, a real X is weakly 2-generic if it is a member of all dense
classes that are enumerable by 0′.

Turing functionals are codes of partial computable functions from 2ω to 2ω.
Formally, a Turing functional is a c.e. set Φ ⊂ 2<ω × 2<ω that is consistent :
for σ′ ⊆ σ, if (σ′, τ ′) ∈ Φ and (σ, τ) ∈ Φ, then τ ′ ⊆ τ . For σ ∈ 26ω, let
Φσ =

⋃
{τ : ∃σ′ ⊆ σ [(σ′, τ) ∈ Φ]}. Consistency is equivalent to having Φσ be

well-defined (and hence a string, finite or infinite) for every σ ∈ 26ω. If X ∈ 2ω

then ΦX is called total if it is also an element of 2ω. We can thus indeed consider
Φ as a map X 7→ ΦX defined on domΦ, which is the collection of all X such that
ΦX is total.

As usual, during a construction, at each stage, all expressions involving dynamic
objects are evaluated according to the state of the objects (either constructed or
given) at the stage. Usual conventions apply; if during a construction we approxi-
mate a ∆0

2 set A, then the value of A on every x is carried over from one stage to
the next unless we explicitly act to change that value.

If σ, τ ∈ 2<ω then στ denotes the concatenation of σ and τ . A digit i ∈ {0, 1}
often stands for the string 〈i〉. If σ ∈ 2<ω and k < ω then σk is the concatenation
of σ with itself k times.

We let W0, W1, . . . , be a uniform enumeration of all c.e. subsets of 2<ω. The
enumeration is arranged so that at every stage s > 0, there is exactly one string σ
and one e such that σ enters We at stage s. We also assume that if e > s then We

is empty at stage s.

2. A positive result

We prove Theorem 1.2: Let A be 1-generic over a real Z, and let B be 2-generic
and computable in A. Then B is 1-generic over Z.

Proof of Theorem 1.2. Let A be 1-generic over Z and let B 6T A be 2-generic. Let
Φ be a Turing functional such that ΦA = B. Let W ⊆ 2<ω be c.e. in Z; we may
assume that W is closed upwards.

Suppose that B /∈ W . Let W̃ = {σ ∈ 2<ω : Φσ ∈ W}. Certainly W̃ is c.e. in Z.

Since A /∈ W̃ and A is 1-generic over Z, we know that there is some σ∗ ⊂ A with
no extension in W̃ .

Let U = {τ ∈ 2<ω : ¬∃σ ⊇ σ∗ [τ ⊆ Φσ]}. The set U is co-c.e., and B /∈ U , so
since B is 2-generic, there is some τ∗ ⊂ B with no extension in U . Thus if τ ⊇ τ∗

then there is a σ ⊇ σ∗ such that τ ⊆ Φσ. Since σ /∈ W̃ , we have Φσ /∈ W . Since W
is closed upwards, τ /∈ W . Thus τ∗ has no extension in W . �



4 CSIMA, DOWNEY, GREENBERG, HIRSCHFELDT, AND MILLER

3. Computing properly 1-generic sets

In this section we prove theorem 1.4: Every 1-generic real X computes a 1-generic
real that is not weakly 2-generic.

To do this, we construct a Turing functional Γ with the following properties:

(1) There is a dense Π0
2(0

′) class A that is contained in the domain of Γ, and
whose image under Γ consists of 1-generic sets.

(2) The range of Γ is contained in a nowhere dense Π0
1(0

′) class.

To see that this suffices, assume that X is weakly 2-generic (if X is not weakly
2-generic then we are of course done). The real X is an element of any dense
Σ0

1(0
′) class, hence of any countable intersection of such classes; so X ∈ A. Then

ΓX (which is computable by X) is 1-generic by (1), and is not weakly 2-generic
because by (2), it misses a dense open set enumerable by 0′.

3.1. Discussion.

3.1.1. Getting property 1. To make the image of A under Γ consist of 1-generic
sets, for each e < ω, we must construct a dense, open set Se such that for all
σ ∈ Se, Γσ decides We; and further we must make the sequence S0,S1, . . . uniformly
enumerable by 0′, so that we can define A =

⋂
e
Se. We need to ensure that A is

dense; by Baire’s theorem, it is sufficient to ensure that each Se is dense.
Consider W0. A simple plan for meeting it would be setting S0 = 2ω and acting

as follows: if W0 is empty, do nothing; if there is some τ ∈ W0, let Γ〈〉 = τ . Now
move to W1. Of course, this plan is not effective, so we must use the priority method
for our construction. Again, a näıve approach would be as follows: While W0 is
empty, do nothing, and let weaker requirements (W1, W2, . . . ) act if they want to.
If some string τ enters W0 then injure the weaker requirements and set Γ〈〉 = τ .
The problem here is that we cannot cancel the axioms that our work for W1, W2, . . .
had us enumerating into Γ, so if we want to keep Γ consistent, we cannot make
the definition we like. The solution is to break up the playing ground into pieces,
let weaker requirements work on some of the pieces, and make sure that there is
sufficient room for the stronger requirement to act if necessary.

Here is the strategy for W0. In the beginning, we mark the interval 2ω = [〈〉]
to work on W0. We break the interval up into infinitely many disjoint subintervals
whose union is dense in 2ω, say [1], [01], [001], [0001], . . . . For the time being, each
such subinterval believes it has met the W0-requirement by forcing its image under
Γ into the complement of W0, simply because W0 is still empty. So we can be
generous and let each subinterval work for the next requirement W1.

At a later stage, some string τ enters W0. Only finitely many subintervals have
been spoiled for W0; so we can define Γ to be τ everywhere else. On the spoiled
intervals, we need to work again for W0; since definitions of Γ have been made
on possibly small subsubintervals, we need to break the spoiled region into small
intervals on which we individually work on W0.

We let S0 be the collection of intervals [σ] that are “good” for W0, which are
those intervals on which we ensure that Γσ meets W0, and those at which we had a
correct belief that [Γσ]∩W0 = ∅. This set will in fact be d.c.e., and so certainly Σ0

2;
and reals in S0 will satisfy the W0 requirement. We need to ensure that S0 is dense;
this will hold because we break our intervals up into finer and finer subintervals
(each time our hopes for an easy win are dashed).
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The strategy for weaker We is similar, except that of course we need to take into
consideration injury by stronger requirements.

3.1.2. Getting property 2. To ensure that the range of Γ is nowhere dense, we could,
whenever we define some axiom Γσ = τ , pick some extension τ ′ of τ and declare
that no value of Γ may ever extend τ ′. This straightforward approach, however,
interferes with the priority mechanism that ensures property (1), in the following
way. Suppose that we mark some interval [σ0] for W1, and later define Γσ1 = τ
for some σ1 ⊃ σ0, marking [σ1] for W2. We then declare that the range of Γ
must be disjoint from [ρ], where ρ ⊃ τ . A later W0 action elsewhere invalidates
[σ0]’s marking, so we mark [σ1] for W0. Then, some string extending ρ enters
W0, but W0 is prohibited from winning by directing Γ through that string on a
subinterval of [σ1]. We will indeed direct Γ to go through some extension τ ′ of τ
that is incomparable with ρ, and this presumably will give us another chance of
attacking W0; but this process may repeat itself, since following the straightforward
approach compels us to first declare some extension ρ′ of τ ′ disjoint from the range
of Γ. After infinitely many failed attempts at meeting W0 we have a real in the
range of Γ belonging to the closure of W0 but not to W0 itself.

This in fact must happen, because we made the collection of prohibited intervals
a dense c.e. class, ensuring that no element of the range of Γ is even weakly 1-generic
(indeed, the recursion theorem and the “slowdown lemma” imply that there is some
e such that We is the set of prohibited intervals, and that every σ is enumerated
into We only after it was declared prohibited). The solution is to use the priority
mechanism that was introduced for getting property (1). When we define Γσ = τ
for meeting We, we define one extension to be prohibited with priority e. This
prohibition can be ignored by strings σ′ ⊂ σ that are working for stronger We′ .
The whole mechanism does the work for us, so we in fact do not need to use the
word “prohibited” during the construction, just to make Γσ long enough.

3.2. Construction. Here is the formal construction.

We build the partial computable functional Γ : 2<ω → 2<ω by stages. Rather
than just being a relation, Γ (as a collection of pairs of strings) will actually be
a partial function on strings. We use Γ(σ) to denote the value of Γ on σ in this
sense; recall that this is distinct from Γσ which we defined in section 1.1. Thus
Γ(σ), if it is ever defined during the construction, is set for ever, whereas Γσ may
keep changing as we keep defining Γ(σ′) for strings σ′ ⊆ σ. We let domΓ (and
its version at stage s) also denote the domain of Γ as a function on strings. This
should not lead to confusion with the domain of Γ as a function on reals. During
the construction, we make sure that if we define Γ(σ) at stage s then no extension
of σ is in domΓ [s]. This implies that Γσ = Γ(σ) from the moment the latter is
defined. Of course, to keep Γ consistent, if we want to define Γ(σ) = τ at stage s
then Γσ, as calculated at the beginning of the stage, must be an initial segment of
τ .

Further, we will make sure that if σ and σ′ in domΓ are incompatible, then so
are Γ(σ) and Γ(σ′). Towards getting property 2, we will always have Γ(σ) = νσ1
for some string νσ, for all σ ∈ domΓ.

Towards getting property 1, we will mark certain strings in 2<ω, and we will
define Γ on these marked strings. There will be two possible types of markings for
strings: active or satisfied. We will only mark a string σ as active for We at stage



6 CSIMA, DOWNEY, GREENBERG, HIRSCHFELDT, AND MILLER

s if there is no τ ∈ We[s] which extends Γσ [s], and if either σ is satisfied for We−1

or if a proper substring of σ is active for We−1. We will only mark a string σ as
satisfied for We at stage s if there is some τ ∈ We such that Γσ ⊃ τ and if σ is a
proper extension of a string that was active for We at stage s − 1.

In the beginning, the entire space 2ω = [〈〉] is marked active for W0. (When we
mark a string σ for We we also say that the clopen set [σ] is marked for We.)

At stage s + 1:
Assume that at the end of stage s, all the properties desired of Γ as described

above hold. Assume that if a string σ is active for We, then strings of the form
σ0k1 are either active for We+1 or have no extension that is active for any We′ .

Finally, for all σ ∈ 2<ω, assume that Γσ = Γσ
′

for some σ′ ⊆ σ which is active for
some We at stage s.
Step 1. A string τ is enumerated into some We. Suppose that there is some σ
that is active for We, such that Γσ ⊆ τ (there will be at most one such σ). Do the
following:

• Remove all markings of strings σ′ ⊇ σ. Note that such markings will pertain
to We′ with e′ ≥ e.

• Let m be larger than any number mentioned so far in the construction.
• Define Γ(σ0s) = τ1m. Mark [σ0s] as satisfied for We and as active for

We+1.
• For every σ′ ∈ 2m extending σ0k1 for some k < s, mark [σ′] as active for

We; find some τσ′ ⊃ Γσ
′

[s] of length m that is incompatible with τ1m, and

define Γ(σ′) = τσ′σ′1. Note that the length of Γσ
′

[s] is much smaller than
m because it was defined prior to the current stage. Note also that, by
choice of m, none of these σ′ have ever been marked at an earlier stage, or
have any extensions which have been marked at an earlier stage. Finally,
note that any extension of σ that was active (for any We′) at stage s has
an extension σ′ that is active for We at stage s + 1.

Note that all the properties described at the beginning of the stage still hold.
Step 2. Inductively for e 6 s, for every [σ] that is currently active for We (either
it was already active at the beginning of the stage, or was marked as active during
the stage so far), for k 6 s, if [σ0k1] is not marked (and hence by assumption and
induction nor is any extension of it), then mark it as active for We+1 and define
Γ(σ0k1) = Γσ0k11.

This completes the construction. An illustration of a typical turn of events is
given in Figures 1-3.

3.3. Verification. In the construction, for any string σ, there is indeed at most
one stage s where we define Γ(σ). When we do this it is because σ was marked
active for some We at stage s. (Recall that whenever we mark σ satisfied for some
We, then we also mark σ active for We+1.) Conversely, whenever a string σ is
marked active or satisfied at a stage s, we define Γ(σ) at that stage.

We only take action to mark a string σ as active or satisfied for We at stage
s + 1 if there is some substring of σ that is active or satisfied for We−1 at stage
s + 1, and there is no extension of σ on which Γ is already defined (and hence no



EVERY 1-GENERIC COMPUTES A PROPERLY 1-GENERIC 7

Figure 1. An interval is active for W1, some subintervals are ac-
tive for W2, and those subintervals have subintervals active for W3:

W1

W2 W2 W2

W3 W3

Figure 2. Action was taken for the middle subinterval. Its mark
and the marks of its subintervals were removed. It is broken into
smaller subintervals; on one we have a positive win for W2 and so
it is satisfied for W2 and active for W3; on the rest we go back to
work on W2, so they are active for W2

W1

W2 W2W2W2W2W2W2 W2W3

Figure 3. Later, action is taken for the original W1-interval. The
previous W2 and W3 markings are cancelled, and the original in-
terval is broken into small subintervals:

W2 W1W1W1W1W1W1W1W1W1W1W1W1W1W1W1W1W1W1W1W1W1W1W1W1W1W1

extension of σ has ever been marked at an earlier stage). Thus, if some string σ
has its markings removed at a stage, it will never again be marked at a later stage.

We define Se, the success set for We. At the beginning of a stage s, the approx-
imation for this success set is Se [s]. We let S+

e [s] be the collection of those strings
that are satisfied for We at stage s. We let S−

e be the collection of strings that are
active for We at stage s. We let Se[s] = S+

e ∪ S−
e . The idea here is simple: if σ

is satisfied for We then Γσ extends some string in We. Thus a string will be later
removed from S+

e if action is taken for some σ′ ⊂ σ which is active for We′ for some
e′ < e. On the other hand, if σ is active for We at stage s, then no extension of Γσ

has yet been found in We; so if it remains active for ever, then it negatively meets
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the We-requirement. Otherwise, the mark is removed and σ leaves S−
e . Of course

the string can leave S−
e also if some σ′ ⊂ σ acts.

So by the construction, since each string σ can become marked at most once,
each Se is d.c.e. (uniformly). [In fact

⋃
e
Se is d.c.e.] Thus A =

⋂
e
Se is a Π0

2(0
′)

class.

By the construction, for σ, σ′ ∈ domΓ (i.e., for σ and σ′ that were ever marked
at some stage), there exist νσ and νσ′ ∈ 2<ω such that Γ(σ) = νσ1, Γ(σ′) = νσ′1.
If σ ⊥ σ′, then we ensured Γ(σ) ⊥ Γ(σ′), in fact, we ensured that νσ ⊥ νσ′ .

Lemma 3.1. Suppose that σ ∈
⋃

e
Se (at the end of time). Then for no σ′ do we

have Γ(σ′) ⊇ νσ0.

Proof. Suppose for a contradiction that there is some σ′ such that Γ(σ′) ⊇ νσ0.
We cannot have σ and σ′ comparable; if σ′ ⊃ σ then Γ(σ′) ⊃ Γ(σ) = νσ1; and if
σ′ ⊂ σ then Γ(σ′) ⊆ Γ(σ).

Thus σ′ ⊥ σ. But then, by our construction, νσ′ ⊥ νσ, and so we cannot have
Γ(σ′) = νσ′1 ⊇ νσ0. �

We now are ready to verify properties (1) and (2). For simplicity of notation,
we let (at every stage) S−1 = {〈〉}.

Lemma 3.2. Each Se is dense, and so A =
⋂

e
Se is dense too.

Proof. We take some σ ∈ Se−1 and show that Se is dense in [σ]. Suppose that σ is
put into Se−1 at stage s0.

We first note that if some [σ′] ⊆ [σ] is ever marked active for We at a stage
s > s0, then there is a subinterval of [σ′] that is (permanently) in Se. This is
because either no action is taken for σ′, in which case the string σ′ is in Se, or
action is taken for σ′ at some stage s, in which case σ′0s is in Se. The point is
that these markings cannot be eliminated by action below σ′, because such action
would remove σ from Se−1 (note that there are no marked strings between σ and
σ′).

Let ρ ⊃ σ. By the above argument, to show that [ρ] ∩ Se 6= ∅, it suffices to
show that there exists some [σ′] ⊆ [σ] such that σ′ is compatible with ρ and [σ′] is
marked active for We at some point. If σ ∈ S+

e−1, then at the same stage when σ
was marked as satisfied for We−1, σ was also marked as active for We, so we are
done. Suppose σ ∈ S−

e−1. Then there was some stage after which σ was always
active for We−1. Since ρ ⊃ σ, there is some k > 0 such that ρ is compatible with
σ0k1. Then at the least stage s such that k 6 s and σ was active for We−1 at stage
s, σ0k1 was marked active for We in step 2 of the construction. �

Lemma 3.3. Suppose that X ∈ Se. Then some initial segment of ΓX determines
We.

(Note that we do not assume that ΓX is total.)

Proof. Suppose that σ ∈ Se and σ ⊂ X . If σ ∈ S+
e , then Γ(σ) extends some string

in We. If σ ∈ S−
e , then no τ ⊃ Γ(σ) is ever enumerated into We. �

Corollary 3.4. A ⊆ domΓ and every Y ∈ Γ[A] is 1-generic.

Proof. The second part follows immediately from Lemma 3.3 (and the first part).
For the first part, apply Lemma 3.3 to the sets Wen

= 2>n for n ∈ ω. �
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Lemma 3.5. Γ[2ω] is contained in a nowhere dense Π0
1(0

′) class.

Proof. Let T be the downward closure of the range of Γ, this time viewed as a
function on strings. That is, let

T = {τ : ∃σ [τ ⊆ Γ(σ)]}.

T is c.e., and so [T ], the class of paths through T , is a Π0
1(0

′) class that contains
the image of Γ on 2ω.

The class [T ] is closed, so to show that it is nowhere dense, it suffices to show
that it does not contain any interval. Suppose for a contradiction that [ρ] is an
interval contained in [T ], which means that every extension of ρ is in T . By the
definition of T , there is some σ ∈ domΓ such that Γ(σ) ⊇ ρ. By Lemma 3.2, there
is some σ′ extending σ which is in

⋃
e
Se. Then νσ′ ⊇ τ , and by Lemma 3.1, νσ′0

is not on T ; this is a contradiction. �
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